Advances in Clinical Medicine
Vol. 13  No. 10 ( 2023 ), Article ID: 73726 , 6 pages
10.12677/ACM.2023.13102250

新生儿急性呼吸窘迫综合征研究进展

高韩红,姜泓*

延安大学附属医院新生儿科,陕西 延安

收稿日期:2023年9月13日;录用日期:2023年10月8日;发布日期:2023年10月16日

摘要

新生儿急性呼吸窘迫综合征(ARDS)是一种快速的进行性呼吸困难,顽固性低氧性为特点的呼吸功能障碍,主要是直接或间接肺损伤后肺泡毛细血管壁破坏,肺顺应性下降所致,是一种病因和发病机制较复杂的临床综合征,是造成新生儿死亡和致残的主要原因之一。目前针对新生儿ARDS的治疗已取得重大进展,包括产前使用糖皮质激素预防、PS替代、呼吸支持、液体管理和营养支持等,尚无针对新生儿ARDS高效的、安全的临床治疗方案。现就新生儿ARDS诊断标准的演变、发病机制和病因、临床特点、目前治疗策略等方面的研究进展予以综述。

关键词

新生儿,急性呼吸窘迫综合征,诊疗进展

Research Progress of Neonatal Acute Respiratory Distress Syndrome

Hanhong Gao, Hong Jiang*

Department of Neonatology, Yan’an University Affiliated Hospital, Yan’an Shaanxi

Received: Sep. 13th, 2023; accepted: Oct. 8th, 2023; published: Oct. 16th, 2023

ABSTRACT

Neonatal acute respiratory distress syndrome (ARDS) is a respiratory dysfunction characterized by rapidly progressive dyspnea and refractory hypoxia. It is mainly caused by the destruction of alveolar capillary walls and decreased lung compliance after direct or indirect lung injury. It is a clinical syndrome with complex etiology and pathogenesis, and is one of the main causes of neonatal death and disability. Currently, significant progress has been made in the treatment of neonatal ARDS, including the use of prenatal glucocorticoids for prevention. There is no efficient and safe clinical treatment plan for neonatal ARDS such as PS replacement, respiratory support, fluid management and nutritional support. This article reviews the research progress in the evolution of diagnostic criteria, pathogenesis, etiology, clinical characteristics and current treatment strategies of neonatal ARDS.

Keywords:Neonate, Acute Respiratory Distress Syndrome, Diagnosis and Treatment Progress

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)是一种快速进行性低氧性呼吸功能不全,主要由直接或间接肺损伤后肺泡毛细血管壁破坏引起的肺泡充盈引起。

Ashbaugh等 [1] 在1967年首次对呼吸窘迫综合征提出描述,报道了12例表现为急性发作的呼吸急促、顽固性低氧血症、肺顺应性及功能残气量降低的患者,这些患者对通常的呼吸治疗措施没有反应,其临床和病理特征与呼吸窘迫婴儿以及充血性肺不张和肺灌注后的情况非常相似,由此推测该综合征与肺泡表面活性剂有某种关系,此疾病一直威胁着人类的生命健康。此后,在1994年,美国欧洲共识会议(American European Consensus Conference, AECC)研究 [2] 发现,ARDS可以发生在任何年龄阶段,包括成人和儿童,并首次制定了ARDS的诊断标准,此定义已被广泛应用于科研和临床。但是,此项共识会议没有明确的定义急性呼吸窘迫征发作的时间范围,也无法精确评估氧合指标,未提及ARDS的危险因素,以及需要进行浸润性肺毛细血管压力测量等。为了更加明确这一定义的可靠性和有效性,直到2012年,欧洲重症监护医学会制定了柏林定义 [3] ,重点关注可行性、可靠性、有效性、并客观评价ARDS。柏林定义解决了AECC定义的许多局限性,比美国–欧洲共识会议中的ARDS定义更准确,并且明确了ARDS的严重程度及分级,在大量参加ARDS试验和医院数据库的患者中得到了验证。但是儿童的ARDS与成人的ARDS不同,AECC和柏林定义都集中在成人肺损伤上,适用于儿童时会有一定的局限性。2015年小儿急性肺损伤共识会议(the Paediatric Acute Lung Injury Consensus Conference, PALICC) [4] 首次提出小儿急性呼吸窘综合征(pediatric acute respiratory distress syndrome, PARDS)的定义,并制定了儿童ARDS诊断标准——PALICC标准 [5] ,分别从儿童ARDS的定义,患病率、流行病学、病理生理学,合并症和严重程度分级、疾病治疗等进行了全面的阐述。儿童ARDS使用PALICC标准明显降低了疾病死亡率。随着2015年以来积累的大量数据,2023年召开的第二届小儿ALI的共识会议更新了儿童ARDS的标准——PALICC-2标准 [6] ,并指出:1) 应在诊断至少4 h后对儿童ARDS进行严重程度分级,以改善严重程度分级标准;2) 可对无创机械通气患儿进行严重程度分级;3) PALICC-2标划分了“疑似ARDS患儿”组,以防遗漏ARDS患儿 [7] 。由于新生儿独特的解剖生理结构,如肺泡数量和气道数量约为成人肺的10%左右,肺泡表面积也较成人更小,新生儿的肺部可能会出现发育停滞,包括支气管肺发育不良的特征,而且新生儿膈肌结构与成人不同,具有更小的潮气量和更高的频率的特点。柏林定义及PALICC标准并不完全适用于新生儿ARDS的诊断。因此,2017年首次发布了新生儿ARDS诊断标准(蒙特勒标准) [8] ,提供了新生儿ARDS的第一个共识定义,蒙特勒标准强调了新生儿ARDS的适用年龄,包含了围产期内的新生儿,并使用氧指数(oxygenation index, OI)作为诊断和严重程度分级标准。

2. 发病机制和病因

肺部急性损伤包括肺泡毛细血管膜、肺内皮细胞和上皮细胞的损伤 [8] 。一般来说,其发病机制有两种因素 [9] [10] ,一是肺上皮损伤造成的直接影响,二是急性全身炎症反应所造成的间接影响。炎症反应有细胞因子和体液因子,细胞因子包括中性粒细胞、巨噬细胞/单核细胞、血小板和淋巴细胞,其作用是粘附、趋化和活化。体液因子包括补体系统的激活、凝血、纤维蛋白溶解、激肽系统和细胞因子(主要是白细胞介素-1和肿瘤坏死因子)、花生四烯酸代谢物、氧自由基和蛋白酶等细胞产生的介质 [11] 。急性肺损伤的主要原因分为直接原因和间接原因 [12] ,直接因素如弥漫性肺部感染(细菌、病毒等)、肺出血,胎粪、肺挫伤等。间接因素如脓毒血症、严重休克状态、胰腺炎、绒毛膜羊膜炎、坏死性小肠结肠炎或围生期窒息等。肺表面活性物质(Pulmonary surfactant, PS)是脂质和蛋白质的复杂混合物,对于维持正常的肺功能至关重要。它可以降低肺泡的表面张力,防止呼气时肺泡塌陷,并促进吸气时肺泡重新扩张。此外,PS在呼吸系统的先天防御和免疫调节中发挥着至关重要的作用。PS功能障碍会导致各种呼吸系统疾病,包括新生儿呼吸窘迫综合征(NRDS)、成人呼吸窘迫综合征(ARDS)、COVID-19相关ARDS和呼吸机引起的肺损伤(VILI)等 [12] 。表面活性物质的缺乏是新生儿ARDS发生的根本原因,肺的结构/功能发育不完整和胸壁顺应性高,动脉导管未闭导致的肺水肿和过度灌注可能进一步加重呼吸衰竭,并加剧表面活性物质缺乏 [13] ,这些因素都会导致肺泡萎陷进行性加重,因而无法形成有效的功能残气量。

在ARDS的急性期死亡的患者的肺部通常显示透明膜形成(外渗的血浆蛋白)和炎症迹象 [14] 。如果ARDS的病因不能迅速消除,导致呼吸支持水平降低到无法挽救的水平,该综合征可能在3~10天后发展为亚急性期至慢性期 [15] 。其特征在于反复发作的通透性肺水肿、II型肺细胞增生、肺毛细血管丧失和纤维化 [14] 。在临床上,ARDS的这一阶段经常并发肺泡外气体相关疾病(肺间质气肿、气胸等)和医院感染性肺炎或脓毒血症,其生理上表现为持续通气/灌注(V/Q)失衡由此产生的顽固性低氧血症。

3. 疾病管理

3.1. 预防

产前类固醇通常用于刺激胎儿肺成熟,特别是在有早期早产风险的妊娠中,产前使用糖皮质激素可以有效降低新生儿ARDS,建议在预期早产前7天内 [6] [16] 。早产婴儿在出生后的最初几分钟内就会出现呼吸困难。如果不立即采取适当的呼吸和一般支持治疗,这很快就会危及生命,并可能导致严重呼吸衰竭死亡 [13] 。对有早产风险的妊娠24~34周的孕妇使用单疗程的糖皮质激素。对于妊娠32周之前发生胎膜早破的孕妇,也推荐使用单疗程糖皮质激素以降低新生儿呼吸窘迫综合征、围生期死亡率和其他疾病风险 [17] 。根据目前的证据 [18] ,在妊娠32~33周发生胎膜早破的孕妇,使用糖皮质激素的效果尚不明确,但治疗可能使患儿收益,尤其是明确具有肺发育不成熟的婴儿。孕龄在24+0至33+6周之间的妊娠女性,若预计在接下来的7天内会出现早产,应使用皮质类固醇,因为这些药物已被普遍证明可以降低新生儿死亡率和发病率 [19] 。G. Umberto Meduri等 [20] 在24例ARDS患者的试验中发现,早期使用皮质类固醇治疗可以显著降低肺损伤评分;同样的,Villar等 [21] 发现,在ARDS中,地塞米松增加了无呼吸机天数,且在第60天的死亡率也明显降低。

3.2. 肺泡表面活性剂替代治疗

肺表面活性物质(PS)是脂质和蛋白质的复杂混合物,对于维持正常的肺功能至关重要 [22] 。可用于肺表面活性物质生成不足或失活的新生儿的替代治疗,它可以降低肺泡的表面张力,防止呼气时肺泡塌陷,并促进吸气时肺泡重新扩张。此外,PS在呼吸系统的先天防御和免疫调节中也发挥着至关重要的作用 [12] [23] 。及时应用表面活性剂替代治疗对于呼吸窘迫综合征(RDS)新生儿至关重要,极大的改善了新生儿ARDS的预后,防止因PS缺乏需要依赖呼吸机而导致的肺组织损伤。呼吸窘迫综合征的患者中使用表面活性剂可以显著改善呼吸参数,但不能改善死亡率,这需要进一步的临床试验来比较表面活性剂配方和给药方式以降低死亡率 [24] 。使用PS越早,效果越显著 [25] 。如果呼吸窘迫仍未缓解可以使用第二剂,少数情况下使用第三剂。比较牛和猪肺表面活性物质的实验结果显示 [26] :猪肺表面活性物质能够更快地改善氧合。一项荟萃分析结果显示 [27] :用于中度至中度呼吸窘迫综合征的治疗,200 mg/Kg剂量的猪肺表面活性物质与100 mg/Kg剂量的牛或猪肺表面活性物质相比较,具有更好的生存率。另外一项回顾性研究也显示 [28] ,猪肺表面活性物质与其他牛肺表面活性物质相比,治疗新生儿ARDS有降低的死亡率。

3.3. 呼吸支持

3.3.1. 气管插管和机械通气

急性呼吸窘迫综合征(ARDS)是导致幼儿住院和死亡的一个重要原因。为减轻住院病人的呼吸窘迫和改善氧合状况,人们经常采用体位和机械通气 [29] 。由于俯卧位(腹部平躺)与头六个月内的婴儿猝死综合症(SIDS)有关,因此建议将幼儿仰卧(仰卧)。不过,俯卧位可能是增加急性呼吸窘迫患者氧合的一种非侵入性方法,并能为接受机械通气的患者提供更显著的生存优势 [30] 。机械通气为急性低氧性呼吸衰竭患者提供基本的生命支持,其中急性呼吸窘迫综合征是最严重的形式,过度通气会加剧肺部状况并导致呼吸机相关性肺损伤 [29] [31] [32] 。

3.3.2. 持续正压通气(CPAP)

早期经鼻CPAP或经鼻咽CPAP可延迟或预防气管内插管和机械通气 [33] 。<30周的早产儿ARDS,从出生即开始CPAP治疗。通过这种方式,部分新生儿ARDS可以不需要肺表面活性物质治疗,从而避免了PS导致的气胸风险 [34] 。对于接受静脉–静脉体外膜肺氧合(VV ECMO)治疗的ARDS患者 [35] ,经验性实施PEEP 10 cmH2O可最大程度地减少肺部机械做功,提供良好的血流动力学并增加氧气运输。

3.4. 液体管理和营养支持

病情严重的新生儿可以延长肠外营养时间,改善营养支持 [36] 。可以在出生后第一天,开始全肠外营养和微量肠内营养,尽力维持液体平衡 [37] 。有证据表明 [38] ,使用肠内营养与减少胃肠道感染和并发症以及提高开始喂养的及时性有关。目前没有大量科研数据可以证明关于肠内营养对危重儿童的影响,未来的临床试验应考虑使用标准化干预措施和结果来加强现有的证据。

4. 展望

新生儿ARDS的病理生理和临床治疗与儿童和成人不一致,虽然目前针对新生儿ARDS的治疗已取得重大进展,但目前尚无明确新生儿ARDS高效的临床治疗方案,因此目前亟需探索一套完善的、安全的治疗策略。

文章引用

高韩红,姜 泓. 新生儿急性呼吸窘迫综合征研究进展
Research Progress of Neonatal Acute Respiratory Distress Syndrome[J]. 临床医学进展, 2023, 13(10): 16107-16112. https://doi.org/10.12677/ACM.2023.13102250

参考文献

  1. 1. Ashbaugh, D.G., Boyd, B.D., Petty, T.L., et al. (1967) Acute Respiratory Distress in Adults. The Lancet, 290, 319-323. https://doi.org/10.1016/S0140-6736(67)90168-7

  2. 2. Bernard, G.R., Artigas, A., Brigham, K.L., et al. (1994) The American-European Consensus Conference on ARDS. Definitions, Mechanisms, Relevant Outcomes, and Clinical Trial Coordination. American Journal of Respiratory and Critical Care Medicine, 149, 818-824. https://doi.org/10.1164/ajrccm.149.3.7509706

  3. 3. ARDS Definition Task Force, Ranieri, V.M., Rubenfeld, G.D., et al. (2012) Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA, 307, 2526-2533. https://doi.org/10.1001/jama.2012.5669

  4. 4. Pediatric Acute Lung Injury Consensus Conference Group (2015) Pe-diatric Acute Respiratory Distress Syndrome: Consensus Recommendations from the Pediatric Acute Lung Injury Con-sensus Conference. Pediatric Critical Care Medicine: A Journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies, 16, 428-439. https://doi.org/10.1097/PCC.0000000000000350

  5. 5. Khemani, R.G., Smith, L.S., Zimmerman, J.J., et al. (2015) Pediatric Acute Respiratory Distress Syndrome: Definition, Incidence, and Epidemiology: Proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatric Critical Care Medicine: A Journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies, 16, S23-S40. https://doi.org/10.1097/PCC.0000000000000432

  6. 6. Emeriaud, G., López-Fernández, Y.M., Iyer, N.P., et al. (2023) Executive Summary of the Second International Guidelines for the Diagnosis and Management of Pediatric Acute Respiratory Distress Syndrome (PALICC-2). Pediatric Critical Care Medicine, 24, 143-168. https://doi.org/10.1097/PCC.0000000000003147

  7. 7. Yehya, N., Smith, L., Thomas, N.J., et al. (2023) Definition, Incidence, and Epidemiology of Pediatric Acute Respiratory Distress Syndrome: From the Second Pediatric Acute Lung Injury Consensus Conference. Pediatric Critical Care Medicine: A Journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies, 24, S87-S98. https://doi.org/10.1097/PCC.0000000000003161

  8. 8. Luca, D.D., Kaam, A.H.V., Tingay, D.G., et al. (2017) The Montreux Definition of Neonatal ARDS: Biological and Clinical Background behind the Description of a New Entity. The Lancet Respiratory Medicine, 5, 871-883. https://doi.org/10.1016/S2213-2600(17)30214-X

  9. 9. Widowati, W., Wargasetia, T.L., Rahardja, F., et al. (2023) hWJMSCs Inhibit Inflammation and Apoptosis in an ARDS Cell Model. Journal of Taibah University Medical Sciences, 18, 1519-1526. https://pubmed.ncbi.nlm.nih.gov/37693823/

  10. 10. 迟明, 梅亚波, 封志纯. 新生儿急性呼吸窘迫综合征研究进展[J]. 中国当代儿科杂志, 2018, 20(9): 724-728.

  11. 11. Carlton, E.F. and Yehya, N. (2023) The Future of Paediatric Acute Respiratory Distress Syndrome. The Lancet Respiratory Medicine, 11, 121-123. https://doi.org/10.1016/S2213-2600(22)00358-7

  12. 12. Garcia, M.J., Amarelle, L., Malacrida, L., et al. (2023) Novel Opportunities from Bioimaging to Understand the Trafficking and Maturation of Intracellular Pulmonary Surfactant and Its Role in Lung Diseases. Frontiers in Immunology, 14, Article ID: 1250350. https://doi.org/10.3389/fimmu.2023.1250350

  13. 13. Verma, R.P. (1995) Respiratory Distress Syndrome of the Newborn Infant. Obstetrical & Gynecological Survey, 50, 542-555. https://doi.org/10.1097/00006254-199507000-00021

  14. 14. Pan, C., Liu, L., Xie, J.-F., et al. (2018) Acute Respira-tory Distress Syndrome: Challenge for Diagnosis and Therapy. Chinese Medical Journal, 131, 1113-1121. https://doi.org/10.4103/0366-6999.228765

  15. 15. Angus, D.C., Seymour, C.W. and Bibbins-Domingo, K. (2023) Caring for Patients with Acute Respiratory Distress Syndrome: Summary of the 2023 ESICM Practice Guidelines. JAMA, 330, 43-48. https://doi.org/10.1001/jama.2023.6812

  16. 16. Marts, L.T. and Kang, M. (2023) Use of Additional Corticosteroids in Nonresolving COVID-19-Associated Acute Respiratory Distress Syndrome: A Resolved Issue? Critical Care Medicine, 51, 1434-1436. https://doi.org/10.1097/CCM.0000000000005959

  17. 17. Oh, D.K. (2021) Corticosteroids in Acute Respiratory Dis-tress Syndrome: Outcomes Obscured by Mortality. The Korean Journal of Internal Medicine, 36, 478-482. https://doi.org/10.3904/kjim.2020.619

  18. 18. Przybysz, T.M. and Heffner, A.C. (2016) Early Treatment of Severe Acute Respiratory Distress Syndrome. Emergency Medicine Clinics of North America, 34, 215-220. https://doi.org/10.1016/j.emc.2015.08.001

  19. 19. Daskalakis, G., Pergialiotis, V., Domellöf, M., et al. (2023) Euro-pean Guidelines on Perinatal Care: Corticosteroids for Women at Risk of Preterm Birth. The Journal of Maternal-Fetal & Neonatal Medicine: The Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 36, Article ID: 2160628. https://doi.org/10.1080/14767058.2022.2160628

  20. 20. Meduri, G.U., Headley, A.S., Golden, E., et al. (1998) Effect of Prolonged Methylprednisolone Therapy in Unresolving Acute Respiratory Distress Syndrome: A Randomized Con-trolled Trial. JAMA, 280, 159-165. https://doi.org/10.1001/jama.280.2.159

  21. 21. Villar, J., Ferrando, C., Martínez, D., et al. (2020) Dexamethasone Treatment for the Acute Respiratory Distress Syndrome: A Multicentre, Randomised Controlled Trial. The Lancet Res-piratory Medicine, 8, 267-276. https://doi.org/10.1016/S2213-2600(19)30417-5

  22. 22. Lin, M., Zhang, X., Wang, Y.-Y., et al. (2023) Interpretation of the Key Updates in the 2022 European Guideline on the Management of Neonatal Respiratory Distress Syndrome. Chinese Journal of Contemporary Pediatrics, 25, 345-352.

  23. 23. Milad, N. and Morissette, M.C. (2021) Revisiting the Role of Pulmonary Surfactant in Chronic Inflammatory Lung Diseases and Environmental Exposure. European Respira-tory Review: An Official Journal of the European Respiratory Society, 30, Article ID: 210077. https://doi.org/10.1183/16000617.0077-2021

  24. 24. Khudadah, K., Ramadan, A., Othman, A., et al. (2023) Surfac-tant Replacement Therapy as Promising Treatment for COVID-19: An Updated Narrative Review. Bioscience Reports, 43, BSR20230504. https://doi.org/10.1042/BSR20230504

  25. 25. Sweet, D.G. (2023) When to Treat with Surfactant? Archives of Dis-ease in Childhood. Fetal and Neonatal Edition, 108, 324-325. https://doi.org/10.1136/archdischild-2022-325061

  26. 26. Izadi, R., Shojaei, P., Haqbin, A., et al. (2023) Comparing the Clinical and Economic Efficiency of Four Natural Surfactants in Treating Infants with Respiratory Distress Syn-drome. PLOS ONE, 18, e0286997. https://doi.org/10.1371/journal.pone.0286997

  27. 27. Branagan, A., Yu, I., Gurusamy, K., et al. (2023) Thresholds for Surfactant Use in Preterm Neonates: A Network Meta-Analysis. Archives of Disease in Childhood. Fetal and Neo-natal Edition, 108, 333-341. https://doi.org/10.1136/archdischild-2022-324184

  28. 28. Özdemir, S.A., Yılman, Ö., Çalkavur, Ş., et al. (2022) Can Surfactants Affect Mortality and Morbidity in Term Infants with Respiratory Failure? Turkish Journal of Medical Sci-ences, 52, 1779-1784. https://doi.org/10.55730/1300-0144.5523

  29. 29. Burša, F., Oczka, D., Jor, O., et al. (2023) The Impact of Mechani-cal Energy Assessment on Mechanical Ventilation: A Comprehensive Review and Practical Application. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 12, 126-129. https://doi.org/10.12659/MSM.941287

  30. 30. 梁欢, 王伏东, 蒋丽军, 等. 俯卧位通气在新生儿急性呼吸窘迫综合征治疗中的临床应用[J]. 实用临床医药杂志, 2022, 26(14): 114-118.

  31. 31. Liu, Y., Zhao, Q., Ning, J., et al. (2023) Opportunity for Invasive Mechanical Ventilation in NRDS: A Retrospective Cohort Study in China. The Journal of Ma-ternal-Fetal & Neonatal Medicine: The Official Journal of the European Association of Perinatal Medicine, the Federa-tion of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 36, Article ID: 2165061. https://doi.org/10.1080/14767058.2023.2165061

  32. 32. Kneyber, M.C.J. and Cheifetz, I.M. (2023) Me-chanical Ventilation during Pediatric Extracorporeal Life Support. Current Opinion in Pediatrics, 35, 596-602. https://doi.org/10.1097/MOP.0000000000001277

  33. 33. Cronin, J.N., Crockett, D.C., Perchiazzi, G., et al. (2023) Intra-Tidal PaO2 Oscillations Associated with Mechanical Ventilation: A Pilot Study to Identify Discrete Morphologies in a Porcine Model. Intensive Care Medicine Experimental, 11, 605-610. https://doi.org/10.1186/s40635-023-00544-0

  34. 34. Walther, F.J. and Waring, A.J. (2022) Aerosol Delivery of Lung Surfactant and Nasal CPAP in the Treatment of Neonatal Respiratory Distress Syndrome. Frontiers in Pediatrics, 10, Article ID: 923010. https://doi.org/10.3389/fped.2022.923010

  35. 35. Boesing, C., Schaefer, L., Graf, P.T., et al. (2023) Effects of Dif-ferent Positive End-Expiratory Pressure Titration Strategies on Mechanical Power during Ultraprotective Ventilation in ARDS Patients Treated with Veno-Venous Extracorporeal Membrane Oxygenation: A Prospective Interventional Study. Journal of Critical Care, 79, Article ID: 154406. https://pubmed.ncbi.nlm.nih.gov/37690365/

  36. 36. Angelika, D., Etika, R., Tri Utomo, M., et al. (2023) The Incidence of and Risk Factors for Hyperglycemia and Hypoglycemia in Pre-term Infants Receiving Early-Aggressive Parenteral Nutrition. Heliyon, 9, 328-333. https://doi.org/10.1016/j.heliyon.2023.e18966

  37. 37. Dassios, T., Williams, E.E., Kaltsogianni, O., et al. (2023) Per-missive Hypercapnia and Oxygenation Impairment in Premature Ventilated Infants. Respiratory Physiology & Neurobi-ology, 3, 317-325. https://doi.org/10.1016/j.resp.2023.104144

  38. 38. Ju-Ming Wong, J., Ong, C., Han, W.M., et al. (2014) Proto-col-Driven Enteral Nutrition in Critically Ill Children: A Systematic Review. JPEN. Journal of Parenteral and Enteral Nutrition, 38, 460-465. https://doi.org/10.1177/0148607113502811

  39. NOTES

    *通讯作者。

期刊菜单