Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62052 , 8 pages
10.12677/ACM.2023.133417

肺移植后原发性移植物功能障碍相关因素的 研究进展

陈胜,矫文捷*

青岛大学附属医院胸外科,山东 青岛

收稿日期:2023年2月1日;录用日期:2023年2月25日;发布日期:2023年3月3日

摘要

肺移植是目前终末期肺疾病可供选择的唯一有效方法。然而,与肝移植和肾移植相比,肺移植的短期和长期效益仍不尽人意。其中,原发性移植物功能障碍(PGD)是影响肺移植患者预后和生活质量的重要原因之一。当前,临床上PGD的治疗仍缺乏相关有效手段。如何防治PGD成为器官移植和普胸外科领域的热点。近年来,随着多中心肺移植的相继开展,PGD的认识也逐渐加深。本文就PGD的危险因素、预测指标及新兴防治方向,作一综述。以期为临床医生提供参考。

关键词

肺移植,原发性移植物功能障碍,危险因素

Research Progress on Factors Related to Primary Graft Dysfunction after Lung Transplantation

Sheng Chen, Wenjie Jiao*

Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Feb. 1st, 2023; accepted: Feb. 25th, 2023; published: Mar. 3rd, 2023

ABSTRACT

Lung transplantation is the only effective option for end-stage lung disease. However, the short- and long-term benefits of lung transplantation compared to liver transplantation and kidney transplantation remain unsatisfactory. Among them, primary graft dysfunction (PGD) is one of the important factors affecting the prognosis and quality of life of lung transplant patients. At present, there is still a lack of relevant effective methods for the treatment of PGD in clinical practice. How to prevent PGD has become a hot spot in the field of organ transplantation and general thoracic surgery. In recent years, with the development of multi-center lung transplantation, the understanding of PGD has gradually deepened. This article reviews the risk factors, predictors and emerging prevention and treatment directions of PGD in order to provide a reference for clinicians.

Keywords:Lung Transplantation, Primary Graft Dysfunction, Risk Factors

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

至今为止,肺移植仍是临床上治疗多种终末期肺病的唯一有效方法。虽然肺移植管理技术在供体选择、器官保存、围手术期管理及术后并发症治疗等方面已日趋成熟,但移植后移植物的功能和患者结局依旧落后于其他实体器官移植 [1] 。原发性移植物功能障碍(primary graft dysfunction, PGD)本质上是由缺血再灌注引起的一种急性肺损伤(acute lung injury, ALI) [2] 。目前,对于肺移植后的PGD发生尚无良好的解决办法,本文就肺移植后PGD诊断、发生的危险因素和预测方法等研究进展作一综述,以期减少临床PGD的发生。

2. PGD的诊断标准

在临床病理学中,PGD是一种严重的ALI,通常发生在术后的72小时内 [3] 。其表现在急性呼吸衰竭、低氧血症及肺水肿等方面,随后可进展成急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS) [4] 。最新的文献指出,在美国ALI的患者中,大于15岁的患者发病率为每年每100,000人中78.9例,死亡率38.5%。另外一项来自上海重症监护病房的研究报告也提出,15岁以上ARDS患者的发病率和死亡率为2%和70% [5] 。因此,在肺移植术后的临床管理中,如何预测和规避PGD的发生显得尤为重要。

PGD的诊断标准是人们在评估肺移植后早期移植物功能的过程中,随着认识的加深而发展来的。早在1998年,Christie [6] 等对100名移植受者进行了一项回顾性研究,发现在PGD的受者中,死亡率及住院时间和患者的肺功能损伤的程度有关。基于这方面,各大移植中心不断探索新的移植后早期移植物功能的诊断标准,并期望通过预测PGD的发生,提前临床干预,提高患者的生存率 [7] 。2005年国际心肺移植学会(International Society for Heart and Lung Transplantation, ISHLT)定义的PGD评分是当前判断肺移植术后器官功能的唯一判断标准(见表1)。其主要是基于移植患者术后的动脉血气和胸片,在术后0、24、48、72 h分别进行评估 [8] 。PaO2/FiO2 ≤ 200 mm时,PGD的临床表现就被定义为死亡率极高的ARDS [9] 。2016年,ISHLT工作组重新对PGD分组进行了更新:1) 肺部影像学无明显浸润时时,无论P/F比值大小,均视为0级PGD;2) 在双侧肺浸润情况下使用体外膜肺氧合(extracorporeal membrane oxygenation, ECMO)应被视为3级PGD,而ECMO用于无浸润的非缺氧适应证应被视为不可分级;3) 使用一氧化氮或其他可能改善氧合的药物不影响PGD分级 [10] 。

Table 1. PGD grading criteria as defined by ISHLT

表1. ISHLT定义的PGD分级标准

ISHLT:国际心肺移植协会;PGD:原发性移植物功能障碍;P/F比值:动脉氧气分压与吸入氧浓度比。

3. PGD发生的危险因素GD

在过去的几十年里,各大中心和研究机构相继评估了PGD的危险因素。由于单中心研究的限制和围术期管理方式的不同,发表的危险因素存在一些差异 [11] ,但主要集中在以下的3个方面。

3.1. 供体因素

供体的风险因素包括年龄、种族、性别、吸烟史、饮酒史、供体获得前的管理、基础疾病史和供体死亡类型如心脏死亡器官捐献(donation after cardiac death, DCD)等。Michael等人利用UNOS数据库,纳入2005~2013年符合标准的1835名患者,利用COX比例模型确定供体年龄与PGD无关联 [12] 。然而,最新的研究报告称,45岁以上的供体导致发生严重PGD的风险增加了7倍 [13] 。大量饮酒会增加ALI和ARDS的风险。Erin [14] 等人回顾了192名肺移植的供体资料和移植预后,将供体分为不饮酒组、适度饮酒组和大量饮酒组。结果显示应用有大量饮酒史供体的移植受者在肺移植后发生严重PGD的风险比不饮酒组高出8倍以上(P = 0.019)。

不同供体来源也与PGD的发生有关。供体器官的短缺是肺移植的主要限制,由于肺移植器官的短缺,一些国家实施了DCD的政策,在一定程度上缓解了这个问题 [15] 。Anton [16] 等人的研究表明,DCD组的患者PGD3级的发生率较高。然而,在DCD 后获得器官的肺移植的远期效益通常与脑死亡器官捐献(donation after brain death, DBD)供体肺移植相当。

3.2. 受体因素

受体的风险因素包括体重指数(body mass index, BMI)、性别、已存在的肺部疾病,如结节病、肺纤维化和肺动脉高压以及其他潜在的肺病理状态 [17] 。超重及肥胖是PGD最重要的危险因素之一,Akimova [3] 等人的研究结果显示,与肥胖相关的IL-18可诱发Treg功能障碍,这可能是导致PGD的发生的机制之一。一项多中心的前瞻性研究,则通过计算机断层扫描(computed tomography, CT)测量皮下脂肪组织和内脏脂肪组织的横断面积,发现皮下脂肪与肺移植后的PGD风险增加有关 [18] 。除了高BMI和皮下脂肪外,越来越多的研究也表明血浆中调节脂肪并具有炎症特性的瘦素,也与术后PGD的发生有关。其机制可能是通过过氧化物酶增殖物激活受体γ,继而增加转化生长因子-β1转录,从而导致PGD的风险增加 [19] 。研究也表明,术前受者适当减轻体重能带来更好的预后(P < 0.05) [20] 。Lourdes等人发现移植后的男性和女性在细胞因子分泌的演变方面存在差异,其PGD发生的风险也不尽相同 [21] 。在先前的研究中,雌激素与炎症发生的信号密切相关,其作用主要体现在缩短炎症持续时间、减轻炎症反应等。雌激素也因性别不同存在不同的生物学影响 [22] 。

肺动脉高压和左心室舒张功能障碍均与PGD的风险增加有关 [23] 。终末期肺病中,右心室后负荷长期升高、右心室功能障碍和肺部过度通气导致左心室相对重盈不足 [24] 。移植后左心室发生缓慢重塑 [25] ,加重左心室舒张功能损伤,进而可能导致肺水肿和PGD。

3.3. 围手术期的因素

3.3.1. 手术方式

单侧肺或双侧肺移植是否为肺移植术后PGD的危险因素尚存在争议。Joshua等人的研究表明单侧肺移植的PGD发生率高于双侧肺移植 [17] 。但在随后的一项研究中表明,单侧或双侧肺移植与PGD的发生无显著相关性 [26] 。与此同时,Whitson [27] 等发现延迟关胸与更严重的PGD相关。近来,Christelle [28] 等的一项研究,首次确定吻合时间是肺移植后PGD发生的独立危险因素。缩短缝合时间可能会带来更好的术后结局。

3.3.2. 液体管理

多项研究表明,术中大量输血和肺移植患者术后的不良结局有关 [29] 。现有的研究表明,输血对呼吸系统的不良影响主要包括肺损伤和呼吸失代偿等两方面 [30] 。从外科视角出发,大量输血也是疾病严重程度和风险增加的标志之一。目前认为,输血是肺损伤和PGD的危险因素。其机制可能是大量输血导致的输血相关性急性肺损伤 [31] 。Seay [32] 等研究发现,新鲜冷冻血浆/红细胞输注比例(FFP:RBC)是移植后PGD的危险因素之一,输注比例的增加与PGD的发生强相关。

传统上接受肺移植的缺血上限为6小时 [33] 。但Joshua [34] 等人发现缺血时长与PGD无明显相关性,缺血时间的延长(6~8 h内)与移植失败之间没有关联。

3.3.3. 循环支持

肺移植的术中支持模式包括无体外生命支持(非泵)、体外膜氧合(extracorporeal membrane oxygenation, ECMO)和体外循环(cardiopulmonary bypass, CPB) [35] 。研究表明,ECMO和CPB均与PGD的风险增高有关,且CPB发生PGD的风险较高 [36] 。

此外,围术期的麻醉管理也与PGD的风险相关 [37] 。Anna [38] 等研究发现,术中潮气较高与PGD3级的风险增加有关。其可能由受体内的移植肺大小不匹配造成,较小的供肺放入较大的受体,过度通气引起移植物的肺损伤。同时也有研究表明,肺保护性通气策略(低潮气量和呼气末正压)可降低术后72内PGD的发生风险,改善患者结局 [39] 。

4. PGD的预测

4.1. 临床参数

日本东北大开发了一种离体肺CT (Ex vivo lung CTEVL-CT)技术,该技术能够获得详细的CT图像。并可以对取回的肺进行形态学评估。基于此技术,研究人员回顾分析了在2007年至2017年70例患者的临床数据,根据双侧肺移植和单侧肺移植的EVL-CT结果,将受试者分为2组(对照组和浸润组)。对照组受者接受无任何肺部浸润的移植物,而浸润组则相反 [40] 。该技术可以预测肺移植后早期阶段的结果,但对PGD的预测效果还有待评估。近期,费城儿童医院首次提出术前超声心动图参数可预测小儿肺移植后PGD。因为几乎所有患者都通过超声心动图定期监测右心室以及左心室收缩和舒张功能,未来可能会有更广泛的临床应用 [41] 。此外,乳酸也可以作为双肺移植中3级PGD的预测指标。Julien [42] 等研究了449例肺移植受者,发现乳酸在手术过程中逐渐增加,并在肺植入后达到最大值。手术结束时 < 2.6 mmol/L,对术后3级PGD有较高的阴性预测率。Cristopher [43] 等人分析了100例肺移植术后24 h、48 h和72 h的降钙素原,发现24 h内的PCT < 2 ng/mL具有很高的预测价值,可排除3级PGD的发生。48 h内的PCT联合IL-10可预测肺移植术后一年的恢复情况。

4.2. 预测分子

近几年,分子技术的进步使得PGD的预测更加精准。一项涉及62例供体肺灌洗液研究表明,PGD组(14例)较非PGD组(48例)灌洗液中mtDNA明显升高(p < 0.05) [44] 。mtDNA从受伤细胞释放,离体肺灌注(EVLP)中的mtDNA的水平可反应组织损伤水平,因此可以量化来预测PGD。

除此之外,也有通过血浆蛋白组合改善PGD早期预测的报道。Lourdes Chacon [45] 等分析44例肺移植患者血浆蛋白的水平差异,发现血浆蛋白的表达模式可以提供PGD的严重程度及持续时间等信息。

5. PGD防治的新兴方向

PGD是多种途径作用下的结果,单一的预防策略不太可能在所有受者中普遍有效。目前临床上采用多种方式联合预防PDG,其主要是控制其发生的危险因素,本文不再赘述。目前新起的PGD防治方向主要集中在以下两个方面

5.1. 供肺获取前

Bertani [46] 等根据供体是否使用七氟醚(SEV)预处理,将冷缺血24 h后接受左肺移植的猪随机分为预处理SEV组和未预处理SEV组,结果显示SEV预处理能够减轻缺血–再灌注的不良反应并提高存活率。其机制可能是减少由缺血再灌注诱导的炎症因子,从而对肺损伤有一定的保护作用 [47] 。Ghaidan [48] 等也发现,应用细胞因子吸附可减轻离体肺灌注(ex vivo lung perfusion, EVLP)期间的细胞因子和移植后的免疫细胞水平,显著降低PGD的发生率。

5.2. 供体获取后

由于能够实行肺移植的中心较少,肺移植的需求越来越多。如何长时间、远距离转运成为亟需解决的重要问题。转运过程中如何减少PGD的危险因素,改善供肺质量成为重中之重。在一项大型动物临床前模型中 [49] 发现分子氢(H2)对肺缺血再灌注损伤具有一定的保护作用。在富氢保存溶液组其血管周围水肿、IL-1β、mRNA表达较低,说明富氢保存溶液通过抗氧化和抗炎作用减轻了冷缺血期间大鼠肺部的缺血再灌注损伤。

6. 展望

综上所述,PGD是导致移植后短期和长期结局不良的重要因素。DCD供肺、DBD供肺扩大了供肺来源,缩短了肺移植受者的等待时间,具有良好的前景。肺移植后PGD的危险因素主要包括供体、受体、手术、液体管理等方面,提前预测和精准干预成了目前防治PGD发生的重要手段。与此同时,多项正在进行的研究也为未来预防PGD的发生提供良好的机会。EVLP及细胞因子吸附等技术,在PGD中的潜力也得到了不断的开发。

文章引用

陈 胜,矫文捷. 肺移植后原发性移植物功能障碍相关因素的研究进展
Research Progress on Factors Related to Primary Graft Dysfunction after Lung Trans-plantation[J]. 临床医学进展, 2023, 13(03): 2943-2950. https://doi.org/10.12677/ACM.2023.133417

参考文献

  1. 1. Bos, S., Vos, R., Van Raemdonck, D.E., et al. (2020) Survival in Adult Lung Transplantation: Where Are We in 2020? Current Opinion in Organ Transplantation, 25, 268-273. https://doi.org/10.1097/MOT.0000000000000753

  2. 2. Kao, C.C. and Parulekar, A.D. (2019) Postoperative Man-agement of Lung Transplant Recipients. Journal of Thoracic Disease, 11, S1782-S1788. https://doi.org/10.21037/jtd.2019.05.60

  3. 3. Akimova, T., Zhang, T., Christensen, L.M., et al. (2021) Obesi-ty-Related IL-18 Impairs T-Regulatory Cell Function and Promotes Lung Ischemia-Reperfusion Injury. American Jour-nal of Respiratory and Critical Care Medicine, 204, 1060-1074. https://doi.org/10.1164/rccm.202012-4306OC

  4. 4. Liu, C., Yin, Z., Feng, T., et al. (2021) An Integrated Network Pharmacology and RNA-Seq Approach for Exploring the Preventive Effect of Lonicerae japonicae flos on LPS-Induced Acute Lung Injury. Journal of Ethnopharmacology, 264, Article ID: 113364. https://doi.org/10.1016/j.jep.2020.113364

  5. 5. He, Y.Q., Zhou, C.C., Yu, L.Y., et al. (2021) Natural Product De-rived Phytochemicals in Managing Acute Lung Injury by Multiple Mechanisms. Pharmacological Research, 163, Article ID: 105224. https://doi.org/10.1016/j.phrs.2020.105224

  6. 6. Christie, J.D., Carby, M., Bag, R., et al. (2005) Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part II: Definition. A Consensus Statement of the Interna-tional Society for Heart and Lung Transplantation. The Journal of Heart and Lung Transplantation, 24, 1454-1459. https://doi.org/10.1016/j.healun.2004.11.049

  7. 7. Hamilton, B.C., Kukreja, J., Ware, L.B., et al. (2017) Protein Biomarkers Associated with Primary Graft Dysfunction Following Lung Transplantation. American Journal of Physiol-ogy Lung Cellular and Molecular Physiology, 312, L531-L541. https://doi.org/10.1152/ajplung.00454.2016

  8. 8. Fiser, S.M., Kron, I.L., Mclendon Long, S., et al. (2001) Early Intervention after Severe Oxygenation Index Elevation Improves Survival Following Lung Transplantation. The Journal of Heart and Lung Transplantation, 20, 631-636. https://doi.org/10.1016/S1053-2498(01)00249-2

  9. 9. Huang, Y., Xiao, Y., Zhang, X., et al. (2021) The Emerging Roles of Tripartite Motif Proteins (TRIMs) in Acute Lung Injury. Journal of Immunology Research, 2021, Article ID: 1007126. https://doi.org/10.1155/2021/1007126

  10. 10. Snell, G.I., Yusen, R.D., Weill, D., et al. (2017) Report of the ISHLT Working Group on Primary Lung Graft Dysfunction, Part I: Definition and Grading-A 2016 Consensus Group Statement of the International Society for Heart and Lung Transplantation. The Journal of Heart and Lung Transplanta-tion, 36, 1097-1103. https://doi.org/10.1016/j.healun.2017.07.021

  11. 11. Porteous, M.K. and Lee, J.C. (2017) Primary Graft Dysfunction after Lung Transplantation. Clinics in Chest Medicine, 38, 641-654. https://doi.org/10.1016/j.ccm.2017.07.005

  12. 12. Mulvihill, M.S., Gulack, B.C., Ganapathi, A.M., et al. (2017) The Association of Donor Age and Survival Is Independent of Ischemic Time Following Deceased Donor Lung Transplanta-tion. Clinical Transplantation, 31, e12993. https://doi.org/10.1111/ctr.12993

  13. 13. Roesel, M.J., Sharma, N.S., Schroeter, A., et al. (2022) Primary Graft Dys-function: The Role of Aging in Lung Ischemia-Reperfusion Injury. Frontiers in Immunology, 13, Article ID: 891564. https://doi.org/10.3389/fimmu.2022.891564

  14. 14. Lowery, E.M., Kuhlmann, E.A., Mahoney, E.L., et al. (2014) Heavy Alcohol Use in Lung Donors Increases the Risk for Primary Graft Dysfunction. Alcoholism, Clinical and Exper-imental Research, 38, 2853-2861. https://doi.org/10.1111/acer.12553

  15. 15. Zych, B., Popov, A.F., Amrani, M., et al. (2012) Lungs from Donation af-ter Circulatory Death Donors: An Alternative Source to Brain-Dead Donors? Midterm Results at a Single Institution. European Journal of Cardio-Thoracic Surgery, 42, 542-549. https://doi.org/10.1093/ejcts/ezs096

  16. 16. Sabashnikov, A., Patil, N.P., Popov, A.F., et al. (2016) Long-Term Re-sults after Lung Transplantation Using Organs from Circulatory Death Donors: A Propensity Score-Matched Analysis. European Journal of Cardio-Thoracic Surgery, 49, 46-53. https://doi.org/10.1093/ejcts/ezv051

  17. 17. Diamond, J.M., Lee, J.C., Kawut, S.M., et al. (2013) Clinical Risk Factors for Primary Graft Dysfunction after Lung Transplanta-tion. American Journal of Respiratory and Critical Care Medicine, 187, 527-534. https://doi.org/10.1164/rccm.201210-1865OC

  18. 18. Anderson, M.R., Udupa, J.K., Edwin, E., et al. (2019) Adipose Tissue Quantification and Primary Graft Dysfunction after Lung Transplantation: The Lung Transplant Body Composi-tion Study. The Journal of Heart and Lung Transplantation, 38, 1246-1256. https://doi.org/10.1016/j.healun.2019.08.013

  19. 19. Lederer, D.J., Kawut, S.M., Wickersham, N., et al. (2011) Obe-sity and Primary Graft Dysfunction after Lung Transplantation: The Lung Transplant Outcomes Group Obesity Study. American Journal of Respiratory and Critical Care Medicine, 184, 1055-1061. https://doi.org/10.1164/rccm.201104-0728OC

  20. 20. Chandrashekaran, S., Keller, C.A., Kremers, W.K., et al. (2015) Weight Loss Prior to Lung Transplantation Is Associated with Improved Survival. The Journal of Heart and Lung Transplantation, 34, 651-657. https://doi.org/10.1016/j.healun.2014.11.018

  21. 21. Chacon-Alberty, L., Ye, S., Daoud, D., et al. (2021) Analysis of Sex-Based Differences in Clinical and Molecular Responses to Ischemia Reperfusion after Lung Transplantation. Respir-atory Research, 22, 318. https://doi.org/10.1186/s12931-021-01900-y

  22. 22. Bastarache, J.A., Diamond, J.M., Kawut, S.M., et al. (2012) Postoperative Estradiol Levels Associate with Development of Primary Graft Dysfunction in Lung Transplantation Pa-tients. Gender Medicine, 9, 154-165. https://doi.org/10.1016/j.genm.2012.01.009

  23. 23. Porteous, M.K., Ky, B., Kirkpatrick, J.N., et al. (2016) Diastolic Dysfunction Increases the Risk of Primary Graft Dysfunction after Lung Transplant. American Journal of Respiratory and Critical Care Medicine, 193, 1392-1400. https://doi.org/10.1164/rccm.201508-1522OC

  24. 24. Hardziyenka, M., Campian, M.E., Verkerk, A.O., et al. (2012) Electrophysiologic Remodeling of the Left Ventricle in Pressure Overload-Induced Right Ventricular Failure. Journal of the American College of Cardiology, 59, 2193-2202. https://doi.org/10.1016/j.jacc.2012.01.063

  25. 25. Jörgensen, K., Houltz, E., Westfelt, U., et al. (2003) Effects of Lung Volume Reduction Surgery on Left Ventricular Diastolic Filling and Dimensions in Patients with Severe Emphysema. Chest, 124, 1863-1870. https://doi.org/10.1378/chest.124.5.1863

  26. 26. Liu, Y., Liu, Y., Su, L., et al. (2014) Recipient-Related Clinical Risk Factors for Primary Graft Dysfunction after Lung Transplantation: A Systematic Review and Meta-Analysis. PLOS ONE, 9, e92773. https://doi.org/10.1371/journal.pone.0092773

  27. 27. Whitson, B.A., Nath, D.S., Johnson, A.C., et al. (2006) Risk Factors for Primary Graft Dysfunction after Lung Transplantation. The Journal of Thoracic and Cardiovascular Surgery, 131, 73-80. https://doi.org/10.1016/j.jtcvs.2005.08.039

  28. 28. Vandervelde, C.M., Vos, R., Vanluyten, C., et al. (2022) Impact of Anastomosis Time during Lung Transplantation on Primary Graft Dysfunction. American Journal of Transplantation, 22, 1418-1429. https://doi.org/10.1111/ajt.16957

  29. 29. Pena, J.J., Bottiger, B.A. and Miltiades, A.N. (2020) Periopera-tive Management of Bleeding and Transfusion for Lung Transplantation. Seminars in Cardiothoracic and Vascular An-esthesia, 24, 74-83. https://doi.org/10.1177/1089253219869030

  30. 30. Said, S.A., Okamoto, T., Nowacki, A.S., et al. (2021) The Effect of Blood Transfusion in Lung Donors on Recipient Survival. The Annals of Thoracic Surgery, 112, 1109-1117. https://doi.org/10.1016/j.athoracsur.2020.10.027

  31. 31. Borders, C.F., Suzuki, Y., Lasky, J., et al. (2017) Massive Donor Transfusion Potentially Increases Recipient Mortality after Lung Transplantation. The Journal of Thoracic and Cardiovascular Surgery, 153, 1197-1203.e2. https://doi.org/10.1016/j.jtcvs.2016.12.006

  32. 32. Syrett, A.J. and Huang, A. (2020) Transfusion and Primary Graft Dysfunction after Lung Transplantation: All about the Ratio? Journal of Cardiothoracic and Vascular Anesthesia, 34, 3033-3035. https://doi.org/10.1053/j.jvca.2020.07.012

  33. 33. Grimm, J.C., Valero, V., Kilic, A., et al. (2015) Association be-tween Prolonged Graft Ischemia and Primary Graft Failure or Survival Following Lung Transplantation. JAMA Surgery, 150, 547-553. https://doi.org/10.1001/jamasurg.2015.12

  34. 34. Bharat, A. (2015) Prolonged Lung Allograft Ischemia and Post-transplant Outcome. JAMA Surgery, 150, 554. https://doi.org/10.1001/jamasurg.2015.0416

  35. 35. Chacon-Alberty, L., Ye, S., Elsenousi, A., et al. (2022) Effect of Intraoperative Support Mode on Circulating Inflammatory Biomarkers after Lung Transplantation Surgery. Artificial Or-gans. https://doi.org/10.1111/aor.14474

  36. 36. Loor, G., Huddleston, S., Hartwig, M., et al. (2022) Effect of Mode of Intraoperative Support on Primary Graft Dysfunction after Lung Transplant. The Journal of Thoracic and Cardiovas-cular Surgery, 164, 1351-1361.e4. https://doi.org/10.1016/j.jtcvs.2021.10.076

  37. 37. Kachulis, B., Mitrev, L. and Jordan, D. (2017) Intraoperative An-esthetic Management of Lung Transplantation Patients. Best Practice & Research Clinical Anaesthesiology, 31, 261-272. https://doi.org/10.1016/j.bpa.2017.04.004

  38. 38. Niroomand, A., Qvarnström, S., Stenlo, M., Malmsjö, M., et al. (2022) The Role of Mechanical Ventilation in Primary Graft Dysfunction in the Postoperative Lung Transplant Recipient: A Single Center Study and Literature Review. Acta Anaesthesiologica Scandinavica, 66, 483-496. https://doi.org/10.1111/aas.14025

  39. 39. Beer, A., Reed, R.M., Bölükbas, S., et al. (2014) Mechanical Ventilation after Lung Transplantation. An International Survey of Practices and Preferences. Annals of the American Thoracic Soci-ety, 11, 546-553. https://doi.org/10.1513/AnnalsATS.201312-419OC

  40. 40. Oishi, H., Noda, M., Sado, T., et al. (2020) Ex Vivo Lung CT Findings May Predict the Outcome of the Early Phase after Lung Transplantation. PLOS ONE, 15, e0233804. https://doi.org/10.1371/journal.pone.0233804

  41. 41. Himebauch, A.S., Wong, W., Wang, Y., et al. (2021) Preopera-tive Echocardiographic Parameters Predict Primary Graft Dysfunction Following Pediatric Lung Transplantation. Pediat-ric Transplantation, 25, e13858. https://doi.org/10.1111/petr.13858

  42. 42. Fessler, J., Vallée, A., Guirimand, A., et al. (2022) Blood Lactate During Double-Lung Transplantation: A Predictor of Grade-3 Primary Graft Dysfunction. Journal of Cardiothoracic and Vas-cular Anesthesia, 36, 794-804. https://doi.org/10.1053/j.jvca.2021.10.043

  43. 43. Mazo, C., Borgatta, B., Pont, T., et al. (2018) Procalcitonin Accu-rately Predicts Lung Transplant Adults with Low Risk of Pulmonary Graft Dysfunction and Intensive Care Mortality. Journal of Critical Care, 44, 142-147. https://doi.org/10.1016/j.jcrc.2017.10.047

  44. 44. Kanou, T., Nakahira, K., Choi, A.M., et al. (2021) Cell-Free DNA in Human ex Vivo Lung Perfusate as a Potential Biomarker to Predict the Risk of Primary Graft Dysfunction in Lung Transplantation. The Journal of Thoracic and Cardiovascular Surgery, 162, 490-499.e2. https://doi.org/10.1016/j.jtcvs.2020.08.008

  45. 45. Chacon-Alberty, L., Kanchi, R.S., Ye, S., et al. (2022) Plasma Protein Biomarkers for Primary Graft Dysfunction after Lung Transplantation: A Single-Center Cohort Analysis. Scien-tific Reports, 12, Article No. 16137. https://doi.org/10.1038/s41598-022-20085-y

  46. 46. Bertani, A., Miceli, V., De Monte, L., et al. (2021) Donor Pre-conditioning with Inhaled Sevoflurane Mitigates the Effects of Ischemia-Reperfusion Injury in a Swine Model of Lung Transplantation. BioMed Research International, 2021, Article ID: 6625955. https://doi.org/10.1155/2021/6625955

  47. 47. De Conno, E., Steurer, M.P., Wittlinger, M., et al. (2009) Anesthet-ic-Induced Improvement of the Inflammatory Response to One-Lung Ventilation. Anesthesiology, 110, 1316-1326. https://doi.org/10.1097/ALN.0b013e3181a10731

  48. 48. Ghaidan, H., Stenlo, M., Niroomand, A., et al. (2022) Re-duction of Primary Graft Dysfunction Using Cytokine Adsorption during Organ Preservation and after Lung Transplan-tation. Nature Communications, 13, 4173. https://doi.org/10.1038/s41467-022-31811-5

  49. 49. Saito, M., Chen-Yoshikawa, T.F., Takahashi, M., et al. (2020) Protective Effects of a Hydrogen-Rich Solution during Cold Ischemia in Rat Lung Transplantation. The Journal of Tho-racic and Cardiovascular Surgery, 159, 2110-2118. https://doi.org/10.1016/j.jtcvs.2019.09.175

  50. NOTES

    *通讯作者Email: jiaowj@qduhospital.cn

期刊菜单