﻿ 带环筋筒形结构焊接过程仿真分析 Simulation Analysis of Welding Process for Ring Stiffened Tubular Structure

Mechanical Engineering and Technology
Vol. 07  No. 05 ( 2018 ), Article ID: 27365 , 8 pages
10.12677/MET.2018.75047

Simulation Analysis of Welding Process for Ring Stiffened Tubular Structure

Mohan Yu1, Xinyou Li2, Guanhui Li2

1Iowa State University, Ames USA

2Tianjin HRG Lingsheng Robot Co., Ltd., Tianjin

Received: Oct. 7th, 2018; accepted: Oct. 24th, 2018; published: Oct. 31st, 2018

ABSTRACT

A large-scale finite element software ANSYS was used to simulate the welding process for a simplified model of a certain type of welded piece. Assuming that the stress-strain field has no effect on the temperature field, the indirect coupling method is used to simulate the welding process. The SOLID70 element is selected to calculate the temperature field, and then the displacement field is calculated by SOLID185. The results show that the maximum deformation usually occurs at the local position of welding moment, and the longer the cooling time is, the more stable the size of the welded parts is, and the deformation of the parts is generally in the range of 104 mm after 15 hours of air cooling.

Keywords:Cylindrical Structure, Welding Deformation, ANASYS, Simulation

1爱荷华州立大学，美国 艾姆斯

2天津哈工领盛机器人有限公司，天津

1. 引言

2. 模型的建立及计算方法

Figure 1. Computational geometry model

Figure 2. Finite element model

3. 边界条件

3.1. 边界约束处理

3.2. 载荷

Table 1. 0Cr18Ni9 material parameters

Table 2. Two different boundary conditions models

Figure 3. Common welding sequence

$P=UI$

4. 计算结果分析

4.1. 模型1计算结果

Figure 4. Deformation after welding for 15 h

Figure 5. Changes of temperature field after cooling for 15 h

Figure 6. Residual stress distribution after cooling of model 1

Figure 7. Deformation after cooling for 15 hours

$\sigma =\sqrt{{\left({\sigma }_{1}-{\sigma }_{2}\right)}^{2}+{\left({\sigma }_{2}-{\sigma }_{3}\right)}^{2}+{\left({\sigma }_{1}-{\sigma }_{3}\right)}^{2}}$

Figure 8. Temperature field after cooling for 15 hours

Figure 9. Distribution of residual stress after cooling for 15 hours after model 2 welding

4.2. 模型2计算结果

5. 结论

1) 最大变形量一般发生在焊接瞬间的局部位置，一般在1 mm左右(除个别情况)，所以改变边界条件对控制最大变形基本上没有作用。这是因为根据圣维南原理，远处的约束对局部的作用是不明显的。

2) 焊接完成冷却过程中，空冷时间越长，焊接件尺寸越稳定。刚一开始阶段弹性变形恢复的较快，随着时间的增加，弹性变形恢复的越来越慢，尺寸越来越稳定，变形中弹性变形因素也越来越少。一般在空冷15小时后零件的变形量级在10−4 mm级别上。

3) 从变形量来看，对称焊接在最终冷却15小时后，最大变形为：0.0000437 mm，而普通焊接为0.0000211 mm。

Simulation Analysis of Welding Process for Ring Stiffened Tubular Structure[J]. 机械工程与技术, 2018, 07(05): 381-388. https://doi.org/10.12677/MET.2018.75047

1. 1. 朱志民, 李晓东. 铝合金车体端墙焊接变形行为仿真验证分析[J]. 制造业自动化, 2013(11): 148-150.

2. 2. 李亭, 史清宇, 李红克, 王伟. 铝合金搅拌摩擦焊接头残余应力分布[J]. 焊接学报, 2007(6): 105-108.

3. 3. Grimvall, G. (1999) Thermophysical Properties of Materials. Non Metallic Solids, 55-58.

4. 4. 董志波, 郭军礼, 杨来山, 等. 焊接过程宏微观数值模拟与仿真的研究现状[J]. 精密成型工程, 2018(1): 40-51.

5. 5. 陈文兴, 张磊, 刘军祥, 等. 铁路货车乙型钢中梁焊接变形仿真预测[J]. 铁道车辆, 2007(2): 8-11.