Advances in Clinical Medicine
Vol.
13
No.
06
(
2023
), Article ID:
67328
,
7
pages
10.12677/ACM.2023.1361348
Syndecan在疾病过程中的研究进展
陈东平,苏娟*
青海大学附属医院,青海 西宁
收稿日期:2023年5月16日;录用日期:2023年6月9日;发布日期:2023年6月20日

摘要
Syndecan是一种具有四个成员的跨膜硫酸乙酰肝素蛋白聚糖(HSPGs)。这些蛋白多糖由一个核心蛋白和以共价键方式连接在核心蛋白上的一条或者多条硫酸乙酰肝素糖(GAG)链组成,它们能够参与多种生命活动的调控,在生长、发育、微生物和病毒感染、炎症反应、能量代谢及肿瘤的发生和发展等不同的生理病理过程中发挥着重要的作用。
关键词
硫酸乙酰肝素蛋白聚糖,多配体蛋白聚糖,炎症相关性疾病,肿瘤

Research Progress of Syndecan in Disease Process
Dongping Chen, Juan Su*
The Affiliated Hospital of Qinghai University, Xining Qinghai
Received: May 16th, 2023; accepted: Jun. 9th, 2023; published: Jun. 20th, 2023

ABSTRACT
Syndecan is a transmembrane heparan sulfate proteoglycan (HSPGs) with four members. These proteoglycans are composed of a core protein and one or more GAG chains covalently attached to the core protein. They can participate in the regulation of various life activities and play an important role in different physiological and pathological processes such as growth, development, microbial and viral infection, inflammatory reaction, energy metabolism and the occurrence and development of tumors.
Keywords:Heparan Sulfate Proteoglycan (HSPG), Syndecan, Inflammation-Related Diseases, Tumour
Copyright © 2023 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
1. 背景介绍
Syndecan是跨膜硫酸乙酰肝素蛋白聚糖(HSPG),由硫酸乙酰肝素(HS)糖胺聚糖(GAG)链共价连接的核心蛋白组成。目前已发现的syndecans类型有4种,分别命名为多配体蛋白聚糖-(syndecan-1, -2, -3和-4)。
结构:它们是具有特征性结构域的蛋白质,其核心暴露于细胞外环境的可变外域含有3至5个HS和在某些情况下存在的特殊的硫酸软骨素链,并通过疏水跨膜区与细胞膜连接。此外,还有一个含有肽序列的细胞内结构域,作为细胞激酶的底物,使得syndecan能够作为信号分子。Syndecan GAG链的结构和翻译后修饰似乎不仅在细胞之间不同,在不同的生理病理过程中的功能也不一样,这种作用的复杂性与蛋白聚糖的结构有着密切的关系,从而使得syndecan功能具有了复杂的多样性。
Syndecan具有多种生物学功能,已有相关文献记载。它们在脂质代谢 [1] 、组织再生 [2] 、血管生成中发挥作用 [3] ,并参与多种疾病的发病机制,包括纤维化和心脏病 [4] [5] 、宿主–病原体相互作用 [6] 、慢性炎性和自身免疫性疾病 [7] 、软骨破坏和滑膜炎症 [8] 。因此,本篇仅简要提及他们的主要作用,并强调当下在疾病中的一些最新的发现。
2. Syndecan-1在肿瘤中的作用
syndecan-1是成人组织中上皮细胞基底外侧表面的主要syndecan,在发育过程中由间充质细胞瞬时表达,也见于淋巴样细胞分化的不同阶段 [9] 。syndecan-1主要分布于上皮细胞,并带有硫酸乙酰肝素链,能够与大量多肽相互作用,包括细胞外基质成分和增殖、粘附和迁移的有效介质。在人类的四种syndecans中,syndecan-1是迄今为止在肿瘤进展背景下受到最多关注的,关于这种蛋白聚糖的报道比其他三种蛋白聚糖的报道加起来还要多。
在恶性转化、癌症进展和转移过程中,正常上皮细胞会发生多种分子和形态变化,从而导致间充质特征和迁移表型。上皮–间充质转化(EMT)的初始中心步骤之一 [10] [11] ,是对上皮标志物的转录抑制,导致E-钙粘蛋白和syndecan-1同时丢失 [12] [13] 。上皮细胞表面syndecan-1的耗竭彻底地改变了它们的形态学和锚定依赖性生长 [14] ,因此syndecan-1是维持上皮表型所必需的。
多项研究表明,癌中syndecan-1的表达与肿瘤细胞分化和预后显著相关 [15] 。在头颈部癌的上皮细胞中syndecan-1表达的减少与鳞状细胞头颈癌中的肿瘤聚集性和生存率有关 [16] [17] [18] 。其表达水平可能是头颈部癌症的一个新的预后因素。在胃肠道恶性肿瘤中syndecan-1的表达与预后不良相关,syndecan-1的上皮表达与淋巴结转移呈负相关 [19] ,并与生存期延长相关,而其基质syndecan-1的表达则与生存期缩短相关 [20] ,syndecan-1的低表达与胃癌的侵袭和转移显著相关 [21] ;syndecan-1在人正常肝中表达,失去syndecan-1表达是具有高转移潜能的肝细胞癌的典型特征,并且syndecan-1表达在mRNA和蛋白水平上都降低 [22] ;在乳腺癌中乳腺癌与细胞膜syndecan-1增加有关 [23] ,而在癌旁的基质细胞中也诱导其表达,特别是在表现出侵袭性表型的肿瘤中 [24] ,这被发现是一个潜在的显著不良因素 [25] ;在前列腺癌中,syndecan-1水平与肿瘤分级呈负相关 [26] ,而正常前列腺组织中,syndecan-1主要由上皮细胞表达,而在肿瘤中,我们观察到肿瘤基质中syndecan-1表达总体增加,同时其从肿瘤上皮细胞中消失 [27] 。总之,与syndecan-1及其不同定位相关的分子功能的多样性突出了一种复杂的组织特异性和发育相关的表达模式,肿瘤细胞中较高水平的syndecan-1与体外抑制侵袭性相关,syndecan-1表达减少与组织学分化差、淋巴结转移和手术切除后预后差相关 [28] 。
3. Syndecan-2在成骨细胞中的作用
与其他syndecan相比,syndecan-2在浓缩的软骨形成前核心和软骨周组织中的表达较高,但在软骨细胞分化过程中会降低,与此同时syndecan-2在成骨开始时就在骨膜中表达,而且在成骨细胞分化过程中表达的更明显。因此syndecan-2可能更多的参与了成骨细胞的分化过程并可能在骨中具有特定作用。从机制上看,成骨细胞中syndecan-2的表达受到Wnts、FGF (成纤维细胞生长因子)和TGF-β (转化生长因子)信号通路的严格调控 [29] [30] ,这可能与它是成纤维细胞生长因子和Wnt蛋白的共受体有关。
在骨中,有研究表明 [31] [32] syndecan-2在骨肉瘤细胞中具有促凋亡作用,且在化学敏感性骨肉瘤细胞中,我们发现细胞毒性药物通过激活FoxO转录因子从而增加syndecan-2的表达,导致细胞凋亡。这可能与syndecan-2在功能上对粒细胞–巨噬细胞集落刺激因子(granulocyte-macrophage colony-stimulating factor, GM-CSF)的促有丝分裂作用有关,从而控制了成骨细胞谱系细胞的增殖有关。GM-CSF在刺激细胞后,会使得GM-CSF受体α链相关的syndecan-2中酪氨酸残基的磷酸化增加。且特异性降低syndecan-2表达的反义寡核苷酸抑制GM-CSF的促有丝分裂活性和细胞因子诱导的细胞外信号调节激酶-1的激活 [33] 。
除外在骨中的发现外,来自耶鲁大学心血管研究中心的Federico Corti团队,在缺血性卒中相关脑水肿中发现人源性抗syndecan-2单克隆抗体用于治疗的可能性。研究人员发现 [34] 在缺血性卒中小鼠模型(大脑中动脉闭塞45分钟后再灌注)中,在再灌注30分钟后注射抗syndecan-2抗体可以显著减少血管源性水肿体积,提示在缺血性卒中中,抗syndecan-2抗体治疗可以起到减少脑水肿的作用。该机制从选择性地抑制和血脑屏障破坏相关的VEGF-R2 (血管内皮生长因子)信号通路出发,并保留VEGF-R2相关的有益信号通路的同时阻断VEGF-A诱导的脑水肿。相较于当下传统的治疗方案通过完全阻断VEGF-R2的激活而言,新的举措能够保留血管保护作用,从而避免微血管的稀疏,血管生成的抑制和神经保护作用的降低,所以该研究的新发现有望对脑水肿的治疗提供更加完美的治疗方案。并且该团队已经在非人类灵长类动物脑卒中模型中使用了该抗体,抗syndecan-2抗体治疗后减少了卒中后脑水肿的体积。与此同时在此次以及既往的回顾分析中均未发现该治疗的副作用,提示该抗syndecan-2抗体治疗可能具有较好的安全性。
4. Syndecan-3在炎症相关性疾病中的发现
目前我们已知Syndecan-3主要在脑和神经组织中表达,在发育、细胞粘附和迁移中起关键作用。但是Syndecan-3的表达并不局限于神经元组织,在类风湿性关节炎等炎性疾病、血管生成等疾病相关过程以及在癌症中的表达模式和意义中也具有重要作用。
Syndecan-3对内皮细胞的作用正在炎症反应中显现 [35] ,内皮Syndecan-3的选择性表达已在慢性炎症滑膜中得到探索,其中Syndecan-3通过结合细胞因子和调节白细胞的迁移和滞留而在关节炎病理生理学中发挥作用 [36] 。例如在类风湿性关节炎进展过程中,炎症血管内皮上表达的Syndecan-3结合白细胞和趋化因子 [37] ,进一步推进了炎症的过程;最近一项关于阿尔兹海默症(AD)的研究显示Syndecan-3可能是新的生物标志物 [38] ,该研究从TNF-α (抗肿瘤坏死因子α)对AD中的两类必需细胞的模型细胞系SH-SY5Y (代表了广泛应用于神经生物学的神经元样细胞)与hCMEC/D3 (是研究血脑屏障衍生内皮细胞的金标准细胞系)对Syndecan-3表达的影响入手,该结论表明TNF-α增加SH-SY5Y和hCMEC/D3细胞系的Syndecan-3表达,并且该结论得到了小鼠模型与人脑AD的数据证实。正如研究中所检测到的,血液单核细胞Syndecan-3表达的增加证实了单核细胞活化是由于与AD相关的全身炎症所致。外周单核细胞Syndecan-3表达变化与Aβ (突变β淀粉样前体蛋白)病理的相关性强调了单核细胞Syndecan-3作为AD进展预测性生物标志物的相关性 [39] 。
除外炎症相关性疾病,有研究已显示Syndecan-3表达在几种癌症类型中上调,特别是在已知为缺氧的实体瘤中。癌症基因组图谱计划(TCGA)的数据表明,肿瘤微环境中的Syndecan-3表达与缺氧基因信号呈正相关。
所有类型实体肿瘤的共同特征是癌细胞增殖与血供失衡,从而导致缺氧。细胞中的缺氧反应由缺氧诱导因子(HIF)转录因子家族介导,在缺氧环境下,瘤细胞中大量参与细胞生长、代谢、转移和免疫的靶基因被激活 [40] [41] ,缺氧还可调节不同免疫群体的命运和功能,包括T细胞和巨噬细胞 [42] ,以及影响其迁移和渗透的ECM (细胞外基质)组织 [43] 。
5. Syndecan-4在炎症作用中的两种反向结果
抗凝血酶与硫酸乙酰肝素蛋白聚糖的结合可传递抗炎效应,且该机制目前已得到实验支持。主要是抗凝血酶通过其肝素结合结构域与syndecan-4、细胞表面的整联蛋白家族的受体相互作用,使得抗凝血酶与内皮肝素样GAGs (如硫酸乙酰肝素)结合诱导内皮前列腺素I2的释放 [44] ,抑制血小板活化并抑制白细胞在内皮细胞上的粘附和滚动 [45] 。尽管抗凝血酶也单独发挥抑制活性,但其与肥大细胞衍生的肝素或内皮GAGs的结合 [46] ,启动构象变化,导致AT活性增加几个数量级 [47] 。除此之外,在多项炎症疾病模型中,例如在敲除syndecan-1和syndecan-4的小鼠的肾炎和肺部炎症疾病模型中 [48] [49] 以及通过局部注射乙酰肝素酶导致白细胞粘附到提睾肌内皮上增加 [50] ,我们也能发现HSPGs可能具有抗炎作用。
此外syndecan-4还可在某些刺激下,如细胞外细胞因子、金属蛋白酶(MMP)和氧化应激,分泌显著增加,而可溶性syndecan-4还可促进炎症和新的syndecan-4合成,这一点与炎症的级联反应似乎很像。例如在此之前的多份研究经曾表明,在骨关节炎动物模型中,缺失syndecan-4可保护小鼠免受软骨损伤 [51] 和RA (类风湿性关节炎),且在RA-FLS (成纤维细胞样滑膜细胞)中,高表达的syndecan-4导致炎症的开始和凋亡的减少,二者均表明在关节炎早期,syndecan-4显著参与滑膜成纤维细胞的活化及其与软骨的附着 [52] 。最近的一次实验还发现RA患者的血清syndecan-4浓度高于OA (骨性关节炎)患者和健康对照者,且RF (类风湿因子)阳性RA患者的血清syndecan-4浓度显著高于RF阴性RA患者。血清syndecan-4度均与RA患者的疾病活动性呈正相关 [53] 。尽管出现两种截然相反的作用,但是Syndecan是促炎还是抗炎可能与它们表达的特定组织或炎症状态有关,其进一步探究还需要更多的临床试验研究来探索。
在一项关于胆固醇诱导的LRP3 (低密度脂蛋白受体相关蛋白3)下调通过靶向syndecan-4促进骨性关节炎软骨变性的研究中有了新的发现。该研究提出 [54] 敲除LRP3会通过激活Ras/Raf/MEK/ERK信号通路导致syndecan-4上调的假设。然后,他们进行了western blot以验证该假设。结果表明,敲除LRP3能显著增加RasRaf的表达,以及MEK1/2和ERK1/2的磷酸化水平,同时syndecan-4也显著增加。此外,在TNF-α诱导的大鼠OA软骨细胞中,Ras信号通路明显被激活,而LRP3的过表达同时抑制Ras信号通路的激活和syndecan-4的表达。综上得出结论是LRP3通过Ras/Raf/MEK/ERK信号通路负调控软骨细胞中syndecan-4的表达。由于脂质代谢对骨性关节炎的机制过于复杂,该研究目前并没有确切的证据,但模型试验给出的结果令我们对未来该领域的研究充满希望。
综上所述,syndecan在疾病发展的生理病理过程中有着重要的作用,无论是疾病前的诊断还是治疗上的方方面面它都展现出十分远大的前景。由于硫酸乙酰肝素蛋白聚糖分子结构的特殊性,目前在功能及分布上任存在一些分歧,例如在炎症中的促进与抗炎作用,及癌症中的表达与升高,这或许可能与它们的起源和功能上的重叠有关,随着对其研究的深入,这一切都有望被逐一揭开。
文章引用
陈东平,苏 娟. Syndecan在疾病过程中的研究进展
Research Progress of Syndecan in Disease Process[J]. 临床医学进展, 2023, 13(06): 9634-9640. https://doi.org/10.12677/ACM.2023.1361348
参考文献
- 1. De Nardo, W., Miotto, P.M., Bayliss, J., et al. (2022) Proteomic Analysis Reveals Exercise Training Induced Remodel-ling of Hepatokine Secretion and Uncovers Syndecan-4 as a Regulator of Hepatic Lipid Metabolism. Molecular Metabo-lism, 60, Article ID: 101491. https://doi.org/10.1016/j.molmet.2022.101491
- 2. Warner, H., Wu, Y. and Wagner, W.D. (2021) Syndecan-4 Functionalization of Tissue Regeneration Scaffolds Improves Interaction with Endothelial Pro-genitor Cells. Regenerative Biomaterials, 8, rbab070. https://doi.org/10.1093/rb/rbab070
- 3. Arokiasamy, S., Balderstone, M.J.M., De Rossi, G. and Whiteford, J.R. (2020) Syndecan-3 in Inflammation and Angiogenesis. Frontiers in Immunology, 10, Article No. 3031. https://doi.org/10.3389/fimmu.2019.03031
- 4. Lunde, I.G., Herum, K.M., Carlson, C.C. and Christensen, G. (2016) Syndecans in Heart Fibrosis. Cell and Tissue Research, 365, 539-552. https://doi.org/10.1007/s00441-016-2454-2
- 5. Christensen, G., Herum, K.M. and Lunde, I.G. (2019) Sweet, Yet Underappreciated: Proteoglycans and Extracellular Matrix Remodeling in Heart Disease. Matrix Biology, 75-76, 286-299. https://doi.org/10.1016/j.matbio.2018.01.001
- 6. Schlömmer, C., Brandtner, A. and Bachler, M. (2021) An-tithrombin and Its Role in Host Defense and Inflammation. International Journal of Molecular Sciences, 22, Article No. 4283. https://doi.org/10.3390/ijms22084283
- 7. Agere, S.A., Kim, E.Y., Akhtar, N. and Ahmed, S. (2018) Syndecans in Chronic Inflammatory and Autoimmune Diseases: Pathological Insights and Therapeutic Opportunities. Journal of Cellular Physiology, 233, 6346-6358. https://doi.org/10.1002/jcp.26388
- 8. Hurysz, B. and Bottini, N. (2022) Emerging Proteoglycans and Proteogly-can-Targeted Therapies in Rheumatoid Arthritis. American Journal of Physiology-Cell Physiology, 322, C1061-C1067. https://doi.org/10.1152/ajpcell.00086.2022
- 9. Gondelaud, F. and Ricard-Blum, S. (2019) Structures and Interac-tions of Syndecans. FEBS Journal, 286, 2994-3007. https://doi.org/10.1111/febs.14828
- 10. Scott, L.E., Weinberg, S.H. and Lemmon, C.A. (2019) Mechanochemical Signaling of the Extracellular Matrix in Epithelial-Mesenchymal Transition. Frontiers in Cell and Developmental Biology, 7, Article No. 135. https://doi.org/10.3389/fcell.2019.00135
- 11. Kalluri, R. and Weinberg, R.A. (2009) The Basics of Epitheli-al-Mesenchymal Transition. Journal of Clinical Investigation, 119, 1420-1428. https://doi.org/10.1172/JCI39104
- 12. Couchman, J.R. (2021) Syndecan-1 (CD138), Carcinomas and EMT. In-ternational Journal of Molecular Sciences, 22, Article No. 4227. https://doi.org/10.3390/ijms22084227
- 13. Sun, D., Mcalmon, K.R., Davies, J.A., Bernfield, M. and Hay, E.D. (1998) Simultaneous Loss of Expression of Syndecan-1 and E-Cadherin in the Embryonic Palate during Epithelial-Mesenchymal Transformation. The International Journal of Developmental Biology, 42, 733-736.
- 14. Szatmári, T. and Dobra, K. (2013) The Role of Syndecan-1 in Cellular Sig-naling and Its Effects on Heparan Sulfate Biosynthesis in Mesenchymal Tumors. Frontiers in Oncology, 3, Article No. 310. https://doi.org/10.3389/fonc.2013.00310
- 15. Handra-Luca, A. (2020) Syndecan-1 in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 1272, 39-53. https://doi.org/10.1007/978-3-030-48457-6_3
- 16. Ahmed Haji Omar, A., Haglund, C., Virolainen, S., et al. (2013) Epithelial and Stromal Syndecan-1 and -2 Are Distinctly Expressed in Oral- and Cutaneous Squamous Cell Carcinomas. Journal of Oral Pathology & Medicine, 42, 389-395. https://doi.org/10.1111/jop.12025
- 17. Shetty, P.K., Gonsalves, N., Desai, D., et al. (2022) Expression of Syndecan-1 in Different Grades of Oral Squamous Cell Carcinoma: An Immunohistochemical Study. Journal of Cancer Research and Therapeutics, 18, S191-S196. https://doi.org/10.4103/jcrt.JCRT_1715_20
- 18. Pulkkinen, J.O., Penttinen, M., Jalkanen, M., Klemi, P. and Grénman, R. (1997) Syndecan-1: A New Prognostic Marker in Laryngeal Cancer. Acta Oto-Laryngologica, 117, 312-315. https://doi.org/10.3109/00016489709117794
- 19. Hu, X.F., Yao, J., Gao, S.G., Yang, Y.T., Peng, X.Q. and Feng, X.S. (2014) Midkine and Syndecan-1 Levels Correlate with the Progression of Malignant Gastric Cardiac Adenocarcinoma. Molecular Medicine Reports, 10, 1409-1415. https://doi.org/10.3892/mmr.2014.2369
- 20. Wiksten, J.P., Lundin, J., Nordling, S., et al. (2001) Epithelial and Stromal Syndecan-1 Expression as Predictor of Outcome in Patients with Gastric Cancer. International Journal of Can-cer, 95, 1-6. https://doi.org/10.1002/1097-0215(20010120)95:1<1::AID-IJC1000>3.0.CO;2-5
- 21. Chu, Y.Q., Ye, Z.Y., Tao, H.Q., Wang, Y.Y. and Zhao, Z.S. (2008) Relationship between Cell Adhesion Molecules Expression and the Biological Behavior of Gastric Carcinoma. World Journal of Gastroenterology, 14, 1990-1996. https://doi.org/10.3748/wjg.14.1990
- 22. Reszegi, A., Tátrai, P., Regős, E., Kovalszky, I. and Baghy, K. (2022) Syndecan-1 in Liver Pathophysiology. American Journal of Physiology-Cell Physiology, 323, C289-C294. https://doi.org/10.1152/ajpcell.00039.2022
- 23. Matsuda, K., Maruyama, H., Guo, F., et al. (2001) Glypican-1 Is Overexpressed in Human Breast Cancer and Modulates the Mitogenic Effects of Multiple Heparin-Binding Growth Fac-tors in Breast Cancer Cells. Cancer Research, 61, 5562-5569.
- 24. Lendorf, M.E., Manon-Jensen, T., Kronqvist, P., Multhaupt, H.A. and Couchman, J.R. (2011) Syndecan-1 and Syndecan-4 Are Independent Indicators in Breast Carci-noma. Journal of Histochemistry & Cytochemistry, 59, 615-629. https://doi.org/10.1369/0022155411405057
- 25. Loussouarn, D., Campion, L., Sagan, C., et al. (2008) Prognostic Impact of Syndecan-1 Expression in Invasive Ductal Breast Carcinomas. British Journal of Cancer, 98, 1993-1998. https://doi.org/10.1038/sj.bjc.6604400
- 26. Poblete, C.E., Fulla, J., Gallardo, M., et al. (2014) Increased SNAIL Expression and Low Syndecan Levels Are Associated with High Gleason Grade in Prostate Cancer. International Jour-nal of Oncology, 44, 647-654. https://doi.org/10.3892/ijo.2014.2254
- 27. Suhovskih, A.V., Mostovich, L.A., Kunin, I.S., et al. (2013) Proteo-glycan Expression in Normal Human Prostate Tissue and Prostate Cancer. ISRN Oncology, 2013, Article ID: 680136. https://doi.org/10.1155/2013/680136
- 28. Harada, K., Masuda, S., Hirano, M. and Nakanuma, Y. (2003) Reduced Expression of Syndecan-1 Correlates with Histologic Dedifferentiation, Lymph Node Metastasis, and Poor Prognosis in Intrahepatic Cholangiocarcinoma. Human Pathology, 34, 857-863. https://doi.org/10.1016/S0046-8177(03)00336-8
- 29. Dieudonné, F.X., Marion, A., Haÿ, E., Marie, P.J. and Mo-drowski, D. (2010) High Wnt Signaling Represses the Proapoptotic Proteoglycan Syndecan-2 in Osteosarcoma Cells. Cancer Research, 70, 5399-5408. https://doi.org/10.1158/0008-5472.CAN-10-0090
- 30. Marion, A., Dieudonné, F.X., Patiño-Garcia, A., Lecanda, F., Marie, P.J. and Modrowski, D. (2012) Calpain-6 Is an Endothelin-1 Signaling Dependent Protective Factor in Chemoresistant Osteosarcoma. International Journal of Cancer, 130, 2514-2525. https://doi.org/10.1002/ijc.26246
- 31. Modrowski, D., Orosco, A., Thévenard, J., Fromigué, O. and Marie, P.J. (2005) Syndecan-2 Overexpression Induces Osteosarcoma Cell Apoptosis: Implication of Syndecan-2 Cytoplasmic Do-main and JNK Signaling. Bone, 37, 180-189. https://doi.org/10.1016/j.bone.2005.04.010
- 32. Orosco, A., Fromigué, O., Haÿ, E., Marie, P.J. and Modrowski, D. (2006) Dual Involvement of Protein Kinase C Delta in Apoptosis Induced by Syndecan-2 in Osteoblasts. Journal of Cel-lular Biochemistry, 98, 838-850. https://doi.org/10.1002/jcb.20826
- 33. Modrowski, D., Baslé, M., Lomri, A. and Marie, P.J. (2000) Syndecan-2 Is Involved in the Mitogenic Activity and Signaling of Granulocyte-Macrophage Colony-Stimulating Factor in Osteoblasts. Journal of Biological Chemistry, 275, 9178-9185. https://doi.org/10.1074/jbc.275.13.9178
- 34. Corti, F., Ristori, E., Rivera-Molina, F., et al. (2022) Syndecan-2 Selectively Regulates VEGF-Induced Vascular Permeability. Nature Cardiovascular Research, 1, 518-528. https://doi.org/10.1038/s44161-022-00064-2
- 35. Gopal, S., Arokiasamy, S., Pataki, C., Whiteford, J.R. and Couchman, J.R. (2021) Syndecan Receptors: Pericellular Regulators in Development and Inflammatory Disease. Open Biology, 11, Article ID: 200377. https://doi.org/10.1098/rsob.200377
- 36. Patterson, A.M., Gardner, L., Shaw, J., et al. (2005) Induction of a CXCL8 Binding Site on Endothelial Syndecan-3 in Rheumatoid Synovium. Arthritis & Rheumatology, 52, 2331-2342. https://doi.org/10.1002/art.21222
- 37. Patterson, A.M., Cartwright, A., David, G., et al. (2008) Differential Ex-pression of Syndecans and Glypicans in Chronically Inflamed Synovium. Annals of Rheumatic Diseases, 67, 592-601. https://doi.org/10.1136/ard.2006.063875
- 38. Hudák, A., Letoha, A., Vizler, C. and Letoha, T. (2022) Syndecan-3 as a Novel Biomarker in Alzheimer’s Disease. International Journal of Molecular Sciences, 23, Article No. 3407. https://doi.org/10.3390/ijms23063407
- 39. Wang, J., Chen, P., Hu, B., et al. (2023) Distinct Effects of SDC3 and FGFRL1 on Selective Neurodegeneration in AD and PD. FASEB Journal, 37, e22773. https://doi.org/10.1096/fj.202201359R
- 40. Labiano, S., Palazon, A. and Melero, I. (2015) Immune Response Regulation in the Tumor Microenvironment by Hypoxia. Seminars in Oncology, 42, 378-386. https://doi.org/10.1053/j.seminoncol.2015.02.009
- 41. Noman, M.Z., Hasmim, M., Lequeux, A., et al. (2019) Im-proving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges. Cells, 8, Article No. 1083. https://doi.org/10.3390/cells8091083
- 42. Palazon, A., Goldrath, A.W., Nizet, V. and Johnson, R.S. (2014) HIF Transcription Factors, Inflammation, and Immunity. Immunity, 41, 518-528. https://doi.org/10.1016/j.immuni.2014.09.008
- 43. Gilkes, D.M., Semenza, G.L. and Wirtz, D. (2014) Hypoxia and the Extracellular Matrix: Drivers of Tumour Metastasis. Nature Reviews Cancer, 14, 430-439. https://doi.org/10.1038/nrc3726
- 44. Horie, S., Ishii, H. and Kazama, M. (1990) Heparin-Like Glycosaminoglycan Is a Receptor for Antithrombin III-Dependent but Not for Thrombin-Dependent Prostacyclin Production in Human En-dothelial Cells. Thrombosis Research, 59, 895-904. https://doi.org/10.1016/0049-3848(90)90113-Q
- 45. Hoffmann, J.N., Vollmar, B., Inthorn, D., Schildberg, F.W. and Menger, M.D. (2000) Antithrombin Reduces Leukocyte Adhesion during Chronic Endotoxemia by Modulation of the Cyclooxygenase Pathway. American Journal of Physiology-Cell Physiology, 279, C98-C107. https://doi.org/10.1152/ajpcell.2000.279.1.C98
- 46. Guo, C., Fan, X., Qiu, H., Xiao, W., Wang, L. and Xu, B. (2015) High-Resolution Probing Heparan Sulfate-Antithrombin Interaction on a Single Endothelial Cell Surface: Sin-gle-Molecule AFM Studies. Physical Chemistry Chemical Physics, 17, 13301-13306. https://doi.org/10.1039/C5CP01305D
- 47. Bohdan, N., Espín, S., Águila, S., et al. (2016) Heparanase Activates Antithrombin through the Binding to Its Heparin Binding Site. PLOS ONE, 11, e0157834. https://doi.org/10.1371/journal.pone.0157834
- 48. Tanino, Y., Chang, M.Y., Wang, X., et al. (2012) Syndecan-4 Regulates Early Neutrophil Migration and Pulmonary Inflammation in Response to Lipopolysaccharide. American Jour-nal of Respiratory Cell and Molecular Biology, 47, 196-202. https://doi.org/10.1165/rcmb.2011-0294OC
- 49. Xu, J., Park, P.W., Kheradmand, F. and Corry, D.B. (2005) Endogenous Attenuation of Allergic Lung Inflammation by Syndecan-1. The Journal of Immunology, 174, 5758-5765. https://doi.org/10.4049/jimmunol.174.9.5758
- 50. Constantinescu, A.A., Vink, H. and Spaan, J.A. (2003) Endo-thelial Cell Glycocalyx Modulates Immobilization of Leukocytes at the Endothelial Surface. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1541-1547. https://doi.org/10.1161/01.ATV.0000085630.24353.3D
- 51. Echtermeyer, F., Bertrand, J., Dreier, R., et al. (2009) Syndecan-4 Regulates ADAMTS-5 Activation and Cartilage Breakdown in Osteoarthritis. Nature Medicine, 15, 1072-1076. https://doi.org/10.1038/nm.1998
- 52. Korb-Pap, A., Stratis, A., Mühlenberg, K., et al. (2012) Early Structural Changes in Cartilage and Bone Are Required for the Attachment and Invasion of Inflamed Synovial Tissue during Destructive Inflammatory Arthritis. Annals of Rheumatic Diseases, 71, 1004-1011. https://doi.org/10.1136/annrheumdis-2011-200386
- 53. Zhao, J., Ye, X. and Zhang, Z. (2022) Syndecan-4 Is Cor-related with Disease Activity and Serological Characteristic of Rheumatoid Arthritis. Advances in Rheumatology, 62, Ar-ticle No. 21. https://doi.org/10.1186/s42358-022-00254-3
- 54. Cao, C., Shi, Y., Zhang, X., et al. (2022) Cholester-ol-Induced LRP3 Downregulation Promotes Cartilage Degeneration in Osteoarthritis by Targeting Syndecan-4. Nature Communications, 13, Article No. 7139. https://doi.org/10.1038/s41467-022-34830-4
NOTES
*通讯作者。