Advances in Clinical Medicine
Vol. 12  No. 12 ( 2022 ), Article ID: 59616 , 7 pages
10.12677/ACM.2022.12121696

RNA结合蛋白在乳腺癌发病机制中作用的 研究进展

余运霖,张先林*

三峡大学附属仁和医院普外科,湖北 宜昌

收稿日期:2022年11月21日;录用日期:2022年12月20日;发布日期:2022年12月27日

摘要

乳腺癌是女性最常见的恶性肿瘤之一,发病率和死亡率都很高。基因表达的异常调控在乳腺癌的发生发展中起着重要作用。RNA结合蛋白(RNA-Binding Proteins)是一种关键基因表达的调节因子。RBP通过各种方式与目标RNA相互作用,影响目标RNA切割、编辑、定位和转录调控等。RBP在乳腺癌的发生和发展过程中发挥着重要作用,参与到细胞增殖、迁移和侵袭。因此,全面了解RBPs在乳腺癌进展中的作用,为乳腺癌的诊断和治疗提供新的方向和靶点。

关键词

乳腺癌,RNA结合蛋白,研究进展

Recent Advances in Understanding the Roles of RNA Binding Proteins in Breast Cancer Pathogenesis

Yunlin Yu, Xianlin Zhang*

Department of General Surgery, Renhe Hospital Affiliated to China Three Gorges University, Yichang Hubei

Received: Nov. 21st, 2022; accepted: Dec. 20th, 2022; published: Dec. 27th, 2022

ABSTRACT

Breast cancer is one of the most common malignancies in women, with high morbidity and mortality. Aberrant regulation of gene expression plays an important role in the development and progression of breast cancer. RNA binding proteins are one type of regulator of key gene expression. RBPs interact with target RNAs in various ways, affecting target RNA cleavage, editing, localization, and transcriptional regulation, among others. RBPs play an important role in the development and progression of breast cancer and are involved in cell proliferation, migration and invasion. Therefore, a comprehensive understanding of the role of RBPs in breast cancer progression provides new directions and targets for the diagnosis and treatment of breast cancer.

Keywords:Breast Cancer, RNA-Binding Proteins, Research Progress

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

乳腺癌(Breast Cancer)已经成为世界范围内最常见恶性肿瘤之一,也是导致女性恶性肿瘤死亡重要原因。近年来乳腺癌发病率以0.5%的增速上涨,并有逐年上升的趋势 [1]。随着生活习惯等外界环境因素的影响,预计到2050年全球约有320万例乳腺癌患者 [2]。尽管目前临床上采取包括手术切除、术后化疗、靶向治疗等一系列治疗,患者生存率较前有明显升高,但受限于这些治疗手段需要结合患者自身肿瘤大小、病理分型、淋巴结转移以及ER、PR、HER2的表达情况来决定这些手段是否对该患者有效 [3],这在一定程度上阻碍乳腺癌患者生存率的提高。

RNA结合蛋白(RNA-Binding Proteins, RBP)是细胞在RNA水平上调控基因的一种机制,在此过程中直接参与转录后调节,RBP的地位举足轻重,现已知人类基因组已有96,308个lncRNA被鉴别出来 [4],近年来专家特别关注这些lncRNA在疾病中的作用,并且已经发现在许多癌种生物过程中如癌细胞的凋亡、增殖、侵袭、转移等均发现与lncRNA表达失调有关 [5] [6] [7] [8] [9]。RNA结合蛋白则是通过RNA结合结构域(RNA-binding domain, RBD)与各种类型的RNA包括lncRNA结合,从而形成稳定的RNA二级和三级结构 [10]。所以,RBP在转录后在基因表达调控中发挥着十分重要的作用。一些RBPs基因表达的失调可能导致包括癌症在内的多种疾病的发展,如乳腺癌、甲状腺癌以及胃肠道肿瘤等 [10] [11]。乳腺癌是目前全球女性最常见恶性肿瘤之一,目前随着对乳腺癌发病机制的深入研究,发现乳腺癌中的一些RBPs功能失活或发生了表达改变,而表达异常的一些RBPs具有强大的研究潜力成为乳腺癌的一个早期诊断标志物或治疗靶点。在此综述中,将着重对乳腺癌中与之相关的RBPs进行探讨。

2. 与乳腺癌进展相关RNA结合蛋白

1) 富含丝氨酸/精氨酸的剪接因子(Serine/arginine-rich splicing factor, SRSF)属于富含丝氨酸精氨酸的蛋白家族,通常由12个成员(SRSF1-12)组成 [12]。研究发现它是通过调节剪接、RNA稳定性和核输出发挥致癌作用。首先SR (Serine/arginine-rich)识别前体RNA上的剪接元件,然后招募和组装剪接体以促进或抑制下一步转录过程。大多数SR仅位于细胞核中,但一些SR (如SRSF1、SRSF3和SRSF7)可以在细胞核和细胞质之间穿梭产生功能作用 [13]。由于SR在转录和翻译中起关键作用,SR的失调会极大地破坏DNA稳定性和正常的蛋白质表达,进而导致生物学功能异常。SRSF1的过表达则通过诱导抗凋亡剪接异构体BIM和BIN1的可变剪接以及缺乏BH3结构域的剪接变体的表达来抑制细胞凋亡并促进乳腺上皮细胞的转化 [14]。Zhou等 [15] 人通过RNA测序(RNA-seq)发现当敲低SRSF1时可导致mRNAs的表达差异 [15]。值得注意的是当敲低SRSF1时,NEAT1表达也会表达下调。NEAT1是一种确定的致癌性lncRNA,这更突出了SRSF1对NEAT1的促进作用 [15]。研究发现在乳腺癌中SR1的过表达可能对乳腺癌的恶化具有促进作用,但遗憾的是至今SRSF1与NEAT1之间的相互作用机制并不完全明确,这也可能成为一个潜在研究方向。

2) 人类抗原R (Hu-antigen R, HuR)是目前研究最多的RBP之一,是果蝇胚胎致死性视力异常(embryonic lethal, abnormal vision, ELAV)蛋白的哺乳动物同系物成员。尽管HuR主要位于细胞核内,但它能优先结合位于3’UTR、具有腺嘌呤和富含尿苷的元件(ARE)或富含尿苷的序列的mRNA [16] [17]。ARE则是可以靶向mRNA进行快速外泌体降解特异性顺式元件 [18]。Li等人通过生物信息学技术发现FOXO1的3’非翻译区(UTR)富含人类Hu蛋白(HuR)的结合基序,这种结果表明FOXO1可能是HuR的一个潜在靶标。并通过荧光素酶报告基因分析表明,HuR通过FOXO1 3’UTR内的富含AU的元素(ARE)特异性调节FOXO的表达。免疫沉淀研究证实,HuR与MDA-MB-231乳腺癌细胞中的FOXO1 mRNA相关,并且HuR通过增加mRNA稳定性上调FOXO1 mRNA水平。这证实了HuR通过调节FOXO1的转录过程抑制乳腺癌细胞凋亡 [19]。据报道,HuR还可能参与到细胞信号传导(ERBB2 [20] )、细胞凋亡(CASP2 [21]、BAX [21] )、以及粘附和血管生成(CD9 [22]、VEGF-A [23] )等过程,这可能对乳腺癌形成具有一定促进作用。基于HuR在癌细胞中的关键作用,目前已经针对抑制HuR开发了多种治疗方法,其中包括抑制HuR/mRNA之间作用(CMLD2、二氢丹参酮-I [24] [25] )、抑制HuR核/细胞质之间穿梭(MS-444 [26] )或者直接抑制HuR在细胞中的表达。上述结果证实,HuR作为一个乳腺癌治疗靶点具有很大的研究潜力。尽管如此,但具体药物临床效果如何、与不同乳腺癌亚型是否有不同疗效则需要今后做更多研究来证实。

3) SAM68也称为KHDRBS1,属于STAR家族的一种RBP。SAM68是一种具有hnRNP K同源结构域,且能连接调控细胞外信号转导和RNA加工的RBP,这种结构域则是能和RNA特异性结合的必备条件 [27] [28]。据报道,通过qPCR和免疫印迹检查发现在人乳腺癌细胞系MCF7、MDA-MB-231和BT-474中,当在高胰岛素刺激下Sam68蛋白数量和基因表达明显上升。此外,胰岛素和瘦素刺激都促进了Sam68酪氨酸磷酸化的增加,并负调控了其RNA结合能力 [29]。瘦素和胰岛素已被证明可激活癌症中的MAPK和PI3K信号通路,以促进增殖、细胞存活和细胞生长。因此,SAM68不仅介导由胰岛素和瘦素刺激的细胞代谢,而且还参与瘦素和胰岛素依赖性激活乳腺癌细胞中的MAPK和PI3K信号通路 [29] [30] [31]。Yang等人通过ICG-001/CWP破坏CBP-β-catenin相互作用可诱导CSC中形Sam68-CBP复合物,此复合物能减少CSC的自我更新并诱导分化 [32]。宋等 [33] 通过免疫组化分析证实,Sam68的表达和细胞质定位与患者的临床特征显着相关,包括临床分期、肿瘤大小、转移(TNM)分类、组织学分级和ER表达等 [33]。因此,SAM68被认为可能是乳腺癌治疗的一个有吸引力的靶点。尽管目前针对SAM68药物还并未出现,但这也是目前对于乳腺癌研究的热点方向。

4) RBM38 (RNA-binding motif protein 38, RBM38)也称RNPC1,是p53和E2F1的靶标 [34]。RBM38能够调节p21、p73、p63、Mdm2、HuR和GDF15的mRNA稳定性 [35] [36]。已知它存在于包括人体血液、大脑、骨髓等各种器官中。值得注意的是,薛 [37] 等人研究发现RBM38在乳腺癌细胞系中表达下调,在乳腺癌细胞系中表达沉默。RBM38通过诱导细胞周期阻滞抑制体内外乳腺肿瘤增殖,证实RBM38可能对乳腺癌发展具有抑制作用。李 [38] 等人使用RNA免疫沉淀结合双荧光素酶报告基因分析证实在乳腺癌中RBM38和c-Myc形成一种独特RBM38-c-Myc环,c-Myc则是一种已知致癌因子。因此在乳腺癌发展过程中RBM38可能发挥着重要作用。研究证实,高表达的RBM38能够诱导细胞周期停滞和抑制突变型p53诱导的上皮–间充质转化(Epithelial-mesenchymal-transition, EMT)来抑制乳腺癌细胞的迁移和侵袭 [39]。Zhu等人 [40] 使用161例乳腺癌组织,通过免疫组化等方式探究RBM38表达与乳腺癌之间的关联。结果证实RBM38高表达与乳腺癌患者低远处转移率和良好预后呈正相关。因此,RBM38的高表达是乳腺癌远处转移的独立保护因素。

5) LIN28是具有两个RNA结合基序且高度保守的RBP,包括LIN28A/B [41]。据报道,Lin28在体外选择性地结合let-7前体的末端环区,并且该环在体内介导miRNA加工抑制,进一步阻断胚胎细胞中let-7miRNA的加工。此外,相关研究确定了这种抑制所需的Lin28结构域。这些发现确立了前体末端环在miRNA成熟中的调节作用,并为Lin28调控let-7提供一种新的方向 [42]。let-7miRNA (miRNAs)家族是LIN28的关键抑制靶点,通过转录后抑制多种致癌信使RNA发挥有效的肿瘤抑制作用 [43]。研究表明,LIN28能够促进乳腺组织中的癌细胞增殖能力。包括LIN28通过抑制let-7来实现对let-7的直接或间接调控来发挥其促癌作用。LIN28介导的let-7的抑制let-7靶基因的正常表达,导致该通路异常,进一步促进肿瘤的发生 [44] [45]。基于LIN28-let-7轴相互作用具有开发新的抗癌疗法的巨大潜力。G等人 [46] 用含四氢喹啉的povarov支架作为抑制剂的小分子干扰LIN28-let-7的蛋白-RNA相互作用,通过改变2-苯甲酸取代基、3-和4-位的稠环以及四氢喹啉核的苯基部分的取代基,进一步可以用作抑制剂来破坏LIN28-let-7的蛋白-RNA相互作用来抑制乳腺癌细胞的增殖 [47]。徐等 [48] 收集了291名乳腺癌患者的数据,使用免疫组化染色检测LIN28的表达水平。静态评估Lin28表达与临床病理参数的相关性,并通过单变量和多变量分析评估LIN28的表达的预后意义。结果证实LIN28的阳性表达与淋巴结转移、HER-2、雌激素受体和孕激素受体有关,Kaplan-Meier分析表明,LIN28阳性患者的总生存率低于LIN28阴性患者。这些数据表明,LIN28的表达与乳腺癌患者晚期疾病的分期和亚型有关,LIN28表达可能是一个独立的预后因素。

3. 结论

大量研究表明,RBP几乎影响乳腺癌发展的每一步。RBPs调节基因表达以诱导或降低与乳腺癌相关的基因的表达水平。随着科学技术的进步,新的RBPs不断被报道,RBPs的功能将不断丰富。目前已报道了多种RBPs在乳腺癌中的差异表达,这意味着RBPs可能成为未来肿瘤诊断和预后的新标志物。同时,针对RBP与靶蛋白相互作用的抑制剂和化合物也在不断涌现,包括本文章提及的CMLD2、二氢丹参酮-I等各种药物。总之,这篇综述列出了几种RBP及其靶基因在乳腺癌细胞中增殖、凋亡、迁移和侵袭的作用,但关于RBP与乳腺癌耐药性研究较少。考虑到功能尚未完全了解的RBP的数量,目前关于乳腺癌相关RBP的知识还处于起步阶段。但随着单细胞分析、交联和免疫沉淀等研究技术的发展,相信未来会进行更多的研究以扩大对RBP相互作用网络的理解。当RBPs在乳腺癌中的作用有更全面的了解后,有望在不久的将来成为乳腺癌治疗的一个新靶点。

文章引用

余运霖,张先林. RNA结合蛋白在乳腺癌发病机制中作用的研究进展
Recent Advances in Understanding the Roles of RNA Binding Proteins in Breast Cancer Pathogenesis[J]. 临床医学进展, 2022, 12(12): 11780-11786. https://doi.org/10.12677/ACM.2022.12121696

参考文献

  1. 1. Patel, A.K. (2022) Introduction to Breast Screening and Diagnosis. Journal of the American College of Radiology, 19, 1079-1080.

  2. 2. Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  3. 3. Burstein, M.D., Tsimelzon, A., Poage, G.M., et al. (2015) Comprehensive Genomic Analysis Identifies Novel Subtypes and Targets of Triple-Negative Breast Cancer. Clinical Cancer Research, 21, 1688-1698. https://doi.org/10.1158/1078-0432.CCR-14-0432

  4. 4. Fang, S., Zhang, L., Guo, J., et al. (2018) NONCODEV5: A Comprehensive Annotation Database for Long Non-Coding RNAs. Nucleic Acids Research, 46, D308-D314. https://doi.org/10.1093/nar/gkx1107

  5. 5. Liang, W.Q., Zeng, D., Chen, C.F., et al. (2019) Long Noncoding RNA H19 Is a Critical Oncogenic Driver and Contributes to Epithelial-Mesenchymal Transition in Papillary Thyroid Carci-noma. Cancer Management and Research, 11, 2059-2072. https://doi.org/10.2147/CMAR.S195906

  6. 6. Cao, Y., Chai, W., Wang, Y., et al. (2021) lncRNA TUG1 Inhibits the Cancer Stem Cell-Like Properties of Temozolomide-Resistant Glioma Cells by Interacting with EZH2. Molecular Medicine Reports, 24, Article No. 533. https://doi.org/10.3892/mmr.2021.12172

  7. 7. Pandey, M., Mukhopadhyay, A., Sharawat, S.K. and Kumar, S. (2021) Role of microRNAs in Regulating Cell Proliferation, Metastasis and Chemoresistance and Their Applications as Cancer Biomarkers in Small Cell Lung Cancer. Biochimica et Biophysica Acta—Reviews on Cancer, 1876, Article ID: 188552. https://doi.org/10.1016/j.bbcan.2021.188552

  8. 8. Yin, X., Liao, Y., Xiong, W., Zhang, Y., Zhou, Y. and Yang, Y. (2020) Hypoxia-Induced lncRNA ANRIL Promotes Cisplatin Resistance in Retinoblastoma Cells through Regulating ABCG2 Expression. Clinical and Experimental Pharmacology and Physiology, 47, 1049-1057. https://doi.org/10.1111/1440-1681.13279

  9. 9. Chen, S., Zhang, J.Q., Chen, J.Z., et al. (2017) The Over Expres-sion of Long Non-Coding RNA ANRIL Promotes Epithelial-Mesenchymal Transition by Activating the ATM-E2F1 Signaling Pathway in Pancreatic Cancer: An in Vivo and in Vitro Study. International Journal of Biological Macro-molecules, 102, 718-728. https://doi.org/10.1016/j.ijbiomac.2017.03.123

  10. 10. Chen, Y., Qin, H. and Zheng, L. (2022) Research Progress on RNA-Binding Proteins in Breast Cancer. Frontiers in Oncology, 12, Article ID: 974523. https://doi.org/10.3389/fonc.2022.974523

  11. 11. Porto, F.W., Daulatabad, S.V. and Janga, S.C. (2019) Long Non-Coding RNA Expression Levels Modulate Cell-Type-Specific Splicing Patterns by Altering Their Interaction Landscape with RNA-Binding Proteins. Genes (Basel), 10, Article No. 593. https://doi.org/10.3390/genes10080593

  12. 12. Lu, X., Zhong, J., Liu, L., et al. (2022) The Function and Regulatory Mechanism of RNA-Binding Proteins in Breast Cancer and Their Future Clinical Treatment Prospects. Frontiers in Oncology, 12, Article ID: 929037. https://doi.org/10.3389/fonc.2022.929037

  13. 13. Zahler, A.M., Neugebauer, K.M., Stolk, J.A. and Roth, M.B. (1993) Human SR Proteins and Isolation of a cDNA Encoding SRp75. Molecular and Cellular Biology, 13, 4023-4028. https://doi.org/10.1128/MCB.13.7.4023

  14. 14. Anczuków, O., Rosenberg, A.Z., Akerman, M., et al. (2012) The Splicing Factor SRSF1 Regulates Apoptosis and Proliferation to Promote Mammary Epithelial Cell Transformation. Nature Structural & Molecular Biology, 19, 220-228. https://doi.org/10.1038/nsmb.2207

  15. 15. Zhou, X., Li, X., Yu, L., et al. (2019) The RNA-Binding Protein SRSF1 Is a Key Cell Cycle Regulator via Stabilizing NEAT1 in Glioma. The International Journal of Biochemistry & Cell Biology, 113, 75-86. https://doi.org/10.1016/j.biocel.2019.06.003

  16. 16. Brennan, C.M. and Steitz, J.A. (2001) HuR and mRNA Stability. Cellular and Molecular Life Sciences, 58, 266-277. https://doi.org/10.1007/PL00000854

  17. 17. López de Silanes, I., Zhan, M., Lal, A., Yang, X. and Gorospe, M. (2004) Identification of a Target RNA Motif for RNA-Binding Protein HuR. Proceedings of the National Academy of Sciences of the United States of America, 101, 2987-2992. https://doi.org/10.1073/pnas.0306453101

  18. 18. Doller, A., Pfeilschifter, J. and Eberhardt, W. (2008) Signalling Pathways Regulating Nucleo-Cytoplasmic Shuttling of the mRNA-Binding Protein HuR. Cellular Signalling, 20, 2165-2173. https://doi.org/10.1016/j.cellsig.2008.05.007

  19. 19. Li, Y., Yu, J., Du, D., et al. (2013) Involvement of Post-Transcriptional Regulation of FOXO1 by HuR in 5-FU-Induced Apoptosis in Breast Cancer Cells. Oncology Letters, 6, 156-160. https://doi.org/10.3892/ol.2013.1352

  20. 20. Scott, G.K., Marx, C., Berger, C.E., et al. (2008) Destabilization of ERBB2 Transcripts by Targeting 3' Untranslated Region Messenger RNA Associated HuR and Histone Deacetylase-6. Molecular Cancer Research, 6, 1250-1258. https://doi.org/10.1158/1541-7786.MCR-07-2110

  21. 21. Mazan-Mamczarz, K., Hagner, P.R., Dai, B., et al. (2008) Identification of Transformation-Related Pathways in a Breast Epithelial Cell Model Using a Ribonomics Approach. Cancer Research, 68, 7730-7735. https://doi.org/10.1158/0008-5472.CAN-08-2393

  22. 22. Calaluce, R., Gubin, M.M., Davis, J.W., et al. (2010) The RNA Binding Protein HuR Differentially Regulates Unique Subsets of mRNAs in Estrogen Receptor Negative and Es-trogen Receptor Positive Breast Cancer. BMC Cancer, 10, Article No. 126. https://doi.org/10.1186/1471-2407-10-126

  23. 23. Gubin, M.M., Calaluce, R., Davis, J.W., et al. (2010) Overex-pression of the RNA Binding Protein HuR Impairs Tumor Growth in Triple Negative Breast Cancer Associated with Deficient Angiogenesis. Cell Cycle, 9, 3337-3346. https://doi.org/10.4161/cc.9.16.12711

  24. 24. Muralidharan, R., Mehta, M., Ahmed, R., et al. (2017) HuR-Targeted Small Molecule Inhibitor Exhibits Cytotoxicity towards Human Lung Cancer Cells. Scientific Reports, 7, Article No. 9694. https://doi.org/10.1038/s41598-017-07787-4

  25. 25. Kakuguchi, W., Nomura, T., Kitamura, T., et al. (2018) Suramin, Screened from an Approved Drug Library, Inhibits HuR Functions and Attenuates Malignant Phenotype of Oral Cancer Cells. Cancer Medicine, 7, 6269-6280. https://doi.org/10.1002/cam4.1877

  26. 26. Meisner, N.C., Hintersteiner, M., Mueller, K., et al. (2007) Identification and Mechanistic Characterization of Low-Molecular-Weight Inhibitors for HuR. Nature Chemical Biology, 3, 508-515. https://doi.org/10.1038/nchembio.2007.14

  27. 27. Paronetto, M.P., Cappellari, M., Busà, R., et al. (2010) Alternative Splicing of the Cyclin D1 Proto-Oncogene Is Regulated by the RNA-Binding Protein Sam68. Cancer Research, 70, 229-239. https://doi.org/10.1158/0008-5472.CAN-09-2788

  28. 28. Chawla, G., Lin, C.H., Han, A., Shiue, L., Ares, M. and Black, D.L. (2009) Sam68 Regulates a Set of Alternatively Spliced Exons during Neurogenesis. Molecular and Cellular Biology, 29, 201-213. https://doi.org/10.1128/MCB.01349-08

  29. 29. Pérez-Pérez, A., Sánchez-Jiménez, F., Vilariño-García, T., de la Cruz, L., Virizuela, J.A. and Sánchez-Margalet, V. (2016) Sam68 Mediates the Activation of Insulin and Leptin Signalling in Breast Cancer Cells. PLOS ONE, 11, e0158218. https://doi.org/10.1371/journal.pone.0158218

  30. 30. Coolican, S.A., Samuel, D.S., Ewton, D.Z., McWade, F.J. and Florini, J.R. (1997) The Mitogenic and Myogenic Actions of Insulin-Like Growth Factors Utilize Distinct Signaling Pathways. Journal of Biological Chemistry, 272, 6653-6662. https://doi.org/10.1074/jbc.272.10.6653

  31. 31. Vivanco, I. and Sawyers, C.L. (2002) The Phosphatidylinositol 3-Kinase AKT Pathway in Human Cancer. Nature Reviews Cancer, 2, 489-501. https://doi.org/10.1038/nrc839

  32. 32. Benoit, Y.D., Mitchell, R.R., Risueño, R.M., et al. (2017) Sam68 Allows Se-lective Targeting of Human Cancer Stem Cells. Cell Chemical Biology, 24, 833-844.e9. https://doi.org/10.1016/j.chembiol.2017.05.026

  33. 33. Song, L., Wang, L., Li, Y., et al. (2010) Sam68 Up-Regulation Correlates with, and Its Down-Regulation Inhibits, Proliferation and Tumourigenicity of Breast Cancer Cells. The Journal of Pathology, 222, 227-237. https://doi.org/10.1002/path.2751

  34. 34. Shu, L., Yan, W. and Chen, X. (2006) RNPC1, an RNA-Binding Protein and a Target of the p53 Family, Is Required for Maintaining the Stability of the Basal and Stress-Induced p21 Transcript. Genes and Development, 20, 2961-2972. https://doi.org/10.1101/gad.1463306

  35. 35. Yin, T., Cho, S.J. and Chen, X. (2013) RNPC1, an RNA-Binding Pro-tein and a p53 Target, Regulates Macrophage Inhibitory Cytokine-1 (MIC-1) Expression through mRNA Stability. Journal of Biological Chemistry, 288, 23680-23686. https://doi.org/10.1074/jbc.M113.480186

  36. 36. Cho, S.J., Jung, Y.S., Zhang, J., et al. (2012) The RNA-Binding Protein RNPC1 Stabilizes the mRNA Encoding the RNA-Binding Protein HuR and Cooperates with HuR to Suppress Cell Proliferation. Journal of Biological Chemistry, 287, 14535-14544. https://doi.org/10.1074/jbc.M111.326827

  37. 37. Xue, J.Q., Xia, T.S., Liang, X.Q., et al. (2014) RNA-Binding Pro-tein RNPC1: Acting as a Tumor Suppressor in Breast Cancer. BMC Cancer, 14, Article No. 322. https://doi.org/10.1186/1471-2407-14-322

  38. 38. Li, X.X., Shi, L., Zhou, X.J., et al. (2017) The Role of c-Myc-RBM38 Loop in the Growth Suppression in Breast Cancer. Journal of Experimental & Clinical Cancer Research, 36, 49. https://doi.org/10.1186/s13046-017-0521-5

  39. 39. She, X., Lin, Y., Liang, R., et al. (2020) RNA-Binding Motif Protein 38 as a Potential Biomarker and Therapeutic Target in Cancer. OncoTargets and Therapy, 13, 13225-13236. https://doi.org/10.2147/OTT.S278755

  40. 40. Zhu, L., Sun, X., Xi, P.W., et al. (2018) Relationship between Expression of RBM38 and Distant Metastasis and Prognosis of Breast Cancer. Chinese Journal of Oncology, 40, 600-603.

  41. 41. Moss, E.G. and Tang, L. (2003) Conservation of the Heterochronic Regulator Lin-28, Its Developmental Expression and microRNA Complementary Sites. Developmental Biology, 258, 432-442. https://doi.org/10.1016/S0012-1606(03)00126-X

  42. 42. Piskounova, E., Viswanathan, S.R., Janas, M., et al. (2008) Determinants of microRNA Processing Inhibition by the Developmentally Regulated RNA-Binding Protein Lin28. Journal of Biological Chemistry, 283, 21310-21314. https://doi.org/10.1074/jbc.C800108200

  43. 43. Xiong, H., Zhao, W., Wang, J., et al. (2017) Oncogenic Mechanisms of Lin28 in Breast Cancer: New Functions and Therapeutic Opportunities. Oncotarget, 8, 25721-25735. https://doi.org/10.18632/oncotarget.14891

  44. 44. Farzaneh, M., Attari, F. and Khoshnam, S.E. (2017) Concise Re-view: LIN28/let-7 Signaling, a Critical Double-Negative Feedback Loop during Pluripotency, Reprogramming, and Tumorigenicity. Cellular Reprogramming, 19, 289-293. https://doi.org/10.1089/cell.2017.0015

  45. 45. Heo, I., Joo, C., Cho, J., et al. (2008) Lin28 Mediates the Terminal Uridylation of Let-7 Precursor MicroRNA. Molecular Cell, 32, 276-284. https://doi.org/10.1016/j.molcel.2008.09.014

  46. 46. Goebel, G.L., Hohnen, L., Borgelt, L., et al. (2022) Small Molecules with Tetrahydroquinoline-Containing Povarov Scaffolds as Inhibitors Disrupting the Protein-RNA Interaction of LIN28-let-7. European Journal of Medicinal Chemistry, 228, Article ID: 114014. https://doi.org/10.1016/j.ejmech.2021.114014

  47. 47. Borgelt, L., Li, F., Hommen, P., et al. (2021) Trisubstituted Pyrrolinones as Small-Molecule Inhibitors Disrupting the Protein-RNA Interaction of LIN28 and Let-7. ACS Medicinal Chemistry Letters, 12, 893-898. https://doi.org/10.1021/acsmedchemlett.0c00546

  48. 48. Xu, C., Jin, S. and Huang, L. (2019) Expression of Lin28 Is Correlated with Prognosis and Expression of HER-2 and Steroid Receptors in Breast Cancer. OncoTargets and Therapy, 12, 1105-1110. https://doi.org/10.2147/OTT.S190328

  49. NOTES

    *通讯作者。

期刊菜单