Advances in Applied Mathematics
Vol. 08  No. 07 ( 2019 ), Article ID: 31442 , 7 pages
10.12677/AAM.2019.87149

Subharmonic Bifurcations and Chaos for the Buckled Beam at Axial Motion

Jing Wang, Dongmei Zhang

School of Mechanics and Statistics, Linyi University, Linyi Shandong

Received: July 4th, 2019; accepted: July 19th, 2019; published: July 26th, 2019

ABSTRACT

The subharmonic bifurcations and chaos for one kind of buckled beam model subjected to parametric excitations are investigated. The critical curves separating the chaotic and non-chaotic regions are obtained by utilizing Melnikov method. The conditions for subharmonic bifurcations are also obtained. Numerical results are given, which verify the analytical ones.

Keywords:Buckled Beam, Subharmonic Bifurcations, Chaos, Melnikov Methods

轴向运动曲梁的次谐分岔和混沌

王晶,张冬梅

临沂大学数学与统计学院,山东 临沂

收稿日期:2019年7月4日;录用日期:2019年7月19日;发布日期:2019年7月26日

摘 要

研究了一类轴向运动屈曲梁的次谐分岔和混沌行为。利用Melnikov方法,给出了屈曲梁异宿轨道Melnikov函数和次谐Melnikov函数的表达式,得到系统出现次谐分岔和超次谐分岔的参数条件,给出系统混沌区域和非混沌区域的分界曲线。根据参数的取值范围做数值模拟,结果验证了理论分析。

关键词 :屈曲梁,次谐分岔,混沌,Melnikov方法

Copyright © 2019 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

屈曲梁结构在军事、航空航天、土木、机械等工程中有广泛的应用,拱形结构当受到动态负荷时,会展示出丰富的动力学现象,包括次谐波、超谐振荡、极限环、混沌运动等 [1] [2]。1983年,Moon [3] [4] 等研究了非线性边界条件下的梁受到周期载荷后的混沌运动。Suire [5] 用数值方法研究了大扰度粘弹性梁的周期和混沌。冯志华,胡海岩研究了内共振条件下直线运动梁的动力稳定性,基于凯恩方程建立非线性动力学方程,得出非线性振动的Hopf分岔以及极限环。Danida [6]、Anantha [7]、Neukirch [8] 等研究了弹性屈曲梁的周期解和混沌动力学行为。张等 [9] [10] 研究了两端简支的非线性弹性梁受周期载荷作用后,发生次谐分岔和混沌运动的条件。Pinto [11] [12] 等分析了弹性屈曲梁在强迫力作用下出现马蹄混沌行为。

本文研究一类轴向载荷作用下梁的次谐分岔和混沌行为,对梁的单模态方程,应用Melnikov方法,得到了系统发生次谐分岔和超次谐分岔的参数范围,及混沌区域和非混沌区域的分界线。

2. 问题描述

Figure 1. A buckled beam at axial motion

图1. 屈曲梁结构模型

图1所示,考虑梁的长度为L,横截面积为A,横截转动惯量为J,材料的弹性模量为E,轴向力为P。假定梁的横截面是均匀的,材质均相同.轴向位移采用u表示,横向位移采用w表示,u和w是空间坐标x的函数,文献 [11] 得到弯曲梁的运动方程为

v ¨ + v i v + 4 π 2 v 2 b 2 π 3 cos 2 π x 0 1 v sin 2 π x d x = b π 2 cos 2 π x 0 1 v 2 d x + b π v 0 1 sin 2 π x d x + 1 2 v 0 1 v 2 d x c v ˙ + F cos Ω t (1)

边界条件为

x = 0 x = 1 时, v = 0 v = 0

利用伽辽金法,单模态的运动方程为

q ¨ + ω 2 q = c q ˙ + b a 2 q 2 + a 3 q 3 + f cos Ω t (2)

这里考虑 a 2 = 0 的情况,令 x = q c = ε c f = ε f ,则方程(2)变成

{ x ˙ = y y ˙ = ω 2 x + a 3 x 3 ε c y + ε f cos Ω t (3)

ε = 0 时,系统(3)的未扰动系统为

{ x ˙ = y y ˙ = ω 2 x + a 3 x 3 (4)

(4)是Hamiltonian系统,其Hamiltonian量为

H = 1 2 y 2 + ω 2 2 x 2 a 3 4 x 4 (5)

3. 系统的次谐分岔与混沌

a 3 > 0 的混沌行为

a 3 > 0 时,利用如下变换

u = p a 3 ω t 1 ω t (6)

将(6)代入(3)式,得到

{ u ˙ = v v ˙ = u + u 3 ε c ¯ q + ε f ¯ cos ( Ω ¯ t ) (7)

其中 f ¯ = f a 3 ω 3 Ω ¯ = Ω ω 。当 ε = 0 时,未扰动系统为

{ u ˙ = v v ˙ = u u 3 (8)

其Hamilton量为

H ( u , v ) = 1 2 v 2 + 1 2 u 2 1 4 u 4 (9)

该系统有三个平衡点,通过定性分析可知, ( 0 , 0 ) 为(8)的中点, ( 1 , 0 ) ( 1 , 0 ) 是鞍点。当 h = 1 4 时,存在两条连接 的异宿轨道,形成一个异宿环,如图2所示。

Figure 2. The phase portrait of system (8)

图2. 系统(8)的相图

该异宿轨道的参数表达式为

{ u ( t ) = ± tanh ( 2 2 t ) v ( t ) = ± sech 2 2 2 2 ( 2 2 t ) (10)

h = h ( k ) 为参数的周期轨道为

{ u k ( t ) = 2 k 1 + k 2 s n ( t 1 + k 2 , k ) v k ( t ) = 2 k 1 + k 2 c n ( t 1 + k 2 , k ) d n ( t 1 + k 2 , k ) (11)

其中sn,dn,cn为Jacobian椭圆函数,k为椭圆函数的模, 0 < k < 1 ,k满足关系式 h = h ( k ) = k 2 ( 1 + k 2 ) 2 ,定义轨道的周期为 T k = 4 1 + k 2 K ( k ) K ( k ) 是第一类完全椭圆积分。

下面计算系统(7)沿着异宿轨道的Melnikov函数

M ( t 0 ) = + c ¯ v 2 ( t ) d t + f ¯ v ( t ) cos Ω ¯ ( t + t 0 ) d t = c ¯ J 0 f ¯ J 1 cos Ω ¯ t 0 (12)

其中

J 0 = 2 2 3 J 1 = 2 π Ω ¯ csch ( 2 2 π Ω ¯ )

由(12)可知,当参数 f ¯ 满足

(13)

即参数 c , f 满足参数条件

c f a 3 ω 2 | J 1 J 0 |

M ( t 0 ) 存在零点,系统发生混沌。取不同的 ω 值,比如 ω = 0.5 , 1 , 1.5 , 2 ,得到系统发生混沌的临界曲线,如图3所示。在曲线下方是发生混沌的区域,在曲线上方是非混沌区域。

Figure 3. The critical curves for chaotic motions

图3. 系统发生混沌的临界曲线

4. 通向混沌的道路

对于任给的一对互素的正整数 ( m , n ) ,存在唯一的k,满足 T k = 2 2 k 2 K ( k ) = 2 π m ω n ,沿这个周期为 T k 的轨道计算次谐波Melnikov函数得

M m / n ( t 0 ) = 0 m T ( c ¯ ) v k 2 ( t ) d t + f ¯ 0 m T v k ( t ) cos Ω ¯ ( t + t 0 ) d t = c ¯ J 0 ( m , n ) + f ¯ J 1 ( m , n ) cos Ω ¯ t 0 (14)

其中

J 0 ( m , n ) = 0 m T v k 2 ( t ) d t = 8 n [ ( k 2 1 ) K ( k ) + ( k 2 + 1 ) E ( k ) ] 3 ( k 2 + 1 ) 3 2 (15)

J 1 ( m , n ) = 0 m T v k ( t ) sin ω ¯ t d t = { 0 , n 1 m π 2 m 2 k 2 1 K ( k ) csch ( π m K ( k ) 2 K ( k ) ) , n = 1 m (16)

K ( k ) = K ( k ) = K ( 1 k 2 ) E ( k ) 为第二类椭圆积分。

当参数满足条件

c ¯ f ¯ < | J 1 ( m , n ) J 0 ( m , n ) | R m 1 ( ω ) (17)

系统发生奇数阶次谐分岔。

5. 数值模拟

对系统(2)使用龙格库塔法做数值模拟来验证屈曲梁是否存在混沌现象。根据前面理论的分析来选取参数 ω = 1 c = 0.01 a 3 = 0.5 f = 1.2 ,初始点选取为,相图和时间历程图如图4所示。再令参数 ,其它参数值不变,得到系统相图和时间历程图如图5所示。

Figure 4. The phase portrait of system (2) for ω = 1

图4. 当 ω = 1 时,系统的相轨迹图和时间历程图

Figure 5. The phase portrait of system (2) for ω = 2

图5. 当 ω = 2 时,系统的相轨迹图和时间历程图

6. 结论

研究了受轴向载荷和附加载荷弹性屈曲梁的次谐分岔和混沌行为。利用Melnikov方法,给出了屈曲梁同宿轨道Melnikov函数和次谐Melnikov函数的表达式,得到系统出现次谐分岔和超次谐分岔的参数条件,给出系统混沌区域和非混沌区域的分界曲线。根据参数的取值范围做数值模拟,结果验证了理论分析。

基金项目

本论文受山东省自然科学基金资助(ZR2018MA002)和2018大学生创新创业项目资助(51819220)。

文章引用

王 晶,张冬梅. 轴向运动曲梁的次谐分岔和混沌
Subharmonic Bifurcations and Chaos for the Buckled Beam at Axial Motion[J]. 应用数学进展, 2019, 08(07): 1277-1283. https://doi.org/10.12677/AAM.2019.87149

参考文献

  1. 1. Abou-Rayan, A.M., Nayfeh, A.H., Mook, D.T., et al. (1993) Nonlinear Response of a Parametrically Excited Buckled Beam. Non-linear Dynamics, 4, 499-525.
    https://doi.org/10.1007/BF00053693

  2. 2. Afaneh, A.A. and Ibrahim, R.A. (1993) Nonlinear Response of a Initially Buckled Beam with 1:1 Internal Resonance to Sinusoidal Excitation. Nonlinear Dynamics, 4, 547-571.
    https://doi.org/10.1007/BF00162232

  3. 3. Moon, F.C. and Shaw, S.W. (1983) Chaotic Vibration of a Beam with Nonlinear Boundary Conditions. Non-Linear Mechanics, 18, 465-477.
    https://doi.org/10.1016/0020-7462(83)90033-1

  4. 4. Moon, F.C. (1988) Experiments on Chaotic Motions of a Forced Nonlinear Oscillator. Stranger Attractors. Journal of Applied Mechanics, 55, 190-196.

  5. 5. Suire, G. and Cederbaum, G. (1995) Periodic and Chaotic Behavior of Viscoelastic Nonlinear Bars under Harmonic Excitations. International Journal of Mechanical Sciences, 7, 753-772.
    https://doi.org/10.1016/0020-7403(95)00006-J

  6. 6. Danida, D.B. (1994) Mathematical Models Used in Studying the Chaotic Vibration of Buckled Beam. Mechanics Research Communications, 21, 321-335.
    https://doi.org/10.1016/0093-6413(94)90091-4

  7. 7. Anantha, R.S., Sunkar, T.S. and Ganean, S. (1994) Bifurcation, Catastro-phes and Chaos in a Pre-Buckled Beam. International Journal of Non-Linear Mechanics, 29, 449-462.
    https://doi.org/10.1016/0020-7462(94)90014-0

  8. 8. Neukirch, S., Frelat, J., Goriely, A., et al. (2012) Vibrations of Post-Buckled Rods: The Singular Inextensible Limit. Journal of Sound and Vibration, 331, 704-720.
    https://doi.org/10.1016/j.jsv.2011.09.021

  9. 9. 张年梅, 杨桂通. 非线性弹性梁的动态次谐分岔与混沌运动[J]. 非线性动力学学报, 1996(3): 265-274.

  10. 10. 张年梅, 杨桂通. 非线性弹性梁中的混沌带现象[J]. 应用数学和力学, 2003, 24(5): 450-454.

  11. 11. Pinto, O.C. and Goncalves, P.B. (2002) Active Non-Linear Control of Buckling and Vibrations of a Flexible Buckled Beam. Chaos Solitons and Fractals, 14, 227-239.
    https://doi.org/10.1016/S0960-0779(01)00229-6

  12. 12. Oumarou, A.S., Nana Nbendjo, B.R. and Woafo, P. (2011) Appearance of Horseshoes Chaos on a Buckled Beam Controlled by Disseminated Couple Forces. Communication in Nonlinear Science Numerical Simulation, 16, 3212-3218.
    https://doi.org/10.1016/j.cnsns.2010.11.010

期刊菜单