﻿ 不确定噪声扰动下的电力变换器故障检测 Fault Detection of Power Converter under Uncertain Noise Disturbances

Computer Science and Application
Vol. 09  No. 05 ( 2019 ), Article ID: 30413 , 5 pages
10.12677/CSA.2019.95104

Fault Detection of Power Converter under Uncertain Noise Disturbances

Zixing Liu, Ziyun Wang*, Yan Wang, Zhicheng Ji

Engineering Research Center of Internet of Things Technology Applications Ministry of Education, Jiangnan University, Wuxi Jiangsu

Received: May 6th, 2019; accepted: May 20th, 2019; published: May 27th, 2019

ABSTRACT

A fault detection method based on set membership estimation is proposed for power converter systems with unknown but bounded uncertain noise disturbances. Taking Buck converter as an example, the current and voltage values obtained by simulation are taken as input of set membership estimation. The feasible set of all parameters is surrounded by ellipsoid and it can be concluded that the Buck converter is faulty when the approximate feasible set is empty set.

Keywords:Set Membership Estimation, Power Converter, Fault Detection

1. 引言

2. 问题描述

Buck变换器电力变换器基本拓扑结构的一种，是一种用于降压变换的变换器。基于Buck变换器的基本拓扑结构，根据各器件的工作原理特性，将Buck变换器进行一定的等效简化，具体的等效简化步骤为：将电感视为理想器件；将开关管MOSFET视为理想开关S1，即只包含导通和断开两个状态；将二极管D视为理想开关S2，也只包含导通和断开两个状态；将电解电容器等效为串联电容C和等效串联电阻RC串联。等效简化后得到的Buck变换器等效原理图如图1所示。其中图中 ${i}_{L}$ 表示流经电感的电流， ${u}_{o}$ 表示输出电压。

Figure 1. The equivalent schematic diagram of the Buck converter

Figure 2. The Simulink model of the Buck converter

3. 集员估计方法

4. 基于集员估计的Buck变换器故障检测

$\left[\begin{array}{c}{i}_{L}\left(t\right)\\ {u}_{o}\left(t\right)\end{array}\right]=\left[\begin{array}{cc}1& -\frac{T}{L}\\ \frac{RT}{C\left(R+{R}_{C}\right)}& 1-\frac{\left(CR{R}_{C}+L\right)T}{LC\left(R+{R}_{C}\right)}\end{array}\right]\left[\begin{array}{c}{i}_{L}\left(t-1\right)\\ {u}_{o}\left(t-1\right)\end{array}\right]+S\left(t-1\right)\left[\begin{array}{c}\frac{ET}{L}\\ \frac{R{R}_{C}ET}{L\left(R+{R}_{C}\right)}\end{array}\right]$ (1)

${y}_{1}\left(k\right)={\theta }_{1}^{\text{T}}\Phi \left(k\right)+{e}_{1}\left(k\right)$ (2)

${y}_{2}\left(k\right)={\theta }_{2}^{\text{T}}\Phi \left(k\right)+{e}_{2}\left(k\right)$ (3)

${E}_{1}\left(k\right)=\left\{{\theta }_{1}:{\left({\theta }_{1}-{\theta }_{1c}\left(k\right)\right)}^{\text{T}}{P}_{1}{\left(k\right)}^{-1}\left({\theta }_{1}-{\theta }_{1c}\left(k\right)\right)\le 1,{\theta }_{1}\in {R}^{m}\right\}$ (4)

1) 若 ${\Theta }_{1}\left(k\right)\ne \varnothing$${\Theta }_{2}\left(k\right)=\varnothing$ ，则故障信号，表现出Buck变换器已发生故障；

2) 若 ${\Theta }_{1}\left(k\right)=\varnothing$${\Theta }_{2}\left(k\right)\ne \varnothing$ ，则故障信号 $f\left(k\right)=2$ ，表现出Buck变换器系统错误；

3) 若 ${\Theta }_{1}\left(k\right)\ne \varnothing$${\Theta }_{2}\left(k\right)=\varnothing$ ，则故障信号 $f\left(k\right)=1$ ，表现出Buck变换器已发生故障；

4) 若 ${\Theta }_{1}\left(k\right)\ne \varnothing$${\Theta }_{2}\left(k\right)\ne \varnothing$ ，则故障信号 $f\left(k\right)=0$ ，表现出Buck变换器未发生故障。

$\sigma <|u\left(k\right)|-\sqrt{G\left(k\right)}$ (5)

5. 结论

Fault Detection of Power Converter under Uncertain Noise Disturbances[J]. 计算机科学与应用, 2019, 09(05): 921-925. https://doi.org/10.12677/CSA.2019.95104

1. 1. 孟准, 王议锋, 杨良. 一种适用于小功率可再生能源的单相高频双Buck全桥并网逆变器[J]. 电工技术学报, 2017, 32(8): 220-228.

2. 2. Buticchi, G., Barater, D., Costa, L.F., et al. (2018) A pv-Inspired Low-Common-Mode Du-al-Active-Bridge Converter for Aerospace Applications. IEEE Transactions on Power Electronics, 33, 10467-10477. https://doi.org/10.1109/TPEL.2018.2801845

3. 3. Mishra, A.K. and Singh, B. (2017) Solar Photovoltaic Array Dependent Dual Output Converter Based Water Pumping Using Switched Reluctance Motor Drive. IEEE Transactions on Industry Applications, 53, 5615-5623. https://doi.org/10.1109/TIA.2017.2732341

4. 4. 于生宝, 何建龙, 王睿家, 等. 基于小波包分析和概率神经网络的电磁法三电平变换器故障诊断方法[J]. 电工技术学报, 2016, 31(17): 102-112.

5. 5. 刘玉双, 赵剡, 吴发林. 基于外定界椭球集员估计的纯方位目标跟踪[J]. 北京航空航天大学学报, 2017, 43(3): 497-505.

6. 6. 沈强, 刘洁瑜, 赵乾, 王琪. 非线性系统中心差分集员估计方法[EB/OL]. 控制理论与应用, 1-11. http://kns.cnki.net/kcms/detail/44.1240.TP.20190408.1008.014.html, 2019-05-08.

7. 7. 王子赟, 徐桂香, 刘子幸, 王艳, 纪志成. 基于正多胞体线性规划的滤波故障诊断方法[EB/OL]. 控制与决策, 1-9.

8. 8. 周波, 钱堃, 马旭东, 戴先中. 基于集员估计的室内移动机器人多传感器融合定位[J]. 控制理论与应用, 2017, 34(4): 541-550.

p class="E-Title1">NOTES

*通讯作者。