Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 65379 , 7 pages
10.12677/ACM.2023.1351098

小梁切除术和粘小管成形术治疗青光眼的 有效性和安全性研究进展

何周*,汤永强#

重庆医科大学附属第二医院眼科,重庆

收稿日期:2023年4月17日;录用日期:2023年5月9日;发布日期:2023年5月17日

摘要

青光眼是临床上常见的眼科疾病,如未经治疗,将会导致不可逆失明。青光眼的治疗目的主要是控制眼压,常见的青光眼手术方式包括小梁切除术和粘小管成形术。本文就小梁切除术和粘小管成形术在青光眼治疗中的有效性和安全性作一综述,以期为临床上青光眼患者的手术方式选择提供参考。

关键词

小梁切除术,粘小管成形术,青光眼

Advances in the Study of the Efficacy and Safety of Trabeculectomy and Canaloplasty in the Treatment of Glaucoma

Zhou He*, Yongqiang Tang#

Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Apr. 17th, 2023; accepted: May 9th, 2023; published: May 17th, 2023

ABSTRACT

Glaucoma is a common eye disease that, if untreated, can lead to irreversible blindness. The main objective of glaucoma treatment is to control intraocular pressure. Common surgical methods for glaucoma include trabeculectomy and canaloplasty. In this article, the studies related to the efficacy and safety of trabeculectomy and canaloplasty in the treatment of glaucoma are reviewed, in order to provide clinical reference for the selection of surgical methods in patients that are diagnosed with glaucoma.

Keywords:Trabeculectomy, Canaloplasty, Glaucoma

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

青光眼是一组以视乳头萎缩及凹陷、视野缺损及视力下降为共同特征的疾病,如未经治疗,将会导致不可逆失明。病理性眼压增高、视神经供血不足是其发病的原发因素,视神经对压力损害的耐受性也与青光眼的发生和发展有关。在房水循环途径中任何一环发生阻碍,均可导致眼压升高而引起病理改变。据估计,全世界的青光眼患者数量将在2040年增至11,180,000人 [1] 。因此,青光眼不应该仅仅被视为一种医学问题,同时也是社会经济的负担。青光眼的治疗方法包括药物治疗和手术治疗,治疗目的主要是控制眼压,减少其对视神经的损害 [2] 。常见的手术方式包括小梁切除术和粘小管成形术,本文主要就小梁切除术和粘小管成形术在青光眼治疗中的有效性和安全性作一综述,以期为临床上青光眼患者的手术方式选择提供参考。

2. 小梁切除术

小梁切除术的概念于1961年由Sugar首次提出 [3] ,其手术原理是通过位于巩膜和结膜之间的人造外滤过通道即滤过泡使房水正常引流,从而达到降低眼压的效果。对于药物治疗无效的青光眼患者来说,小梁切除术是最常用的、最有效的手术治疗方法,因此在这种致盲疾病的管理中起着重要作用 [4] 。通过手术可以将眼压控制在稳定正常水平,防止高眼压对视神经的持续损害。它已被公认为是治疗青光眼的经典手术方式 [5] 。

2.1. 有效性

小梁切除术的长期疗效已有报道。1966年英国基准全国调查显示,术后1年的眼压低于术前眼压的2/3的患者占66.6%,其中使用降眼压药物的患者占71% [6] 。如果小梁切除术在术后1年时取得成功,那么术后5年时及术后10年时的成功率分别为77%和61% [7] 。Waston [8] 对330例手术患者进行了20年的随访,结果显示眼压 < 21 mmHg的患者占57%,其中使用降眼压药物的患者占88%。Otago [9] 对841只手术眼进行了20年的随访,结果显示成功率为79%,其中使用降眼压药物的患者占37%。

2.2. 安全性

2.2.1. 抗纤维化药物

滤过泡常常会因为巩膜及结膜上的伤口愈合后而失效,为解决这一问题,抗纤维化药物遂被用于小梁切除术。1983年,Chen [10] 首次在小梁切除术中将丝裂霉素C用于巩膜外。与此同时,Heuer [11] 等人报道了小梁切除术后结膜下注射5-氟尿嘧啶的早期研究。氟尿嘧啶滤过手术研究和其他研究表明5-氟尿嘧啶有效 [12] ,但是结膜下注射5-氟尿嘧啶因其对眼表的毒性而受到限制 [13] [14] 。对比研究表明小梁切除术中使用丝裂霉素C的疗效优于术后使用5-氟尿嘧啶 [15] [16] 。研究表明,小梁切除术中巩膜外应用5-氟尿嘧啶对患者眼表毒性较小 [17] 。鉴于丝裂霉素C有更强的效力,小梁切除术中使用丝裂霉素C已成为流行,术后辅助使用5-氟尿嘧啶 [18] 。然而高频率使用丝裂霉素C却提高了威胁视力的滤过泡相关并发症的发生率,特别是感染和低眼压。Molteno [19] 的研究表明,口服强的松、秋水仙碱和非甾体抗炎药的抗纤维化方案效果良好,但是这尚未与其他治疗方法进行测试比较。对抗转化生长因子β的测试结果表明其与安慰剂没有区别 [20] 。其他抗纤维药物如抗血管内皮生长因子 [21] [22] [23] [24] 和Ologen植入物 [25] [26] 的疗效有待进一步研究。

2.2.2. 并发症

许多小梁切除术早期和晚期术后并发症已有报道 [27] [28] 。英国基准研究表明,小梁切除术的早期(<2周)并发症包括前房积血(24.6%),浅前房(23.9%),低眼压(24.3%),脉络膜脱离(14.1%),滤过泡漏(17.6%)和眼内炎(0.4%) [29] 。晚期(>2周)并发症包括白内障(20.2%),视力下降(18.8%),囊性滤过泡(3.4%),眼内炎(0.2%)。使用更安全的手术技术可以最大限度地降低许多早期并发症的发生率。理想的滤过泡可以降低晚期滤过泡相关并发症的发生率。功能失调的滤过泡可导致滤过功能过强、低眼压、晚期滤过泡漏、滤过泡相关性感染、滤过泡相关性眼内炎、囊性滤过泡、感觉障碍和手术失败。

3. 粘小管成形术

粘小管成形术的概念于2006年由Cameron [30] 等人提出,它是一种新的非穿透性介入手术方式,它已成为一种有吸引力的替代传统青光眼手术治疗的方法。该手术的目的是通过使用柔性微导管扩大Schlemm管和伸展小梁网来增加房水流出,从而缓解眼压 [31] 。

3.1. 有效性

多项研究证实了粘小管成形术的短期和长期降眼压疗效。一项在美国和德国15个临床中心开展的多中心研究纳入了157例开角型青光眼患者,其中许多人接受了最大耐受剂量的药物治疗 [32] [33] [34] 。主要结局指标包括眼压值和青光眼药物使用种数。粘小管成形术后3年随访时,全组平均眼压值为15.2 ± 3.5 mmHg,平均青光眼药物使用种数为0.8 ± 0.9。粘小管成形术前平均基线眼压值为23.8 ± 5.2 mmHg,平均青光眼药物使用种数为1.5 ± 1.0。一项在德国开展的欧洲前瞻性多中心研究纳入了109例开角型青光眼患者 [35] ,粘小管成形术前平均基线眼压值为23.0 ± 4.3 mmHg。粘小管成形术后3年随访时,眼压值降低了34.3% (平均眼压值:15.1 ± 3.1 mmHg)。Grieshaber [36] 等人对60例晚期原发性开角型青光眼患者进行了粘小管成形术,术前平均基线眼压值为45.01 ± 12.1 mmHg。术后3年随访时,眼压值 < 21、18和16 mmHg的完全成功率(即不额外使用降眼压药物)分别为81%、67.8%和47.2%。在Brusini [37] 报道的研究中,256例开角型青光眼患者接受了最大耐受剂量的药物治疗。粘小管成形术前平均眼压值为29.4 ± 7.9 mmHg。粘小管成形术后3年随访时,眼压值 < 21、18和16 mmHg的完全成功率(即不额外使用降眼压药物)分别为44.8%、31.0%和24.1%,眼压值 < 21、18、16 mmHg的合格成功率(即需额外使用降眼压药物)分别为86.2%、58.6%和37.9%。粘小管成形术前平均青光眼药物使用种数为3.3 ± 0.9,术后3年随访时,平均青光眼药物使用种数降至1.3 ± 1.5。

3.2. 安全性

3.2.1. 术中并发症

粘小管成形术相对常见的一个术中并发症便是狄氏膜破裂,特别是在外科医生刚开始学习做粘小管成形术的时候。以前的研究表明,1.8%~8.5%的病例发生过狄氏膜破裂 [37] 。微破裂一般不是问题,手术可按常规进行 [37] 。但是,如果出现虹膜大穿孔或虹膜脱垂,则建议改为穿透性手术(例如小梁切除术)。

因为Schlemm管的解剖异常、小梁网瘢痕形成或者其它原因,大约7.3%~26%的病例不能成功完成Schlemm管插管,但是随着经验不断积累,失败率逐渐降低 [37] 。假通道的创建以及微导管穿入前房是罕见的术中并发症,随着医生的经验不断积累,它们的发生率逐渐下降 [36] 。

角膜后弹力层脱离是一种罕见但可能威胁视力的并发症 [33] [34] 。据报道,其发生率在1.6%~9.1%之间 [32] 。角膜后弹力层脱离通常大小有限(1~2 mm),并可自行消退。极少数情况下,它可能延伸至视轴,此时需要额外干预 [38] 。

3.2.2. 术后并发症

前房微量积血是粘小管成形术最常见的术后并发症,通常在术后第一天就能看见,主要表现为眼前黑影飘动、视力下降、视物模糊。据报道,其发生率在6.1%~85.2%之间 [37] 。前房积血通常比较温和,术后几天或几周后会自动吸收。

据报道,高达30%的病例在术后即刻出现眼压急剧升高 [37] 。眼压一般在术后24~48 h趋于稳定,无需进一步干预。

短暂的视力下降常见于术后2周内,这是因为手术诱导形成了规则散光。

白内障形成是一种令人不安的并发症,尤其是在年轻患者中,据报道,在既往接受粘小管成形术的患者中,白内障形成率为0%~8.4% [32] [35] 。

即使在粘小管成形术成功后数年,仍可观察到眼压迟发升高。对于这些病例,应进行小梁切除术 [39] 。

4. 两者的比较

在一项回顾性研究中,Ayyala [40] 等人纳入79只眼,其中33只眼行粘小管成形术,46只眼行小梁切除术。术后12个月随访时,粘小管成形术组和小梁切除术组眼压值较术前平均下降百分比分别为32% ± 22%和43% ± 28% (p = 0.072)。当以眼压值 < 18 mmHg但>4 mmHg为成功标准时,粘小管成形术组和小梁切除术组的成功率分别为87.9%和95.7%。但两者差异无统计学意义(p = 0.23)。在并发症方面,粘小管成形术组的前房积血发生率(21%)明显高于小梁切除术组(2%) (p < 0.01)。脉络膜积液、脉络膜上腔出血和低眼压性黄斑病变只出现于小梁切除术组。

Bruggemann [41] 等人进行的一项研究共纳入30例开角型青光眼患者,每例患者均为一只眼行粘小管成形术,对侧眼行小梁切除术。其中行粘小管成形术的眼睛术前平均眼压为26.73 ± 6.4 mmHg,行小梁切除术的眼睛术前平均眼压为26.3 ± 10.9 mmHg。术后12个月随访时,行粘小管成形术的眼睛平均眼压下降值为14.6 ± 4.5 mmHg,行小梁切除术的眼睛平均眼压下降值为15.2 ± 11.2 mmHg。两组间差异无统计学意义(p = 0.87)。粘小管成形术组中有4只眼出现<1.5 mm的浅前房积血,1只眼出现外周角膜后弹力层脱离,1只眼在术后一天出现浅前房且需要注射粘弹剂。小梁切除术组中有2只眼在术后立即出现浅前房且需要注射粘弹剂(其中1只眼需要重复注射4次),5只眼出现间歇性脉络膜脱离,1只眼出现前房积血,2只眼需要做白内障摘除手术。

Matlach [42] 等人开展了第一项比较小梁切除术和粘小管成形术的前瞻性随机临床试验。此项试验共纳入62例开角型青光眼患者,其中32例行小梁切除术,30例行粘小管成形术。成功标准一的定义为眼压 ≤ 18 mmHg或眼压值较基线下降>20%,成功标准二的定义为眼压 ≤ 21 mmHg。小梁切除术组的术前基线眼压中位数为20.0 mmHg,粘小管成形术组的术前基线眼压中位数为22.0 mmHg (p = 0.06)。术后2年随访时,根据成功标准一判定,小梁切除术组的完全成功(即不额外使用降眼压药物)率为74.2%,粘小管成形术组的完全成功(即不额外使用降眼压药物)率为39.1%。根据成功标准二判定,小梁切除术组的完全成功(即不额外使用降眼压药物)率为67.7%,粘小管成形术组的完全成功(即不额外使用降眼压药物)率为39.1%。不同标准下的两组间差异均有统计学意义(标准一p = 0.01,标准二p = 0.004)。根据成功标准一判定,小梁切除术组的合格成功(即用或者不用降眼压药物)率为90.3%,粘小管成形术组的合格成功(即用或者不用降眼压药物)率为82.6%。根据成功标准二判定,小梁成形术组的合格成功(即用或者不用降眼压药物)率为96.8%,粘小管成形术组的合格成功(即用或者不用降眼压药物)率为82.6%。组间差异仅在标准二上有显著性(p = 0.01)。小梁切除术组的手术相关不良反应发生率较高。小梁切除术常见的并发症为一过性低眼压(37.5%)、低眼压相关性脉络膜脱离(12.5%)、浅前房(6.2%)、眼压升高(25.0%)和角膜侵蚀(可能与5-氟尿嘧啶注射有关)。粘小管成形术常见的并发症为术后眼压升高(30%)、前房积血(23.3%)。

Lin [43] 等人的Meta分析结果显示,术后12个月随访时,小梁切除术组和粘小管成形术组的平均眼压差值为2.33 mmHg (95%CI: 0.66; 4.0, p < 0.01)。但是,如果将成功标准定义为眼压 < 18 mmHg,那么小梁切除术组和粘小管成形术组在完全成功(即不额外使用降眼压药物,p = 0.19)和合格成功(即用或者不用降眼压药物,p = 0.39)方面均无显著差异。粘小管成形术组的脉络膜脱离发生率低于小梁切除术组(OR: 0.12, 95%CI: 0.03; 0.48, p < 0.01),前房积血发生率高于小梁切除术组(OR: 8.80, 95%CI: 2.25; 34.51, p < 0.01)。粘小管成形术组发生其它不良事件的患者少于小梁切除术组。

Zhang [44] 等人的Meta分析结果显示,术后12个月随访时,小梁切除术比粘小管成形术更有效地降低了3.65 mmHg的眼压(95%CI: 6.42; 0.88, p = 0.01)。然而,粘小管成形术和小梁切除术在减少降眼压药物使用数量方面差异无统计学意义(p = 0.20)。与小梁切除术组相比,粘小管成形术组的前房积血发生率(OR: 9.24, 95%CI: 3.09; 27.60, p < 0.01)更高,低眼压发生率(OR: 0.32, 95%CI: 0.13; 0.80, p = 0.01)和脉络膜积液发生率(OR: 0.25, 95%CI: 0.06; 0.97, p = 0.04)更低。仅在粘小管成形术组中观察到角膜后弹力层脱离,据报道,发生率约3%。

5. 结论

小梁切除术在降低术后眼压方面比粘小管成形术更有效,故对于术前基础眼压较高的患者,可考虑行小梁切除术。而粘小管成形术后低眼压、脉络膜脱离等并发症的发生率比小梁切除术低,故对于容易出现低眼压、脉络膜脱离等并发症的患者,比如高度近视患者,可建议行粘小管成形术。虽然粘小管成形术后前房积血的发生率比小梁切除术高,但是一般不需要特殊干预,可以自行吸收,并不影响患者的术后疗效。

文章引用

何 周,汤永强. 小梁切除术和粘小管成形术治疗青光眼的有效性和安全性研究进展
Advances in the Study of the Efficacy and Safety of Trabeculectomy and Canaloplasty in the Treatment of Glaucoma[J]. 临床医学进展, 2023, 13(05): 7853-7859. https://doi.org/10.12677/ACM.2023.1351098

参考文献

  1. 1. Tham, Y.C., Li, X., Wong, T.Y., et al. (2014) Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040: A Systematic Review and Meta-Analysis. Ophthalmology, 121, 2081-2090. https://doi.org/10.1016/j.ophtha.2014.05.013

  2. 2. Heijl, A. (2015) Glaucoma Treatment: By the Highest Level of Evidence. The Lancet, 386, 264-1266. https://doi.org/10.1016/S0140-6736(14)62347-3

  3. 3. Sugar, H.S. (1963) Some Recent Advances in the Surgery of Glaucoma. Bulletin of the New York Academy of Medicine, 39, 3-20.

  4. 4. Rulli, E., Biagioli, E., Riva, I., et al. (2013) Ef-ficacy and Safety of Trabeculectomy vs Non-Penetrating Surgical Procedures: A Systematic Review and Meta-Analysis. JAMA Ophthalmology, 131, 1573-1582. https://doi.org/10.1001/jamaophthalmol.2013.5059

  5. 5. Arora, K.S., Robin, A.L., Corcoran, K.J., et al. (2015) Use of Various Glaucoma Surgeries and Procedures in Medicare Beneficiaries from 1994 to 2012. Ophthalmology, 122, 1615-1624. https://doi.org/10.1016/j.ophtha.2015.04.015

  6. 6. Edmunds, B., Thompson, J.R., Salmon, J.F., et al. (2001) The National Survey of Trabeculectomy. II. Variations in Operative Technique and Outcome. Eye (London), 15, 441-448. https://doi.org/10.1038/eye.2001.152

  7. 7. Chen, T.C., Wilensky, J.T., and Viana, M.A. (1997) Long-Term Follow-Up of Initially Successful Trabeculectomy. Ophthalmology, 104, 1120-1125. https://doi.org/10.1016/S0161-6420(97)30174-2

  8. 8. Landers, J., Martin, K., Sarkies, N., et al. (2012) A Twen-ty-Year Follow-Up Study of Trabeculectomy: Risk Factors and Outcomes. Ophthalmology, 119, 694-702. https://doi.org/10.1016/j.ophtha.2011.09.043

  9. 9. Bevin, T.H., Molteno, A.C. and Herbison, P. (2008) Otago Glaucoma Surgery Outcome Study: Long-Term Results of 841 Trabeculectomies. Clinical & Experimental Ophthalmol-ogy, 36, 731-737. https://doi.org/10.1111/j.1442-9071.2008.01896.x

  10. 10. Chen, C.W. (1983) Enhanced Intraocular Pressure Control-ling Effectiveness of Trabeculectomy by Local Application of Mitomycin C. Asia-Pacific Journal of Ophthalmology, 9, 172-177.

  11. 11. Heuer, D.K., Parrish, R.K., Gressel, M.G., et al. (1984) 5-Fluorouracil and Glaucoma Filtering Surgery. II A Pilot Study. Ophthalmology, 91, 84-394. https://doi.org/10.1016/S0161-6420(84)34291-9

  12. 12. The Fluor-ouracil Filtering Surgery Study Group (1996) Five-Year Follow-Up of the Fluorouracil Filtering Surgery Study. Ameri-can Journal of Ophthalmology, 121, 349-366. https://doi.org/10.1016/S0002-9394(14)70431-3

  13. 13. Shapiro, M.S., Thoft, R.A., Friend, J., et al. (1985) 5-Fluorouracil Toxicity to the Ocular Surface Epithelium. Investigative Ophthalmol-ogy & Visual Science, 26, 580-583.

  14. 14. Franks, W.A. and Hitchings, R.A. (1991) Complications of 5-Fluorouracil after Trabeculectomy. Eye (London), 5, 385-389. https://doi.org/10.1038/eye.1991.63

  15. 15. Katz, G.J., Higginbotham, E.J., Lichter, P.R., et al. (1995) Mitomycin C versus 5-Fluorouracil in High-Risk Glaucoma Filtering Surgery. Extended Follow-Up. Ophthalmology, 102, 1263-1269. https://doi.org/10.1016/S0161-6420(95)30875-5

  16. 16. Kitazawa, Y., Kawase, K., Matsushita, H., et al. (1991) Tra-beculectomy with Mitomycin. A Comparative Study with Fluorouracil. Archives of Ophthalmology, 109, 1693-1698. https://doi.org/10.1001/archopht.1991.01080120077030

  17. 17. Smith, M.F., Sherwood, M.B., Doyle, J.W., et al. (1992) Results of Intraoperative 5-Fluorouracil Supplementation on Trabeculectomy for Open-Angle Glaucoma. Ameri-can Journal of Ophthalmology, 114, 737-741. https://doi.org/10.1016/S0002-9394(14)74053-X

  18. 18. Bell, K., de Padua Soares Bezerra, B., Mofokeng, M., et al. (2021) Learning from the Past: Mitomycin C Use in Trabeculectomy and Its Application in Bleb-Forming Minimally In-vasive Glaucoma Surgery. Survey of Ophthalmology, 66, 109-123. https://doi.org/10.1016/j.survophthal.2020.05.005

  19. 19. Fuller, J.R., Bevin, T.H., Molteno, A.C., et al. (2002) An-ti-Inflammatory Fibrosis Suppression in Threatened Trabeculectomy Bleb Failure Produces Good Long Term Control of Intraocular Pressure without Risk of Slight Threatening Complications. British Journal of Ophthalmology, 86, 1352-1354. https://doi.org/10.1136/bjo.86.12.1352

  20. 20. CAT-152 TSG, Khaw, P., Grehn, F., et al. (2007) A Phase III Study of Subconjunctival Human Anti-Transforming Growth Factor beta(2)monoclonal Antibody (CAT-152) to Prevent Scarring after First-Time Trabeculectomy. Ophthalmology, 114, 1822-1830. https://doi.org/10.1016/j.ophtha.2007.03.050

  21. 21. Li, Z., Van Bergen, T., van de Veire, S., et al. (2009) Inhibition of Vascular Endothelial Growth Factor Reduces Scar Formation after Glaucoma Filtration Surgery. Investigative Oph-thalmology & Visual Science, 50, 5217-5225. https://doi.org/10.1167/iovs.08-2662

  22. 22. Van Bergen, T., Vandewalle, E., van de Veire, S., et al. (2011) The Role of Different VEGF Isoforms in Scar Formation after Glaucoma Filtration Surgery. Experimental Eye Research, 93, 689-699. https://doi.org/10.1016/j.exer.2011.08.016

  23. 23. Cheng, J.W., Cheng, S.W., Wei, R.L., et al. (2016) Anti-Vascular Endothelial Growth Factor for Control of Wound Healing in Glaucoma Surgery. Cochrane Database of Systematic Re-views, 1, CD009782. https://doi.org/10.1002/14651858.CD009782.pub2

  24. 24. Kopsinis, G., Tsoukanas, D., Kopsini, D., et al. (2021) In-tracameral Bevacizumab versus Sub-Tenon’s Mitomycin C as Adjuncts to Trabeculectomy: 3-Year Results of a Prospec-tive Randomized Study. Clinical Medicine, 10, Article No. 2054. https://doi.org/10.3390/jcm10102054

  25. 25. He, M., Wang, W., Zhang, X., et al. (2014) Ologen Implant versus Mitomycin C for Trabeculectomy: A Systematic Review and Meta-Analysis. PLOS ONE, 9, e85782. https://doi.org/10.1371/journal.pone.0085782

  26. 26. Cillino, S., Casuccio, A., Di Pace, F., et al. (2016) Biodegradable Collagen Matrix Implant versus Mitomycin-C in Trabeculectomy: Five-Year Follow-Up. BMC Ophthalmology, 16, Article No. 24. https://doi.org/10.1186/s12886-016-0198-0

  27. 27. Edmunds, B., Thompson, J.R., Salmon, J.F., et al. (2002) The National Survey of Trabeculectomy. III. Early Late Complications. Eye, 16, 297-303. https://doi.org/10.1038/sj.eye.6700148

  28. 28. Gedde, S.J., Herndon, L.W., Brandt, J.D., et al. (2007) Surgical Com-plications in the Tube versus Trabeculectomy Study during the First Year of Follow-Up. American Journal of Ophthal-mology, 143, 23-31. https://doi.org/10.1016/j.ajo.2006.07.022

  29. 29. Azuara-Blanco, A. and Katz, L.J. (1998) Dysfunctional Filtering Blebs. Survey of Ophthalmology, 43, 93-126. https://doi.org/10.1016/S0039-6257(98)00025-3

  30. 30. Cameron, B., Field, M., Ball, S., et al. (2006) Circumferential Viscodilation of Schlemm’s Canal with a Flexible Microcannula during Non-Penetrating Glaucoma Surgery. Digital Journal of Ophthalmology, 12, 1.

  31. 31. Harvey, B.J. and Khaimi, M.A. (2011) A Review of Canaloplasty. Saudi Journal of Ophthalmology, 25, 329-336. https://doi.org/10.1016/j.sjopt.2011.08.003

  32. 32. Lewis, R.A., von Wolff, K., Tetz, M., et al. (2011) Canaloplasty: Three-Year Results of Circumferential Viscodilation and Tensioning of Schlemm Canal Using a Microcatheter to Treat Open-Angle Glaucoma. Journal of Cataract & Refractive Surgery, 37, 682-690. https://doi.org/10.1016/j.jcrs.2010.10.055

  33. 33. Lewis, R.A., von Wolff, K., Tetz, M., et al. (2009) Canaloplasty: Circumferential Viscodilation and Tensioning of Schlemm Canal Using a Flexible Microcatheter for the Treatment of Open-Angle Glaucoma in Adults: Two-Year Interim Clinical Study Results. Journal of Cataract & Refractive Surgery, 35, 814-824. https://doi.org/10.1016/j.jcrs.2009.01.010

  34. 34. Lewis, R.A., von Wolff, K., Tetz, M., et al. (2007) Canaloplasty: Circumferential Viscodilation and Tensioning of Schlemm’s Canal Using a Flexible Microcatheter for the Treatment of Open-Angle Glaucoma in Adults: Interim Clinical Study Analysis. Journal of Cataract & Refractive Surgery, 33, 1217-1226. https://doi.org/10.1016/j.jcrs.2007.03.051

  35. 35. Bull, H., von Wolff, K., Korber, N., et al. (2011) Three-Year Canaloplasty Outcomes for the Treatment of Open-Angle Glaucoma: European Study Results. Graefe’s Archive for Clinical and Experimental Ophthalmology, 249, 1537-1545. https://doi.org/10.1007/s00417-011-1728-3

  36. 36. Grieshaber, M.C., Pienaar, A., Olivier, J., et al. (2010) Canalo-plasty for Primary Open-Angle Glaucoma: Long-Term Outcome. British Journal of Ophthalmology, 94, 1478-1482. https://doi.org/10.1136/bjo.2009.163170

  37. 37. Brusini, P. (2014) Canaloplasty in Open-Angle Glaucoma Surgery: A Four-Year Follow-Up. Scientific World Journal, 2014, Article ID: 469609. https://doi.org/10.1155/2014/469609

  38. 38. Brusini, P., Caramello, G., Benedetti, S., et al. (2016) Canaloplasty in Open-Angle Glaucoma: Mid-Term Results from a Multicenter Study. Glaucoma, 25, 403-407. https://doi.org/10.1097/IJG.0000000000000103

  39. 39. Voykov, B. and Rohrbach, J.M. (2016) Revision Procedures after Canaloplasty. Ophthalmology, 113, 910-913. https://doi.org/10.1007/s00347-016-0314-9

  40. 40. Ayyala, R.S., Chaudhry, A.L., Okogbaa, C.B., et al. (2011) Comparison of Surgical Outcomes between Canaloplasty and Trabeculectomy at 12 Months’ Follow-Up. Ophthalmology, 118, 2427-2433. https://doi.org/10.1016/j.ophtha.2011.05.021

  41. 41. Bruggemann, A., Despouy, J.T., Wegent, A., et al. (2013) Intra-individual Comparison of Canaloplasty versus Trabeculectomy with Mitomycin C in a Single-Surgeon Series. Glaucoma, 22, 577-583. https://doi.org/10.1097/IJG.0b013e318255bb30

  42. 42. Matlach, J., Dhillon, C., Hain, J., et al. (2015) Trabeculecto-my versus Canaloplasty (TVC Study) in the Treatment of Patients with Open-Angle Glaucoma: A Prospective Random-ized Clinical Trial. Acta Ophthalmologica, 93, 753-761. https://doi.org/10.1111/aos.12722

  43. 43. Lin, Z.J., Xu, S., Huang, S.Y., et al. (2016) Comparison of Canaloplasty and Trabeculectomy for Open Angle Glaucoma: A Meta-Analysis. International Journal of Ophthalmology, 9, 1814-1819.

  44. 44. Zhang, B., Kang, J. and Chen, X. (2017) A System Review and Meta-Analysis of Canaloplasty Out-comes in Glaucoma Treatment in Comparison with Trabeculectomy. Ophthalmology, 2017, Article ID: 2723761. https://doi.org/10.1155/2017/2723761

  45. NOTES

    *第一作者。

    #通讯作者。

期刊菜单