Pure Mathematics
Vol. 12  No. 11 ( 2022 ), Article ID: 58119 , 9 pages
10.12677/PM.2022.1211207

分数阶BAM模糊神经网络的全局Mittag-Leffler镇定

李洁1,陈胜龙1,李洪利1,2*

1新疆大学数学与系统科学学院,新疆 乌鲁木齐

2新疆应用数学重点实验室,新疆 乌鲁木齐

收稿日期:2022年10月12日;录用日期:2022年11月11日;发布日期:2022年11月21日

摘要

本文解决了分数阶BAM模糊神经网络的全局Mittag-Leffler (M-L)镇定问题。首先回顾了与分数阶微积分相关的基础知识,并建立了网络模型。其次,基于一种新的压缩映射和二范数分析方法严格证明了模型平衡点的存在唯一性。最后,通过设计一种简洁有效的线性控制器导出了分数阶BAM模糊神经网络实现全局M-L镇定的充分性判据。

关键词

BAM神经网络,Mittag-Leffler镇定,分数阶,模糊逻辑

Global Mittag-Leffler Stabilization of BAM Fuzzy Neural Networks with Fractional-Order

Jie Li1, Shenglong Chen1, Hongli Li1,2*

1College of Mathematics and System Sciences, Xinjiang University, Urumqi Xinjiang

2Xinjiang Key Laboratory of Applied Mathematics, Urumqi Xinjiang

Received: Oct. 12th, 2022; accepted: Nov. 11th, 2022; published: Nov. 21st, 2022

ABSTRACT

This paper deals with the issue of global Mittag-Leffler (M-L) stabilization for fractional-order BAM fuzzy neural networks (FBAMFNNs). Firstly, some necessary knowledge related to fractional calculus are reviewed, and the model of FBAMFNN is established. Next, the existence and uniqueness of equilibrium point is proved based on constructing a novel contraction mapping and 2-norm analysis method. Finally, the sufficient criterion is derived to realize global M-L stabilization of FBAMFNNs by designing a concise and effective linear controller.

Keywords:BAM Neural Networks, Mittag-Leffler Stabilization, Fractional-Order, Fuzzy Logic

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

在过去的数十年中,神经网络因在信号处理、保密通信和模式识别等领域的广泛应用激发了许多国内外研究者的兴趣 [1] [2]。作为单层到双层模式匹配电路的推广,BAM神经网络最早由Kosko于1987年创立 [3],其在自动控制与电力系统等方面具有重要应用前景 [4],近年来BAM神经网络的动力学分析受到了学者们的广泛关注,并取得了许多有价值的成果 [5] [6]。

众所周知,不确定性或模糊性在现实中是不可避免的,模糊逻辑是解决上述问题的一种重要工具,通过考虑模糊因素,并将模糊AND与模糊OR运算融入经典的神经网络模型,学者们提出并陆续探究了各类模糊神经网络的动力学行为 [7] [8]。文献 [8] 采用非抖振量化控制研究了具有时滞和脉冲效应的不连续非恒等模糊BAM神经网络的有限时间同步。分数阶微积分不仅是整数阶微积分在阶数意义上的推广,与整数阶微积分相比,分数阶微积分在生物数学和工程控制等实际应用中具有更强的建模能力。无限记忆性与遗传性作为分数阶微积分的两大独特优势,将分数阶微积分与神经网络相结合有助于更精确地刻画神经网络的动力学行为。分数阶模糊神经网络作为一种重要的网络模型,得到了许多研究者的关注 [9] [10]。文献 [9] 基于非线性反馈控制考虑了分数阶模糊神经网络的完全同步与有限时间同步。文献 [10] 采用直接四元数法分析了分数阶四元值模糊BAM神经网络的有限时间镇定。

镇定性在控制工程与系统辨识等实际应用中至关重要,设计合适的控制策略是实现系统镇定的关键。迄今为止,反馈控制、间接控制、事件触发控制和混合控制等多种控制策略被陆续提出并用于神经网络的镇定性研究 [11] [12],值得注意的是与其它控制策略相比,反馈控制更加简洁有效,然而目前很少有研究基于反馈控制策略分析分数阶BAM模糊神经网络的全局M-L镇定性问题,这激发了我们进一步研究的兴趣。

受上述分析的启发,本文将探究分数阶BAM模糊神经网络的全局M-L镇定问题。本文的创新点可归纳为以下三方面。首先,构建了分数阶BAM模糊神经网络模型。其次,基于压缩映射原理证明了分数阶BAM模糊神经网络平衡点的存在唯一性。最后,设计了一种简洁有效的线性反馈控制器,结合不等式分析技巧得到了分数阶BAM模糊神经网络实现全局M-L镇定的充分性判据。

本文结构安排如下:第二节给出了分数阶BAM模糊神经网络模型,回顾了分数阶微积分的相关定义与引理,为后文研究需要对激活函数做出来假设。第3节证明了分数阶BAM模糊神经网络平衡点的存在唯一性。第4节分析了分数阶BAM模糊神经网络的全局M-L镇定问题。第5节给出了总结与展望。

符号:R代表实数集, R + 表示正实值集, N = { 1 , 2 , , n } , M = { 1 , 2 , , m } ,对任意n维实值向量

τ = ( τ 1 , τ 2 , , τ n ) T R n τ 的2-范数定义为 τ = ι = 1 n | τ ι | 2

2. 预备知识与模型描述

定义1. [13] 阶数为 0 < ν < 1 的函数 ω ( t ) 的Caputo分数阶导数定义为

D t 0 c t ν ω ( t ) = 1 Γ ( 1 ν ) t 0 t ω ( s ) ( t s ) ν d s ,

其中 Γ ( ν ) = t 0 + e t t ν 1 d t 为Gamma函数。

考虑如下分数阶BAM模糊神经网络模型:

{ D t 0 c t ν α ι ( t ) = θ ι α ι ( t ) + κ = 1 m μ ι κ ω κ ( β κ ( t ) ) + κ = 1 m ϕ ι κ ω κ ( β κ ( t ) ) + κ = 1 m ψ ι κ ω κ ( β κ ( t ) ) + Θ ι ( t ) , D t 0 c t ν β κ ( t ) = ϑ κ β κ ( t ) + ι = 1 n ζ κ ι ϖ ι ( α ι ( t ) ) + ι = 1 n δ κ ι ϖ ι ( α ι ( t ) ) + ι = 1 n η κ ι ϖ ι ( α ι ( t ) ) + Λ κ ( t ) , (1)

其中 ι N , κ M α ι ( t ) β κ ( t ) 分别代表第 ι 个和第 κ 个神经元的状态。n与m依次表示第一层和第二层中神经元的数量。 θ ι ϑ κ 是第 ι 个和第 κ 个神经元的衰减系数, μ ι κ ζ κ ι 为连接权重, ϕ ι κ δ κ ι 表示模糊反馈最大模板的连接权重, ψ ι κ η κ ι 代表模糊反馈最小模板的连接权重, ω κ ( t ) ϖ ι ( t ) 表示第 κ 个和第 ι 个神经元的激活函数。 代表模糊OR与AND运算。 Θ ι ( t ) Λ κ ( t ) 分别表示不同层中的外部输入。

为便于本文后续研究,对上述激活函数作出如下假设:

假设1. [8] 对任意 α , β ,存在正常数 λ κ χ ι 使得

| ω κ ( α ) ω κ ( β ) | λ κ | α β | , | ϖ ι ( α ) ϖ ι ( β ) | χ ι | α β | .

引理1. [7] 若 α ι , α ˜ ι β κ , β ˜ κ 分别为模型(1)的状态,则模型(1)中的激活函数满足下列不等式

| κ = 1 m ϕ ι κ ω κ ( β κ ( t ) ) κ = 1 m ϕ ι κ ω κ ( β ˜ κ ( t ) ) | κ = 1 m | ϕ ι κ | | ω κ ( β κ ( t ) ) ω κ ( β ˜ κ ( t ) ) | , | κ = 1 m ψ ι κ ω κ ( β κ ( t ) ) κ = 1 m ψ ι κ ω κ ( β ˜ κ ( t ) ) | κ = 1 m | ψ ι κ | | ω κ ( β κ ( t ) ) ω κ ( β ˜ κ ( t ) ) | ,

| ι = 1 n δ ι κ ϖ ι ( α ι ( t ) ) ι = 1 n δ ι κ ϖ ι ( α ˜ ι ( t ) ) | ι = 1 n | δ ι κ | | ϖ ι ( α ι ( t ) ) ϖ ι ( α ˜ ι ( t ) ) | , | ι = 1 n η ι κ ϖ ι ( α ι ( t ) ) ι = 1 n η ι κ ϖ ι ( α ˜ ι ( t ) ) | ι = 1 n | η ι κ | | ϖ ι ( α ι ( t ) ) ϖ ι ( α ˜ ι ( t ) ) | .

引理2. [14] 若 σ = ( σ 1 , σ 2 , , σ m ) π = ( π 1 , π 2 , , π m ) 是成比例的序列,则有

| κ = 1 m σ κ π κ | 2 ( κ = 1 m | σ κ | 2 ) ( κ = 1 m | π κ | 2 ) .

引理3. [15] 若 V ( t ) 为定义在 [ t 0 , a ) 上的连续可微函数,则对任意的常数b与 0 < ν < 1

D t 0 c t ν ( V ( t ) b ) 2 2 ( V ( t ) b ) D t 0 c t ν V ( t ) .

引理4. [16] 如果 V ( t ) 是定义在 [ t 0 , + ) 上的非负连续函数,并且对任意初始时刻 t 0 以及常数 0 < ν < 1 , Ω R 满足

D t 0 c t ν V ( t ) Ω V ( t ) ,

那么有 V ( t ) V ( t 0 ) E ν ( Ω ( t t 0 ) ν )

定义2. 如果存在 ς = ( α 1 , α 2 , , α n , β 1 , β 2 , , β n ) T 使得

{ 0 = θ ι α ι ( t ) + κ = 1 m μ ι κ ω κ ( β κ ( t ) ) + κ = 1 m ϕ ι κ ω κ ( β κ ( t ) ) + κ = 1 m ψ ι κ ω κ ( β κ ( t ) ) + Θ ι ( t ) , 0 = ϑ κ β κ ( t ) + ι = 1 n ζ κ ι ϖ ι ( α ι ( t ) ) + ι = 1 n δ κ ι ϖ ι ( α ι ( t ) ) + ι = 1 n η κ ι ϖ ι ( α ι ( t ) ) + Λ κ ( t ) ,

那么 ς 是分数阶BAM模糊神经网络(1)的平衡点。

定义3. 如果存在正常数 h , Ω , l ,使得对系统(1)的任意解 ξ = ( α 1 , α 2 , , α n , β 1 , β 2 , , β n ) T t t 0

ξ ξ ( h ξ ( t 0 ) ξ E ν ( Ω ( t t 0 ) ν ) ) 1 l ,

那么称系统(1)在平衡点 ξ = ( α 1 , α 2 , , α n , β 1 , β 2 , , β n ) T 处是全局M-L镇定的,其中 ξ ( t 0 ) 为系统(1)的初始值。

3. 平衡点的存在唯一性

在本节中,通过构造新的压缩映射并结合二范数分析方法严格证明了分数阶BAM模糊神经网络平衡点的存在唯一性。

定理1. 在假设1下,如果满足下列条件

0 < max { max 1 ι n { κ = 1 m λ κ ( | μ ι κ | + | ϕ ι κ | + | ψ ι κ | ) ϑ κ } , max 1 κ m { ι = 1 n χ ι ( | ζ κ ι | + | δ κ ι | + | η κ ι | ) θ ι } } < 1 , (2)

则分数阶BAM模糊神经网络(1)存在唯一的平衡点 ς = ( α 1 , α 2 , , α n , β 1 , β 2 , , β n ) T

证明:记 ρ ι = θ ι α ι , γ κ = ϑ κ β κ ,构造如下映射

Π ι ( ρ , γ ) = κ = 1 m μ ι κ ω κ ( γ κ ϑ κ ) + κ = 1 m ϕ ι κ ω κ ( γ κ ϑ κ ) + κ = 1 m ψ ι κ ω κ ( γ κ ϑ κ ) + Θ ι ( t ) , Ξ κ ( ρ , γ ) = ι = 1 n ζ κ ι ϖ ι ( ρ ι θ ι ) + ι = 1 n δ κ ι ϖ ι ( ρ ι θ ι ) + ι = 1 n η κ ι ϖ ι ( ρ ι θ ι ) + Λ κ ( t ) ,

其中 Π ( ρ , γ ) = ( Π 1 ( ρ , γ ) , , Π n ( ρ , γ ) ) T Ξ ( ρ , γ ) = ( Ξ 1 ( ρ , γ ) , , Ξ n ( ρ , γ ) ) T ( ρ , γ ) = ( ( ρ 1 , γ 1 ) , , ( ρ m , γ m ) ) T 并且 m n ,接下来证明 ( Π , Ξ ) 为一压缩映射。

对任意的 ( ρ , γ ) ( ρ ˜ , γ ˜ ) ,基于假设1,引理1和2可得

( Π , Ξ ) ( ρ , γ ) ( Π , Ξ ) ( ρ ˜ , γ ˜ ) = Π ( ρ , γ ) Π ( ρ ˜ , γ ˜ ) + Ξ ( ρ , γ ) Ξ ( ρ ˜ , γ ˜ ) = ( ι = 1 n | κ = 1 m μ ι κ ω κ ( γ κ ϑ κ ) κ = 1 m μ ι κ ω κ ( γ ˜ κ ϑ κ ) + κ = 1 m ϕ ι κ ω κ ( γ κ ϑ κ ) κ = 1 m ϕ ι κ ω κ ( γ ˜ κ ϑ κ ) + κ = 1 m ψ ι κ ω κ ( γ κ ϑ κ ) κ = 1 m ψ ι κ ω κ ( γ ˜ κ ϑ κ ) | 2 ) 1 2 + ( κ = 1 m | ι = 1 n ζ κ ι ϖ ι ( ρ ι θ ι ) ι = 1 n ζ κ ι ϖ ι ( ρ ˜ ι θ ι ) + ι = 1 n δ κ ι ϖ ι ( ρ ι θ ι )

ι = 1 n δ κ ι ϖ ι ( ρ ˜ ι θ ι ) + ι = 1 n η κ ι ϖ ι ( ρ ι θ ι ) ι = 1 n η κ ι ϖ ι ( ρ ˜ ι θ ι ) | 2 ) 1 2 ( ι = 1 n | κ = 1 m | μ ι κ | | ω κ ( γ κ ϑ κ ) ω κ ( γ ˜ κ ϑ κ ) | + κ = 1 m | ϕ ι κ | | ω κ ( γ κ ϑ κ ) ω κ ( γ ˜ κ ϑ κ ) | + κ = 1 m | ψ ι κ | | ω κ ( γ κ ϑ κ ) ω κ ( γ ˜ κ ϑ κ ) | | 2 ) 1 2 + ( κ = 1 m | ι = 1 n | ζ κ ι | | ϖ ι ( ρ ι θ ι ) ϖ ι ( ρ ˜ ι θ ι ) | + ι = 1 n | δ κ ι | | ϖ ι ( ρ ι θ ι ) ϖ ι ( ρ ˜ ι θ ι ) | + ι = 1 n | η κ ι | | ϖ ι ( ρ ι θ ι ) ϖ ι ( ρ ˜ ι θ ι ) | | 2 ) 1 2 ( ι = 1 n ( κ = 1 m λ κ ( | μ ι κ | + | ϕ ι κ | + | ψ ι κ | ) ϑ κ | γ κ γ ˜ κ | ) 2 ) 1 2

+ ( κ = 1 m ( ι = 1 n χ ι ( | ζ κ ι | + | δ κ ι | + | η κ ι | ) θ ι | ρ ι ρ ˜ ι | ) 2 ) 1 2 ( max 1 ι n { κ = 1 m λ κ ( | μ ι κ | + | ϕ ι κ | + | ψ ι κ | ) ϑ κ } 2 κ = 1 m | γ κ γ ˜ κ | 2 ) 1 2 + ( max 1 κ m { ι = 1 n χ ι ( | ζ κ ι | + | δ κ ι | + | η κ ι | ) θ ι } 2 ι = 1 n | ρ ι ρ ˜ ι | 2 ) 1 2 max 1 ι n { κ = 1 m λ κ ( | μ ι κ | + | ϕ ι κ | + | ψ ι κ | ) ϑ κ } γ γ ˜ + max 1 κ m { ι = 1 n χ ι ( | ζ κ ι | + | δ κ ι | + | η κ ι | ) θ ι } ρ ρ ˜ .

结合条件(2)与上式,我们有

( Π , Ξ ) ( ρ , γ ) ( Π , Ξ ) ( ρ ˜ , γ ˜ ) 2 ρ ρ ˜ 2 + γ γ ˜ 2 = ( ρ , γ ) ( ρ ˜ , γ ˜ ) 2 .

( Π , Ξ ) 是一个压缩映射,从而存在唯一的不动点 ( ρ , γ ) 使得 ( Π , Ξ ) ( ρ , γ ) = ( ρ , γ ) ,即

ρ ι = κ = 1 m μ ι κ ω κ ( γ κ ϑ κ ) + κ = 1 m ϕ ι κ ω κ ( γ κ ϑ κ ) + κ = 1 m ψ ι κ ω κ ( γ κ ϑ κ ) + Θ ι ( t ) , γ κ = ι = 1 n ζ κ ι ϖ ι ( ρ ι θ ι ) + ι = 1 n δ κ ι ϖ ι ( ρ ι θ ι ) + ι = 1 n η κ ι ϖ ι ( ρ ι θ ι ) + Λ κ ( t ) . (3)

式等价于

{ 0 = θ ι α ι ( t ) + κ = 1 m μ ι κ ω κ ( β κ ( t ) ) + κ = 1 m ϕ ι κ ω κ ( β κ ( t ) ) + κ = 1 m ψ ι κ ω κ ( β κ ( t ) ) + Θ ι ( t ) , 0 = ϑ κ β κ ( t ) + ι = 1 n ζ κ ι ϖ ι ( α ι ( t ) ) + ι = 1 n δ κ ι ϖ ι ( α ι ( t ) ) + ι = 1 n η κ ι ϖ ι ( α ι ( t ) ) + Λ κ ( t ) .

由定义2可知,分数阶BAM模糊神经网络(1)有唯一的平衡点 ς = ( α 1 , α 2 , , α n , β 1 , β 2 , , β n ) T

注1. 通过将分数阶导数、模糊逻辑等因素考虑在内,分数阶BAM模糊神经网络模型比分数阶神经网络 [12] [15]、模糊神经网络 [7] [11]、BAM神经网络 [4] [5] 等更加一般化,并且实用性更广。

4. 全局M-L镇定性

本节设计了一种简洁有效的线性反馈控制器,基于分数阶理论与不等式分析技巧,我们得到了系统(1)实现全局M-L镇定的充分性判据。

接下来为将系统(1)的平衡点转换到原点,作变换 r ι ( t ) = α ι ( t ) α ι , κ ( t ) = κ ( t ) κ ,从而系统(1)转换后的形式为

{ D t 0 c t ν r ι ( t ) = θ ι r ι ( t ) + κ = 1 m μ ι κ ( ω κ ( β κ ( t ) ) ω κ ( β κ ) ) + κ = 1 m ϕ ι κ ( ω κ ( β κ ( t ) ) ω κ ( β κ ) ) + κ = 1 m ψ ι κ ( ω κ ( β κ ( t ) ) ω κ ( β κ ) ) , D t 0 c t ν κ ( t ) = ϑ κ κ ( t ) + ι = 1 n ζ κ ι ( ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) ) + ι = 1 n δ κ ι ( ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) ) + ι = 1 n η κ ι ( ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) ) , (4)

(4)的受控形式为

{ D t 0 c t ν r ι ( t ) = θ ι r ι ( t ) + κ = 1 m μ ι κ ( ω κ ( β κ ( t ) ) ω κ ( β κ ) ) + κ = 1 m ϕ ι κ ( ω κ ( β κ ( t ) ) ω κ ( β κ ) ) + κ = 1 m ψ ι κ ( ω κ ( β κ ( t ) ) ω κ ( β κ ) ) + u ι ( t ) , D t 0 c t ν κ ( t ) = ϑ κ κ ( t ) + ι = 1 n ζ κ ι ( ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) ) + ι = 1 n δ κ ι ( ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) ) + ι = 1 n η κ ι ( ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) ) + u ι ( t ) , (5)

其中 u ι ( t ) u κ ( t ) 为如下所设计的线性反馈控制器

{ u ι ( t ) = l ι r ι ( t ) , u ι ( t ) = κ κ ( t ) , (6)

l ι ( t ) , κ ( t ) R + .

定理2. 基于假设1和控制器(6),分数阶BAM模糊神经网络(1)在平衡点处是全局M-L镇定的。

证明:构造Lyapunov函数如下

V ( t ) = 1 2 [ ι = 1 n r ι 2 ( t ) + κ = 1 m κ 2 ( t ) ] .

根据引理3,求 V ( t ) 沿系统(5)在控制器(6)下的Caputo分数阶导数可得

D t 0 c t ν V ( t ) ι = 1 n r ι ( t ) D t 0 c t ν r ι ( t ) + κ = 1 m κ ( t ) D t 0 c t ν κ ( t ) = ι = 1 n r ι ( t ) [ θ ι r ι ( t ) + κ = 1 m μ ι κ ( ω κ ( β κ ( t ) ) ω κ ( β κ ) ) + κ = 1 m ϕ ι κ ( ω κ ( β κ ( t ) ) ω κ ( β κ ) ) + κ = 1 m ψ ι κ ( ω κ ( β κ ( t ) ) ω κ ( β κ ) ) l ι r ι ( t ) ]

+ κ = 1 m κ ( t ) [ ϑ κ κ ( t ) + ι = 1 n ζ κ ι ( ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) ) + ι = 1 n δ κ ι ( ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) ) + ι = 1 n η κ ι ( ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) ) κ κ ( t ) ] ι = 1 n ( θ ι + l ι ) r ι 2 ( t ) κ = 1 m ( ϑ κ + κ ) κ 2 ( t ) + ι = 1 n κ = 1 m | μ ι κ | | r ι ( t ) | | ω κ ( β κ ( t ) ) ω κ ( β κ ) | + ι = 1 n | r ι ( t ) | | κ = 1 m ϕ ι κ ( ω κ ( β κ ( t ) ) ω κ ( β κ ) ) | + ι = 1 n | r ι ( t ) | | κ = 1 m ψ ι κ ( ω κ ( β κ ( t ) ) ω κ ( β κ ) ) | + κ = 1 m | ζ κ ι | | κ ( t ) | | ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) | + κ = 1 m | κ ( t ) | | ι = 1 n δ κ ι ( ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) ) | + κ = 1 m | κ ( t ) | | ι = 1 n η κ ι ( ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) ) | . (7)

由假设1可知

ι = 1 n κ = 1 m | μ ι κ | | r ι ( t ) | | ω κ ( β κ ( t ) ) ω κ ( β κ ) | ι = 1 n κ = 1 m λ κ | μ ι κ | | r ι ( t ) | | κ ( t ) | 1 2 ι = 1 n κ = 1 m λ κ | μ ι κ | ( r ι 2 ( t ) + κ 2 ( t ) ) , (8)

κ = 1 m ι = 1 n | ζ κ ι | | κ ( t ) | | ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) | κ = 1 m ι = 1 n χ ι | ζ κ ι | | κ ( t ) | | r ι ( t ) | 1 2 κ = 1 m ι = 1 n χ ι | ζ κ ι | ( κ 2 ( t ) + r ι 2 ( t ) ) . (9)

根据引理1和假设1有

ι = 1 n | r ι ( t ) | | κ = 1 m ϕ ι κ ( ω κ ( β κ ( t ) ) ω κ ( β κ ) ) | ι = 1 n κ = 1 m | r ι ( t ) | | ϕ ι κ | | ω κ ( β κ ( t ) ) ω κ ( β κ ) | ι = 1 n κ = 1 m λ κ | ϕ ι κ | | r ι ( t ) | | κ ( t ) | 1 2 ι = 1 n κ = 1 m λ κ | ϕ ι κ | ( r ι 2 ( t ) + κ 2 ( t ) ) , (10)

同理依次可得

ι = 1 n | r ι ( t ) | | κ = 1 m ψ ι κ ( ω κ ( β κ ( t ) ) ω κ ( β κ ) ) | ι = 1 n κ = 1 m | r ι ( t ) | | ψ ι κ | | ω κ ( β κ ( t ) ) ω κ ( β κ ) | ι = 1 n κ = 1 m λ κ | ψ ι κ | | r ι ( t ) | | κ ( t ) | 1 2 ι = 1 n κ = 1 m λ κ | ψ ι κ | ( r ι 2 ( t ) + κ 2 ( t ) ) , (11)

κ = 1 m | κ ( t ) | | ι = 1 n δ κ ι ( ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) ) | κ = 1 m ι = 1 n | κ ( t ) | | δ κ ι | | ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) | ι = 1 n κ = 1 m χ ι | δ κ ι | | r ι ( t ) | | κ ( t ) | 1 2 ι = 1 n κ = 1 m χ ι | δ κ ι | ( r ι 2 ( t ) + κ 2 ( t ) ) , (12)

κ = 1 m | κ ( t ) | | ι = 1 n η κ ι ( ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) ) | κ = 1 m ι = 1 n | κ ( t ) | | η κ ι | | ϖ ι ( α ι ( t ) ) ϖ ι ( α ι ) | ι = 1 n κ = 1 m χ ι | η κ ι | | r ι ( t ) | | κ ( t ) | 1 2 ι = 1 n κ = 1 m χ ι | η κ ι | ( r ι 2 ( t ) + κ 2 ( t ) ) . (13)

将(8)~(13)代入(7),我们有

D t 0 c t ν V ( t ) 1 2 ι = 1 n [ 2 θ ι + 2 l ι + χ ι ( | ζ κ ι | + | δ κ ι | + | η κ ι | ) κ = 1 m λ κ ( | μ ι κ | + | ϕ ι κ | + | ψ ι κ | ) ] r ι 2 ( t ) 1 2 κ = 1 m [ 2 ϑ κ + 2 κ + χ ι ( | ζ κ ι | + | δ κ ι | + | η κ ι | ) λ κ ι = 1 n ( | μ ι κ | + | ϕ ι κ | + | ψ ι κ | ) ] κ 2 ( t ) , (14)

Ω 1 = min 1 ι n { 2 θ ι + 2 l ι + χ ι ( | ζ κ ι | + | δ κ ι | + | η κ ι | ) κ = 1 m λ κ ( | μ ι κ | + | ϕ ι κ | + | ψ ι κ | ) } Ω 2 = min 1 ι n { 2 ϑ κ + 2 κ + χ ι ( | ζ κ ι | + | δ κ ι | + | η κ ι | ) λ κ ι = 1 n ( | μ ι κ | + | ϕ ι κ | + | ψ ι κ | ) } Ω = min { Ω 1 , Ω 2 } ,则由(14)可得

D t 0 c t ν V ( t ) Ω × 1 2 ( ι = 1 n r ι 2 ( t ) + κ = 1 m κ 2 ( t ) ) = Ω V ( t ) . (15)

对(15)使用引理4有

V ( t ) V ( t 0 ) E ν ( Ω ( t t 0 ) ν ) , (16)

ξ ξ 2 ξ ( t 0 ) ξ 2 E ν ( Ω ( t t 0 ) ν ) ,

其中 ξ = ( α 1 , α 2 , , α n , β 1 , β 2 , , β m ) T ξ = ( α 1 , α 2 , , α n , β 1 , β 2 , , β m ) T ,由定义3可知分数阶BAM模糊神经网络(1)在平衡点处是全局M-L镇定的。

注2. 当 ν = 1 时,分数阶BAM模糊神经网络将退化为整数阶BAM模糊神经网络模型,此时定理1和2的结论仍成立。

注3. 由于全局M-L镇定意味着全局渐近镇定,因此分数阶BAM模糊神经网络(1)在平衡点处也是全局渐近镇定的。

5. 总结与展望

本文研究了分数阶BAM模糊神经网络的全局M-L镇定,首先通过构造新的压缩映射并结合不等式技巧与2-范数分析方法严格证明了该模型平衡点的存在唯一性。此外,设计了一种简洁有效的线性反馈控制器,基于分数阶理论得到了分数阶BAM模糊神经网络实现全局M-L镇定的充分性准则。考虑到放大器有限的切换速度以及现实中不可避免的外部扰动,分析具有时滞与外部扰动的神经网络的动力学行为具有重要的应用前景,如何分析具有上述因素的分数阶BAM神经网络的动力学有待未来进一步探究。

基金项目

国家级大学生创新创业训练计划(202110755094)。

文章引用

李 洁,陈胜龙,李洪利. 分数阶BAM模糊神经网络的全局Mittag-Leffler镇定
Global Mittag-Leffler Stabilization of BAM Fuzzy Neural Networks with Fractional-Order[J]. 理论数学, 2022, 12(11): 1925-1933. https://doi.org/10.12677/PM.2022.1211207

参考文献

  1. 1. Chen, G., Zhou, J. and Liu, Z. (2004) Global Synchronization of Coupled Delayed Neural Networks and Applications to Chaotic CNN Models. International Journal of Bifurcation and Chaos, 14, 2229-2240. https://doi.org/10.1142/S0218127404010655

  2. 2. Wang, L., Dong, T. and Ge, M.-F. (2018) Finite-Time Syn-chronization of Memristor Chaotic Systems and Its Application in Image Encryption. Applied Mathematics and Com-putation, 347, 293-305. https://doi.org/10.1016/j.amc.2018.11.017

  3. 3. Kosko, B. (1987) Adaptive Bidirectional Associative Memories. Applied Optics, 26, 4947-4960. https://doi.org/10.1364/AO.26.004947

  4. 4. Cao, J. and Xiao, M. (2007) Stability and Hopf Bifurcation in a Sim-plified BAM Neural Networks with Two Delays. IEEE Transactions on Neural Networks, 18, 416-430. https://doi.org/10.1109/TNN.2006.886358

  5. 5. Mohamed Thoiyab, N., Muruganantham, P., Zhu, Q. and Gunasekaran, N. (2021) Novel Results on Global Stability Analysis for Multiple Time-Delayed BAM Neural Networks under Parameter Uncertainties. Chaos, Solitons & Fractals, 152, Article ID: 111441. https://doi.org/10.1016/j.chaos.2021.111441

  6. 6. Duan, L. and Li, J. (2021) Fixed-Time Synchronization of Fuzzy Neutral-Type BAM Memristive Inertial Neural Networks with Proportional Delays. Information Sciences, 576, 522-541. https://doi.org/10.1016/j.ins.2021.06.093

  7. 7. Yang, T. and Yang, L.-B. (1996) The Stability of Fuzzy Cellular Neural Networks. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 43, 880-883. https://doi.org/10.1109/81.538999

  8. 8. Tang, Y., Yang, X., Wan, X., Zhou, Y., Cheng, Z. and Fardoun, H. (2019) Finite-Time Synchronization of Nonidentical BAM Discontinuous Fuzzy Neural Networks with Delays and Impulsive Effects via Non-Chattering Quantized Control. Communications in Nonlinear Science and Numerical Simulation, 78, Article ID: 104893. https://doi.org/10.1016/j.cnsns.2019.104893

  9. 9. Li, H., Hu, C., Zhang, L., Jiang, H., and Cao, J. (2022) Complete and Finite-Time Synchronization of Fractional-Order Fuzzy Neural Networks via Nonlinear Feedback Control. Fuzzy Set and Systems, 443, 50-69. https://doi.org/10.1016/j.fss.2021.11.004

  10. 10. Chen, S., Li, H., Kao, Y., Zhang, L. and Hu, C. (2021) Finite-Time Stabilization of Fractional-Order Fuzzy Quaternion-Valued BAM Neural Networks via Direct Quaternion Approach. Journal of the Franklin Institute, 358, 7650-7673. https://doi.org/10.1016/j.jfranklin.2021.08.008

  11. 11. Aouiti, C. and Jallouli, H. (2021) New Feedback Control Techniques of Quaternion Fuzzy Neural Networks with Time-Varying Delay. International Journal of Robust and Nonlinear Control, 31, 2783-2809. https://doi.org/10.1002/rnc.5413

  12. 12. Zhang, T., Zhou, J. and Liao, Y. (2022) Exponentially Stable Periodic Os-cillation and Mittag-Leffler Stabilization for Fractional-Order Impulsive Control Neural Networks with Piecewise Caputo Derivatives. IEEE Transactions on Cybernetics, 52, 9670-9683. https://doi.org/10.1109/TCYB.2021.3054946

  13. 13. Klbas, A., Srivastava, H. and Trujillo, J. (2006) Theory and Application of Fractional Differential Equations. Elsevier, New York.

  14. 14. Mitrinovic, D. and Vasic, P. (1970) Analytic Inequalities. Springer, Berlin.

  15. 15. Yu, J., Hu, C., Jiang, H. and Fan, X. (2014) Projective Synchronization for Fractional Neural Networks. Neural Networks, 49, 87-95. https://doi.org/10.1016/j.neunet.2013.10.002

  16. 16. Li, H., Hu, C., Jiang, Y., Zhang, L. and Teng, Z. (2016) Global Mittag-Leffler Stability for a Coupled System of Fraction-al-Order Differential Equations on Network with Feedback Controls. Neurocomputing, 214, 233-241. https://doi.org/10.1016/j.neucom.2016.05.080

  17. NOTES

    *通讯作者。

期刊菜单