Advances in Clinical Medicine
Vol. 12  No. 04 ( 2022 ), Article ID: 50761 , 6 pages
10.12677/ACM.2022.124468

甲状腺功能与2型糖尿病微血管病变相关性的研究进展

马婷婷1,江彤2*

1青海大学,青海 西宁

2青海大学附属医院,青海 西宁

收稿日期:2022年3月22日;录用日期:2022年4月16日;发布日期:2022年4月26日

摘要

微血管病变是糖尿病的特异性并发症,其是导致2型糖尿病(T2DM)患者死亡或残疾的主要因素之一。目前大量研究表明甲状腺激素与T2DM微血管病变之间存在密切关系,但其结论尚存争议。本文就甲状腺激素与T2DM微血管病变相关性的研究进展作一综述。

关键词

甲状腺激素,2型糖尿病,糖尿病微血管病变

Research Progress of Correlation between Thyroid Function and Microvascular Complications in Type 2 Diabetes Mellitus

Tingting Ma1, Tong Jiang2*

1Qinghai University, Xining Qinghai

2Qinghai University Affiliated Hospital, Xining Qinghai

Received: Mar. 22nd, 2022; accepted: Apr. 16th, 2022; published: Apr. 26th, 2022

ABSTRACT

Microvascular lesion is the specificity of diabetes complications, which is one of the main factors leading to the deaths or disability of patients with type 2 diabetes mellitus (T2DM). At present a large number of studies have shown that there is a close relationship between thyroid hormone and T2DM microvascular lesions, but its conclusions are controversial. This article reviews the research progress on the correlation between thyroid hormone and T2DM microangiopathy.

Keywords:Thyroid Hormone, Type 2 Diabetes Mellitus, Diabetic Microangiopathy

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

由于人们的生活已得到了明显的改变,膳食构成也因此产生了变化,在中国患糖尿病的人口也上升了不少,18周岁及之上的群体糖尿病发生率约为11.2%,其中T2DM占90%以上 [1]。糖尿病属于终身性的疾病,至今仍未发现根治方法,严重威胁人民健康安全。微血管相关并发症是糖尿病的特异性疾病,在身体内几乎所有的组织器官中均可能存在微血管相关并发症,而微血管的基底膜增厚和小循环功能障碍则是其最重要的症状,主要损害部位为肾脏、视网膜、心脏组织及其神经组织等,而糖尿病肾病和眼底视网膜病变则属于最重要和最普遍的糖尿病微血管相关并发症。糖尿病视网膜病变(DR)的早期主要症状是视物能力下降、视物不清,严重时会出现彻底失明,且疾病发展过程往往具有不可逆性,而在DR早期也可能会由于表现不明显或者完全无症状,患者往往会耽误治疗,也可能因此错失了最好的治愈时机,从而严重威胁病人的健康。中国有20%~40%左右的糖尿病患者出现了糖尿病肾病(DKD),DKD目前已列为慢性肾脏病和终末期肾病的重要因素 [2],已强烈危害病人的身体健康。目前对于糖尿病微血管病变的发生机制尚不清楚,故对于其早期诊断及治疗仍较困难。由于甲状腺疾病和糖尿病都属于内分泌系统疾病,因此甲状腺功能的变化和血糖之间的关联一直是人们研究的重点,而甲状腺激素变化和糖尿病微血管并发症之间的联系也正在研究之中,特别是甲状腺功能变化和DR、DKD之间的关联。

2. 甲状腺功能与T2DM的关系

有许多科学研究证实血糖和甲状腺激素之间存在密不可分的关联,有些研究成果表明,非糖尿病病人得甲状腺病变的概率较糖尿病人群降低许多,同时高血糖和甲状腺病变之间可能相互影响 [3] [4]。甲状腺激素还可以通过调控糖脂代谢,从而进一步促进糖尿病的产生;甲状腺激素的变化又可以被糖尿病患者机体内环境的改变所影响,所以糖尿病与甲状腺激素之间的关系尤为密切。促甲状腺活性激素(TSH)是由腺垂体产生的一类糖蛋白类活性激素,其主要生理学功能是调控甲状腺细胞的分裂与增殖,作用机理是结合甲状腺滤泡上皮细胞膜表面特殊的TSH受体(TSHR),调控甲状腺活性激素的合成和释放 [5]。甲状腺激素(TH)对调节糖稳态和脂代谢有很大的作用,这些效应通过中枢神经系统和TH与外周靶器官如肝脏、白色和棕色脂肪组织、胰腺β细胞和骨骼肌的直接相互作用而发挥作用 [6]。TH在肝脏中具有胰岛素拮抗功能,但在外周组织中则与胰岛素具有协同作用。TH增加肝脏葡萄糖产量的作用是通过提高肝葡萄糖转运体(GLUT)的表达来实现的,刺激内源性葡萄糖产生的原因主要是可以增加糖异生和糖原分解 [7]。有研究指出糖尿病和甲状腺疾病的并存可能会加重糖尿病患者DR和DN的风险 [8] [9] [10]。

3. 甲状腺功能与T2DM微血管病变相关性的流行病学

3.1. 甲状腺功能与DR相关性的流行病学

DR是T2DM患者最常见的微血管并发症之一,目前已经成为了全世界范围内人们失明的最主要病因。随着T2DM患者数量的增加,DR的患病率正在迅速增加,预计至2030年,全球将有5.52亿糖尿病患者,其中1/3可能出现不同程度的DR [11] [12]。由于DR的早期临床表现并不明显,患者在被诊断时大多已经错过了最佳治疗的时间,这导致了很高的致盲率。因此,研究糖尿病视网膜病变的危险因素是非常重要的。在过去的研究中,糖尿病病程、血糖控制不良、血压升高和血脂异常是众所周知的糖尿病视网膜病变的危险因素 [13] [14]。一些研究探讨了亚临床甲状腺功能减退症(SCH)和DR的关系,但结果不一致。Kim Bo-Yon等人认为SCH与DR有关 [10],但Chen等人持相反意见 [8]。目前关于SCH可能会增加DR发生风险的机制尚不清楚,考虑可能的机制有:1) 内皮细胞功能紊乱:Yavuz [15] 等人和Hosseini S M [16] 等人研究表明亚临床甲状腺机能亢进(Subclinical hyperthyroidism, SHy)可导致内皮细胞舒张功能障碍,最近多项研究也都表明依赖内皮的血管舒张和减少氮氧利用的内皮功能紊乱存在于SCH患者中 [17],内皮细胞功能紊乱可影响血液流变学,引起视网膜血液流动迂缓,导致视网膜组织乏氧,生成新生血管形成因子来激发新生血管的生长,新生的血管脆性大、易破裂出血 [18]。2) 氧化应激:视网膜由于光刺激易受到氧化应激的影响,近10年多项研究发现DR发生、发展的关键因素可能是氧化应激,SHy与中枢及外周组织氧化应激、氧化性损伤有关 [19],机体抗氧化能力在SCH状态下也显著降低 [20],导致过多活性氧簇产生增多,激活DNA修复酶,降低甘油醛-3-磷酸脱氢酶的活性,进而促进多元醇通路流通的明显增加,激活蛋白激酶C,增加细胞内晚期糖基化终末产物的产生,并过度激活氨基己糖通路 [21],加重对视网膜的损伤,引起缺血、甚至脱离。3) 血糖波动:血糖的控制对减少DR的发生尤为重要,而亚临床甲状腺功能异常起病隐匿,临床表现不典型,在临床上通常不易及时发现,较长时间的甲状腺功能障碍可通过对血糖控制的不良影响从而加重视网膜病。4) SCH常伴脂代谢紊乱,有研究 [22] 称脂代谢紊乱状态下可激活细胞溶质中EGFR-Rac1-Nox2信号传导,致使活性氧簇生成过多,从而通过加速线粒体受损、毛细血管细胞的凋亡参与DR的进展;并且高血脂状态下全血粘度、血浆粘度升高明显,可加重微循环障碍参与DR的发生。SCH可以增加DR的风险,但SCH是否可以作为DR的生物标志物暂不清楚。因此,还需要大量前瞻性研究及动物实验研究两者之间的关系及机制。郭立新 [23] 等人首次揭示了周细胞(PCs)稳定表达具有生物学效应的TSHR,而TSH可通过作用于TSHR激活PCs线粒体凋亡通路,这说明了TSH可以激活TSHR依赖的线粒体凋亡,从而进一步加重了高葡萄糖所诱导的PCs内源性细胞凋亡,通过对TSHR进行敲减,初步证实TSH通过TSHR介导的线粒体凋亡加重DR。

3.2. 甲状腺功能与DKD相关性的流行病学

DKD最重要的是病人会发生尿白蛋白/肌酐比率(UACR)持续增高和(或)预估肾小球滤出率(eGFR)下降,我国约20%~40%的糖尿病患者会同时存在DKD,且目前DKD已成为慢性肾脏病以及终末期肾功能病的最主要因素 [2]。肾脏的发育、结构、钠水平衡、血流动力学等都被甲状腺激素所影响,这些影响一方面是由于甲状腺激素对肾脏的直接作用,另一方面是由于甲状腺激素通过影响心血管和全身血液动力学而间接发挥的作用。先前的研究表明亚临床和临床性甲减可能会增加血清肌酐升高、肾小球滤过率下降及慢性肾脏病的发生风险 [24] [25],多个欧洲研究显示eGFR和血清TSH浓度呈负相关,随着甲减的患病率增加,肾功能的受损也增加 [26] [27] [28],升高的TSH和甲状腺功能减退可以通过减低心脏输出量、增加外周血管阻力、收缩肾内血管和改变肾脏结构而恶化肾功能 [29],甲亢状态下会增加肾皮质β肾上腺素受体的密度,加强β-肾上腺素能受体的活性,可以活化机体肾素血管紧张素醛固酮系统,从而出现舒张入球小动脉的改变,同时明显收缩出球小动脉,肾小球滤过压增加,进一步导致了eGFR升高,24小时尿蛋白增加 [30],但是严重的甲亢可导致蛋白的分解,最后导致肾脏的萎缩,肾脏功能的衰退 [31]。黄小林 [32] 等人纳入中国2103例40岁以上的中老年人研究发现高水平的FT4与肾功能的下降显著相关,与Ahmed MM [33] 等人的报告一致,而Zhang Y [26] 研究却认为高水平的TSH及低水平的三碘甲状腺原氨酸(T3)与慢性肾脏病的发生有关。已经有研究表明氧化应激和甲亢、甲减具有相关性,并且这两种状态下产生氧化应激的作用机理并不相同,甲亢状态下生成的活性氧簇增多,甲减可能是因为抗氧化剂的有效性降低 [34],研究显示活性氧簇通过上调转化生长因子-β1和纤连蛋白水平引起肾脏肥大、肾小球硬化、肾小管间质纤维化 [35],在氧化应激的状态下可以增加血管表皮生长因子基因的表达 [36],血管表皮生长因子是肾小球系膜细胞与足细胞产生的一种蛋白因子,它能够促进蛋白尿在DKD的发展过程中发挥重要作用 [37]。

4. 结局与展望

DR、DKD都是大多数糖尿病患者中最常见的微血管疾病,其发病人数随着T2DM风险的逐步上升而增加,但由于早期症状并不常见,被确诊后很可能已是晚期,就大大地危及了病人的安全,也给患者家人带来了很大的社会经济压力。目前有大批资料已证实了甲状腺功能和糖尿病微血管疾病间具有交叉关联,但对其的具体不良影响却还未清楚,而改善甲状腺功能是否对治疗糖尿病微血管的预后更有利,还需大量的前瞻性研究和动物试验去证实,才能为早期确诊及处理糖尿病微血管疾病提供科学依据,从而提高糖尿病微血管疾病患者的预后。

文章引用

马婷婷,江 彤. 甲状腺功能与2型糖尿病微血管病变相关性的研究进展
Research Progress of Correlation between Thyroid Function and Microvascular Complications in Type 2 Diabetes Mellitus[J]. 临床医学进展, 2022, 12(04): 3246-3251. https://doi.org/10.12677/ACM.2022.124468

参考文献

  1. 1. 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) (上) [J]. 中国实用内科杂志, 2021, 41(8): 668-695.

  2. 2. 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) (下) [J]. 中国实用内科杂志, 2021, 41(9): 757-784.

  3. 3. Al-Geffari, M., Ahmad, N.A., Al-Sharqawi, A.H., et al. (2013) Risk Factors for Thyroid Dysfunction among Type 2 Diabetic Patients in a Highly Diabetes Mellitus Prevalent Society. International Journal of Endocrinology, 2013, Article ID: 417920. https://doi.org/10.1155/2013/417920

  4. 4. Hage, M., Zantout, M.S. and Azar, S.T. (2011) Thyroid Disorders and Diabetes Mellitus. Journal of Thyroid Research, 2011, Article ID: 439463. https://doi.org/10.4061/2011/439463

  5. 5. Xin, W., Yu, Y., Ma, Y., et al. (2017) Thyroid-Stimulating Hormone Stimulation Downregulates Autophagy and Promotes Apoptosis in Chondrocytes. Endocrine Journal, 64, 749-757. https://doi.org/10.1507/endocrj.EJ16-0534

  6. 6. Brent, G.A. (2012) Mechanisms of Thyroid Hormone Action. Journal of Clinical Investigation, 122, 3035-3043. https://doi.org/10.1172/JCI60047

  7. 7. Duntas, L.H., Orgiazzi, J. and Brabant, G. (2011) The Interface between Thyroid and Diabetes Mellitus. Clinical Endocrinology (Oxford), 75, 1-9. https://doi.org/10.1111/j.1365-2265.2011.04029.x

  8. 8. Chen, H.S., Wu, T.E., Jap, T.S., Lu, R.A., Wang, M.L., Chen, R.L. and Lin, H.D. (2007) Subclinical Hypothyroidism Is a Risk Factor for Nephropathy and Cardiovascular Diseases in Type 2 Diabetic Patients. Diabetic Medicine, 24, 1336-1344. https://doi.org/10.1111/j.1464-5491.2007.02270.x

  9. 9. Yang, J.K., Liu, W., Shi, J. and Li, Y.B. (2010) An Asso-ciation between Subclinical Hypothyroidism and Sight-Threatening Diabetic Retinopathy in Type 2 Diabetic Patients. Diabetes Care, 33, 1018-1020. https://doi.org/10.2337/dc09-1784

  10. 10. Kim, B.Y., Kim, C.H., Jung, C.H., Mok, J.O., Suh, K.I. and Kang, S.K. (2011) Association between Subclinical Hypothyroidism and Severe Diabetic Retinopathy in Korean Patients with Type 2 Diabetes. Endocrine Journal, 58, 1065-1070. https://doi.org/10.1507/endocrj.EJ11-0199

  11. 11. Whiting, D., Guariguata, L., Weil, C., et al. (2011) IDF Diabetes Atlas: Global Estimates of the Prevalence of Diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94, 311-321. https://doi.org/10.1016/j.diabres.2011.10.029

  12. 12. Lee, R., Wong, T.Y. and Sabanayagam, C. (2015) Epidemiology of Diabetic Retinopathy, Diabetic Macular Edema and Related Vision Loss. Eye and Vision (London), 2, 17. https://doi.org/10.1186/s40662-015-0026-2

  13. 13. Stratton, I.M., et al. (2001) UKPDS 50: Risk Factors for Inci-dence and Progression of Retinopathy in Type II Diabetes over 6 Years from Diagnosis. Diabetologia, 44, 156-163. https://doi.org/10.1007/s001250051594

  14. 14. Barnett, A.H., et al. (2006) Type 2 Diabetes and Cardiovascular Risk in the UK South Asian Community. Diabetologia, 49, 2234-2246. https://doi.org/10.1007/s00125-006-0325-1

  15. 15. Yavuz, D.G., Yazici, D., Toprak, A., et al. (2008) Exogenous Subclinical Hyperthyroidism Impairs Endothelial Function in Nodular Goiter Patients. Thyroid, 18, 395-400. https://doi.org/10.1089/thy.2007.0299

  16. 16. Hosseini, S.M., Bakhtyari, E.K., Heshmat-Ghahdarijani, K., et al. (2016) Evaluation of Endothelial Function in Exogenous Subclinical Hyperthyroidism and the Effect of Treatment. Advanced Biomedical Research, 5, 173. https://doi.org/10.4103/2277-9175.194800

  17. 17. Schalkwijk, C.G. and Stehouwer, C.D. (2005) Vascular Compli-cations in Diabetes Mellitus: The Role of Endothelial Dysfunction. Clinical Science, 109, 143-159. https://doi.org/10.1042/CS20050025

  18. 18. 乌云娜, 乔俊丽, 王爱萍. 2型糖尿病视网膜病变与血液流变学相关性分析[J]. 内蒙古医学杂志, 2011, 43(3): 310-312.

  19. 19. Messarah, M., Saoudi, M., Boumendjel, A., et al. (2011) Oxidative Stress Induced by Thyroid Dysfunction in Rat Erythrocytes and Heart. Environmental Toxicology & Phar-macology, 31, 33-41. https://doi.org/10.1016/j.etap.2010.09.003

  20. 20. Ramis, J.N., Artigas, C.F., Santiago, M.A., et al. (2012) Is There a Relationship between TSH Levels and Diabetic Retinopathy in the Caucasian Population? Diabetes Research & Clinical Practice, 97, e45-e47. https://doi.org/10.1016/j.diabres.2012.05.015

  21. 21. Wu, Y., Tang, L.S. and Chen, B.H. (2014) Oxidative Stress: Implications for the Development of Diabetic Retinopathy and Antioxidant Therapeutic Perspectives. Oxidative Medicine and Cellular Longevity, 2014, Article ID: 752387. https://doi.org/10.1155/2014/752387

  22. 22. Kowluru, R.A., Mishra, M., Kowluru, A., et al. (2016) Hyperlipidemia and the Development of Diabetic Retinopathy: Comparison between Type 1 and Type 2 Animal Models. Metabolism Clinical &Experimental, 65, 1570-1581. https://doi.org/10.1016/j.metabol.2016.07.012

  23. 23. Lin, D., Qin, R. and Guo, L. (2021) Thyroid Stimulating Hormone Aggravates Diabetic Retinopathy through the Mitochondrial Apoptotic Pathway. Journal of Cellular Physi-ology, 237, 868-880. https://doi.org/10.1002/jcp.30563

  24. 24. Asvold, B.O., Bjoro, T. and Vatten, L.J. (2011) As-sociation of Thyroid Function with Estimated Glomerular Filtration Rate in a Population-Based Study: The HUNT Study. European Journal of Endocrinology, 164, 101-105. https://doi.org/10.1530/EJE-10-0705

  25. 25. Gopinath, B., Harris, D.C., Wall, J.R., et al. (2013) Relationship between Thyroid Dysfunction and Chronic Kidney Disease in Community-Dwelling Older Adults. Maturitas, 75, 159-164. https://doi.org/10.1016/j.maturitas.2013.03.009

  26. 26. Meuwese, C.L., Gussekloo, J., de Craen, A.J., et al. (2014) Thyroid Status and Renal Function in Older Persons in the General Population. Journal of Clinical Endocrinology & Metabolism, 99, 2689. https://doi.org/10.1210/jc.2013-3778

  27. 27. Rhee, C.M., Kalantar-Zadeh, K., Streja, E., et al. (2015) The Relationship between Thyroid Function and Estimated Glomerular Filtration Rate in Patients with Chronic Kidney Disease. Nephrology Dialysis Transplantation, 30, 282-287. https://doi.org/10.1093/ndt/gfu303

  28. 28. Ye, Y., Gai, X., Xie, H., et al. (2013) Impact of Thyroid Function on Serum Cystatin C and Estimated Glomerular Filtration Rate: A Cross-Sectional Study. Endocrine Practice: Official Journal of the American College of Endocrinology & the American Association of Clinical Endocrinologists, 19, 1-25. https://doi.org/10.4158/EP12282.OR

  29. 29. Mariani, L.H. and Berns, J.S. (2012) The Renal Manifestations of Thyroid Disease. Journal of the American Society of Nephrology, 23, 22. https://doi.org/10.1681/ASN.2010070766

  30. 30. Vargas, F., Moreno, J.M., Rodriguez-Gomez, I., et al. (2006) Vascular and Renal Function in Experimental Thyroid Disorders. European Journal of Endocrinology, 154, 197-212. https://doi.org/10.1530/eje.1.02093

  31. 31. Basu, G. and Mohapatra, A. (2012) Interactions between Thyroid Disorders and Kidney Disease. Indian Journal of Endocrinology & Metabolism, 16, 204-213. https://doi.org/10.4103/2230-8210.93737

  32. 32. Huang, X., Ding, L., Peng, K., et al. (2016) Thyroid Hormones Associate with Risk of Incident Chronic Kidney Disease and Rapid Decline in Renal Function: A Prospective Investi-gation. Journal of Translational Medicine, 14, 336. https://doi.org/10.1186/s12967-016-1081-8

  33. 33. Ahmed, M.M. (2014) Association of Renal Failure with Thyroid Dysfunction: A Retrospective Cohort Study. Saudi Journal of Kidney Diseases & Transplantation: An Official Publi-cation of the Saudi Center for Organ Transplantation Saudi Arabia, 25, 1017-1025. https://doi.org/10.4103/1319-2442.139902

  34. 34. Mancini, A., Di, S.C., Raimondo, S., et al. (2016) Thyroid Hor-mones, Oxidative Stress, and Inflammation. Mediators of Inflammation, 2016, Article ID: 6757154. https://doi.org/10.1155/2016/6757154

  35. 35. Nasri, H. (2013) On the Occasion of the World Diabetes Day 2013: Diabetes Education and Prevention; a Nephrology Point of View. Journal of Renal Injury Prevention, 2, 31-32.

  36. 36. Aghadavod, E., Khodadadi, S., Baradaran, A., et al. (2016) Role of Oxidative Stress and Inflammatory Factors in Diabetic Kidney Disease. Iranian Journal of Kidney Diseases, 10, 337-343.

  37. 37. Muhl, L., Moessinger, C., Adzemovic, M.Z., et al. (2016) Expression of Vascular Endothelial Growth Factor (VEGF)-B and Its Receptor (VEGFR1) in Murine Heart, Lung and Kidney. Cell and Tissue Research, 365, 51-63. https://doi.org/10.1007/s00441-016-2377-y

  38. NOTES

    *通讯作者。

期刊菜单