Advances in Clinical Medicine
Vol. 13  No. 11 ( 2023 ), Article ID: 75483 , 7 pages
10.12677/ACM.2023.13112498

化疗相关心脏毒性的研究进展

艾吾再力·阿吉艾科拜尔,张冰*

新疆医科大学第三临床医学院,新疆 乌鲁木齐

收稿日期:2023年10月16日;录用日期:2023年11月9日;发布日期:2023年11月17日

摘要

随着医学的发展,化疗在恶性肿瘤治疗中得以广泛运用,并被公认为是恶性肿瘤治疗中效果显著的手段。随之出现的抗肿瘤治疗相关并发症成为了医患共同的关注点。化疗药物最显著的并发症是心脏毒性,它会导致射血分数降低、心律失常、高血压和心肌梗死,这些都会对生活质量和患者预后产生重大影响。本文综述了与各类抗癌药物相关的心脏毒性,进一步研究抗癌药物心脏毒性的可能机制,为早期识别化疗相关心脏毒性和管理指南提供有价值的见解。

关键词

化疗,心脏毒性,研究进展

Advances in Chemotherapy-Related Cardiotoxicity

Aiwuzaili Ajiaikebaier, Bing Zhang*

The Third Clinical College of Xinjiang Medical University, Urumqi Xinjiang

Received: Oct. 16th, 2023; accepted: Nov. 9th, 2023; published: Nov. 17th, 2023

ABSTRACT

With the development of medicine, chemotherapy has been widely used in the treatment of nausea tumors, and has been recognized as an effective means in the treatment of malignant tumors. The subsequent complications related to antitumor therapy have become a common concern of doctors and patients. The most significant complication of chemotherapeutic drugs is cardiotoxicity, which can lead to decreased ejection fraction, arrhythmia, hypertension, and myocardial infarction, all of which can have a significant impact on quality of life and patient outcomes. This article reviews the cardiotoxicity associated with various anticancer drugs, and further studies the possible mechanisms of cardiotoxicity of anticancer drugs, providing valuable insights for early identification of chemotherapy-related cardiotoxicity and management guidelines.

Keywords:Chemotherapy, Cardiotoxicity, Research Progress

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

过去30年来,肿瘤治疗的进步促使肿瘤患者的存活率显著提高 [1] 。恶性肿瘤存活率的提高使人们更加关注抗肿瘤治疗的长期并发症。抗肿瘤药物相关的并发症中,心血管并发症的发生率尤为突出 [2] 。在蒽环类药物治疗的儿童淋巴瘤患者中,首次发现以心力衰竭为表现的化疗相关心血管并发症 [3] 。最近靶向治疗的发展扩大了抗肿瘤治疗的领域,有可能进一步损害心血管系统。

2. 化疗药物相关心脏毒性一般机制

2.1. 氧化应激与脂质过氧化

活性氧(ROS)是活性氧是指机体内部产生的至少含有1个氧原子及1个或多个未成对电子的能够独立存在的还原产物,其种类繁多,其中氧自由基是活性氧最常见的类型,包括超氧阴离子自由基、羟基自由基、氢过氧自由基以及其他极易转化为自由基的物质,如过氧化氢、过氧硝酸等,在有氧代谢过程中产生的,通常是代谢反应的副产物 [4] [5] 。参与这种代谢的细胞器是线粒体,尽管其他器官细胞如质膜、过氧化物酶体和内质网是活性氧的其他来源。ROS的积累会导致氧化应激损伤重要的细胞器,如DNA、类脂、蛋白质、线粒体,并可能导致死亡 [6] 。由于不受调节的ROS可能会产生副作用,因此有抗氧化系统可以帮助减轻这些有害影响 [6] 。线粒体膜间隙中存在一种类似的抗氧化剂化合物,称为锌铜歧化酶。此外,位于线粒体膜上的谷胱甘肽过氧化物酶被称为磷脂氢过氧化物谷胱甘肽过氧化物酶,可减少膜相关的脂质过氧化物 [7] 。在化疗过程中,ROS与心脏中的心肌细胞密切相关。 [8] 心肌细胞线粒体增加,它们产生的主要ROS是超氧化物阴离子 [8] [9] 。已知ROS由于半衰期短而影响附近的细胞器;因此,产生它们的线粒体最容易受到其自身产物的影响 [10] 。此外,有助于清除自由基的重要抗氧化系统会随着时间的推移而减少。心磷脂是一种在阴离子载体系统和电子传输复合物中具有芳香键的磷脂。其作用为确保细胞色素氧化酶的活性增加 [11] 。因此,心磷脂缺乏会对心肌线粒体产生不利影响。作为一种不饱和脂肪酸,心磷脂由于存在双键而易受脂质过氧化损伤 [8] 。

2.2. 细胞因子信号传导与炎症

虽然急性炎症有利于免疫防御,但慢性炎症会对器官产生负面影响 [12] 。慢性炎症可以通过恶性肿瘤和化疗持续存在。几种炎性细胞因子如IL-1B和IL-6可以影响器官的生理功能。在心血管系统中,心脏中离子通道功能的改变与炎症产生的炎性细胞因子有关,从而增加心律失常和猝死(SCD)的风险 [13] [14] 。Romolaran等人证明了与炎症标志物增加和人醚–氨基相关通道(hERG)抑制有关,导致QT间期增加,动作电位延长(AP),室性心律失常(如尖端扭转)的可能性增加 [15] [16] 。离子通道如SERCA2,已经研究了Cav1.2 (L型Ca2+通道的一种类型)与IL-6和IL-1水平升高的关系 [17] [18] 。作为对急性炎症的反应,IL-6触发一系列活动来保护心肌功能,而在长期暴露的情况下,同样的过程会随着免疫细胞过滤和结缔组织生成的增加而变成病理性过程。事实上,IL-6和IL-6R的慢性表达可导致gp130的持续表达,gp130参与细胞生长信号传导,因此从长远来看会增加心肌病的风险 [19] 。

2.3. 钙超载

钙在心肌内受到严格调节,以控制肌肉收缩以及房室结和窦房结传导。钙过量可导致房室结和窦房结的放电增加。因此,钙通道的任何病理改变都可能导致心脏毒性,并被认为是化疗诱导心脏毒性的机制之一。一些化疗药物显著影响心脏组织中的钙稳态。例如化疗药物增加了ROS水平,这也可能导致钙超载 [20] 。在Sag等人的一项研究中,阿霉素增加了大鼠心肌细胞的钙超载,通过降低ROS、减少Na+/Ca2+交换器的表达来干扰钙稳态 [21] 。致命的房性和室性心律失常是与钙过量相关的并发症 [22] 。此外,异位病灶和折返回路可发展并影响心脏传导回路。钙超载已得到广泛研究,成为与化疗相关心脏毒性病理机制。因此,心肌细胞中的钙信号传导可以作为抗肿瘤药物心脏毒性的潜在治疗靶点进行进一步研究。

2.4. 生长因子信号

生长因子在维持细胞增殖和完整性方面起着重要作用。血管内皮生长因子(VEGF)就是一个例子,它参与血管生成、心肌再生和细胞在应激反应中的存活。尽管机制尚未完全了解,VEGF已被发现部分通过上调内皮衍生的一氧化氮释放来调节血管生成,内皮衍生的一氧化氮是血小板粘附和聚集、DNA合成的有效抑制剂,也是血管舒张剂 [23] [24] 。相反,血管生成抑制肿瘤生长,并有助于其向局部和远处扩散。这形成了抗血管内皮生长因子治疗广泛恶性肿瘤的基本原理,如乳腺癌症、癌症和结肠直肠癌症。然而,在接受抗VEGF药物治疗的约70%的患者中,动脉高压(aHTN)已成为心脏毒性的重要原因 [25] [26] [27] 。与化疗相关的心脏毒性有关的其他生长因子包括表皮生长因子受体抑制剂(EGFRi)。在小鼠研究中,这些受体的抑制或缺乏与心脏病的发展和收缩力受损有关,据报道,17%的患者在接受赫赛汀和蒽环类药物治疗时出现严重充血性心力衰竭 [28] 。尽管抗生长信号疗法具有优势,它们的心脏毒性是一个重大挑战,限制了癌症患者的利用和受益。更好地了解生长信号机制,并对旨在减少对心血管功能影响的辅助药物进行创新研究,有助于改善化疗患者的预后和生活质量。

2.5. 冠状动脉闭塞

冠状动脉循环负责供应含氧血液和营养物质,以维持心脏组织的生理功能和生存能力 [29] 。此外,心脏组织表现出有限的代谢能力。所有冠状动脉的完整性对于确保充足的血液供应、维持心脏功能和心输出量至关重要 [30] 。冠状血管血流在几分钟内突然中断或受阻,都会严重影响心脏收缩力,导致心输出量和重要器官(大脑、肾脏)灌注减少。根据阻塞的部位和程度,表现可以是稳定型心绞痛(休息时胸痛缓解)或不稳定型心绞痛(静息时胸痛持续)。在缺血的情况下,这些临床症状可能是可逆性ST段改变和不可逆性改变(STEMI),这可能导致心肌坏死(心电图上除了ST段抬高外还有病理性Q波) [31] 。动脉粥样硬化是导致冠状动脉疾病的主要原因。动脉粥样硬化的危险因素包括可改变的因素,如高血压、糖尿病、高脂血症、肥胖和吸烟,以及不可改变的因子,如年龄、性别(男性、老年女性)和家族史,这两者都有助于冠状血管内动脉粥样硬化斑块的形成。斑块生长和随后的破裂可通过血栓形成导致血液供应突然中断 [32] 。化疗药物与冠状动脉粥样硬化有关。抗代谢药物、抗微管药物和酪氨酸激酶抑制剂是导致冠状动脉疾病的常见抗癌药物,可能是由于信号通路的改变和随后的血管收缩作用。VEGF抑制剂是另一类简单治疗冠状动脉闭塞和心绞痛的化疗药物。VEGF在内皮功能中起重要作用 [33] ;这些与恶性肿瘤中已经增加的凝血倾向相结合,可能对癌症患者的心血管健康和生活质量产生负面影响。进一步研究化疗与冠状动脉闭塞的关系,同时对潜在危险因素进行分层。

3. 心脏毒性相关化疗药物

3.1. 蒽环类药物

蒽环类是治疗淋巴瘤、白血病、癌症乳腺癌和多种儿童癌症最有效的治疗药物之一。蒽环类药物的细胞毒性机制包括抑制拓扑异构酶II的作用,防止DNA的重新连接断裂,导致细胞凋亡。蒽环类也能插入晚期DNA,阻止DNA和RNA的合成 [34] [35] 。蒽环类影响拓扑异构酶2b的催化,导致活性氧的产生、线粒体发生缺陷和心肌细胞的凋亡 [36] [37] 。蒽环类药物诱导的心脏毒性的发病机制尚不完全清楚,但可以肯定的是,由于抗氧化酶水平较低,心肌细胞容易受到ROS诱导的损伤。阿霉素通过阻止DNA/RNA合成来增加线粒体水平,并形成阿霉素–铁复合物,线粒体中发现的ABCB8转运蛋白家族促进了这种复合物的形成。这种复合物会导致过量的ROS产生,从而驱动肌细胞凋亡 [38] 。除此之外,由自由基和过量的H2O2引起的钙失调是蒽环素诱导的心脏毒性的另一种机制 [37] [39] 。柔红霉素是一种蒽环素,用于治疗急性髓细胞白血病和急性淋巴细胞白血病。然而,近期研究发现柔红霉素诱导的心脏毒性可能受到基因的影响。众所周知,NADPH氧化酶通过将电子转移到分子氧中来产生ROS,形成一种称为超氧化物氧的ROS [40] 。对阿霉素的研究先前已经证明,Nox2 NADPH氧化酶可以通过增加ROS的产生来促进心脏重塑。然而,Lubieniecka等人发现POR是一种多态性P450基因,编码一种促进电子从NADPH转移到心肌细胞的蛋白质,因此与柔红霉素诱导的LVEF显著相关 [41] 。

3.2. 酪氨酸激酶抑制剂

舒尼替尼、万德替尼、阿西替尼和乐伐替尼是酪氨酸激酶抑制剂(TKI),这是一类抗癌药物,用于治疗慢性粒细胞白血病、胃肠道间质瘤等。酪氨酸激酶是一种将磷酸残基从ATP转移到蛋白质中酪氨酸残基的酶,这种经过处理的酶被称为磷酸化 [42] 。受体酪氨酸激酶(RTKs)存在于细胞外配体结合区的细胞膜中,而非受体酪氨酸激酶则存在于细胞内。TKIs的主要作用机制是通过细胞外和细胞内信号靶向酪氨酸激酶的异常信号转导 [43] 。TKI诱导的心脏毒性机制各不相同,且呈剂量依赖性。由于TKIs的VEGF/VEGFR2被阻断,高张力是一种常见的副作用,其发生率高达47%。VEGFR调节一氧化氮的产生,其抑制可能导致内皮功能障碍,导致外周阻力增加。因此,TKI对高血压控制不佳的患者来说是极其危险的,高血压会导致心脏压力过大而导致心力衰竭。

3.3. HER2靶向治疗

人表皮生长因子受体2 (HER2)靶向治疗是约20%~25% HER2 + 乳腺癌的有效药物。HER2靶向治疗是具有多种作用机制的单克隆抗体。曲妥珠单抗与HER2的细胞外结构域结合,可以通过阻止HER2蛋白的同源化来阻断HER2信号传导 [44] 。另一方面,曲妥珠单抗坦新(T-DM1)是一种新的抗体导向化疗药物。尽管其机制尚不清楚,但目前研究认为T-DM1具有细胞毒性,并靶向癌细胞的抗原,导致细胞内释放DM,这是一种具有抗增殖作用的细胞毒性抗微管剂 [45] 。因此,HER2靶向治疗发挥抗增殖和抗血管生成作用,因为HER2扩增与致癌发展中的生长因子信号传导直接相关 [46] 。除此之外,酪氨酸激酶受体3 (ErbB2)的抑制还可以降低内皮NOS的表达,从而在心肌细胞中产生更多的补偿性ROS [47] 。上述两种途径都会导致心肌细胞凋亡。鉴于有力证据表明HER2靶向治疗具有心脏毒性,建议临床医生监测左心射血分数,尤其是当患者在服用蒽环类药物时。

3.4. 蛋白酶体抑制剂

蛋白酶体抑制剂(PI)用于治疗多发性骨髓瘤(MM)和套细胞淋巴瘤。PIs通过抑制蛋白酶体的20s蛋白水解亚基来靶向蛋白质降解,从而诱导凋亡 [48] 。88蛋白酶体在细胞内蛋白质和细胞凋亡介质(即NF-kBactivation)通过多泛素的降解途径中至关重要 [49] 。硼替佐米通过增加IkB水平对NF-kB活化发挥抑制作用 [50] 。此外,由于NF-kB途径引起的一氧化氮的改变被假设会诱导心脏毒性。卡非佐米显示出较高的心脏毒性,而硼替佐米则显示出相互矛盾的结果,可能是由于其较高的脱靶疗效,导致剂量限制性神经病变和较低的心脏毒性 [50] 。

4. 化疗药物诱发心脏毒性的危险因素

化疗相关心脏毒性的发生率受几个因素的影响,包括所应用的特定药物、治疗持续时间、年龄、性别和其他潜在的患者自身因素。事实上,心血管疾病是老年癌症患者和幸存者死亡的主要原因 [51] 。Dawn等人的一项研究发现,接受阿霉素治疗的高血压和糖尿病患者患慢性心力衰竭的风险较对照组分别高58%和27%。他们还发现,与65~70岁的患者相比,80岁以上的患者患慢性心力衰竭的风险更大 [52] 。此外,Hequet等人的另一项研究也将年龄较大、男性和更高剂量的阿霉素确定为心肌病发展的危险因素 [53] 。除了化疗引起的心脏毒性外,遗传背景(家族史)和环境因素(饮食和生活方式)也是心血管疾病的风险因素。因此,化疗引起的心脏毒性是一种多方面的、渐进性的过程。需要在化疗开始前以及治疗前后进行基线风险评估。这可以根据个人风险进行早期检测和管理,也可以为癌症患者和幸存者提供有效的个性化治疗。

5. 结论

心脏毒性是化疗药物较为显著的并发症,在治疗肿瘤患者时必须引起重视。每一位接受抗肿瘤治疗的患者都必须权衡意外心脏事件的风险与抗癌益处。这些决定需要了解患者的心血管病史、癌症类型、所需的治疗方案以及可用的心脏预防和治疗方案。肿瘤心脏病学的发展,为这些复杂的临床情况提供针对性策略。需要进一步研究肿瘤患者心血管诊疗的策略,以建立专业的指南。随着肿瘤靶向治疗和免疫疗法不断推进,研究新药物的心血管毒性是很重要的,以便开发有效的减轻这些毒性的方法。

文章引用

艾吾再力·阿吉艾科拜尔,张 冰. 化疗相关心脏毒性的研究进展
Advances in Chemotherapy-Related Cardiotoxicity[J]. 临床医学进展, 2023, 13(11): 17815-17821. https://doi.org/10.12677/ACM.2023.13112498

参考文献

  1. 1. Bhagat, A. and Kleinerman, E.S. (2020) Anthracycline-Induced Cardiotoxicity: Causes, Mechanisms, and Prevention. Advances in Experimental Medicine and Biology, 1257, 181-192. https://doi.org/10.1007/978-3-030-43032-0_15

  2. 2. Radulescu, L.M., Radulescu, D., Ciuleanu, T.E., et al. (2021) Cardiotoxicity Associated with Chemotherapy Used in Gastrointestinal Tumours. Medicina, 57, Article 806. https://doi.org/10.3390/medicina57080806

  3. 3. Bansal, N., Amdani, S., Lipshultz, E.R., et al. (2017) Chemothera-py-Induced Cardiotoxicity in Children. Expert Opinion on Drug Metabolism & Toxicology, 13, 817-832. https://doi.org/10.1080/17425255.2017.1351547

  4. 4. Ray, P.D., Huang, B.W. and Tsuji, Y. (2012) Reactive Ox-ygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cellular Signalling, 24, 981-990. https://doi.org/10.1016/j.cellsig.2012.01.008

  5. 5. Jakubczyk, K., Dec, K., Kałduńska, J., et al. (2020) Reactive Oxygen Species—Sources, Functions, Oxidative Damage. Polski Merkuriusz Lekarski, 48, 124-127.

  6. 6. Sies, H. and Jones, D.P. (2020) Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nature Reviews Molecular Cell Biology, 21, 363-383. https://doi.org/10.1038/s41580-020-0230-3

  7. 7. Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014) Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiological Reviews, 94, 909-950. https://doi.org/10.1152/physrev.00026.2013

  8. 8. Angsutararux, P., Luanpitpong, S. and Is-saragrisil, S. (2015) Chemotherapy-Induced Cardiotoxicity: Overview of the Roles of Oxidative Stress. Oxidative Medi-cine and Cellular Longevity, 2015, Article ID: 795602. https://doi.org/10.1155/2015/795602

  9. 9. Incalza, M.A., D’oria, R., Natalicchio, A., et al. (2018) Oxidative Stress and Reactive Oxygen Species in Endothelial Dysfunction Associated with Cardiovascular and Metabolic Diseases. Vascular Pharmacology, 100, 1-19. https://doi.org/10.1016/j.vph.2017.05.005

  10. 10. Ambrosio, G., Zweier, J.L., Duilio, C., et al. (1993) Evidence That Mitochondrial Respiration Is a Source of Potentially Toxic Oxygen Free Radicals in Intact Rabbit Hearts Subjected to Is-chemia and Reflow. Journal of Biological Chemistry, 268, 18532-18541. https://doi.org/10.1016/S0021-9258(17)46660-9

  11. 11. Paradies, G., Paradies, V., Ruggiero, F.M., et al. (2014) Oxidative Stress, Cardiolipin and Mitochondrial Dysfunction in Nonalcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, 14205-14218. https://doi.org/10.3748/wjg.v20.i39.14205

  12. 12. Medzhitov, R. (2010) Inflammation 2010: New Adventures of an Old Flame. Cell, 140, 771-776. https://doi.org/10.1016/j.cell.2010.03.006

  13. 13. Lazzerini, P.E., Capecchi, P.L. and Laghi-Pasini, F. (2015) Long QT Syndrome: An Emerging Role for Inflammation and Immunity. Frontiers in Cardiovascular Medicine, 2, Article 26. https://doi.org/10.3389/fcvm.2015.00026

  14. 14. Lazzerini, P.E., Laghi-Pasini, F., Boutjdir, M., et al. (2019) Cardio-immunology of Arrhythmias: THE Role of autoimmune and Inflammatory Cardiac Channelopathies. Nature Reviews Immunology, 19, 63-64. https://doi.org/10.1038/s41577-018-0098-z

  15. 15. Aromolaran, A.S., Srivastava, U., Alí, A., et al. (2018) Interleu-kin-6 Inhibition of hERG Underlies Risk for Acquired Long QT in Cardiac and Systemic Inflammation. PLOS ONE, 13, e0208321. https://doi.org/10.1371/journal.pone.0208321

  16. 16. Alí, A., Boutjdir, M. and Aromolaran, A.S. (2018) Cardiolipo-toxicity, Inflammation, and Arrhythmias: Role for Interleukin-6 Molecular Mechanisms. Frontiers in Physiology, 9, Arti-cle 1866. https://doi.org/10.3389/fphys.2018.01866

  17. 17. Villegas, S., Villarreal, F.J. and Dillmann, W.H. (2000) Leukemia Inhibitory Factor and Interleukin-6 Downregulate Sarcoplasmic Reticulum Ca2+ ATPase (SERCA2) in Cardiac Myo-cytes. Basic Research in Cardiology, 95, 47-54. https://doi.org/10.1007/s003950050007

  18. 18. Tanaka, T., Kanda, T., Takahashi, T., et al. (2004) Interleu-kin-6-Induced Reciprocal Expression of SERCA and Natriuretic Peptides mRNA in Cultured Rat Ventricular Myocytes. Journal of International Medical Research, 32, 57-61. https://doi.org/10.1177/147323000403200109

  19. 19. Fontes, J.A., Rose, N.R. and Čiháková, D. (2015) The Varying Faces of IL-6: From Cardiac Protection to Cardiac Failure. Cyto-kine, 74, 62-68. https://doi.org/10.1016/j.cyto.2014.12.024

  20. 20. Li, Q., Qin, M., Tan, Q., et al. (2020) Mi-croRNA-129-1-3p Protects Cardiomyocytes from Pirarubicin-Induced Apoptosis by Down-Regulating the GRIN2D-Mediated Ca(2+) Signalling Pathway. Journal of Cellular and Molecular Medicine, 24, 2260-2271. https://doi.org/10.1111/jcmm.14908

  21. 21. Cappetta, D., Esposito, G., Coppini, R., et al. (2017) Effects of Ranolazine in a Model of Doxorubicin-Induced Left Ventricle Diastolic Dysfunction. British Journal of Pharmacology, 174, 3696-3712. https://doi.org/10.1111/bph.13791

  22. 22. Sutanto, H., Lyon, A., Lumens, J., et al. (2020) Cardio-myocyte Calcium Handling in Health and Disease: Insights from in vitro and in silico Studies. Progress in Biophysics and Molecular Biology, 157, 54-75. https://doi.org/10.1016/j.pbiomolbio.2020.02.008

  23. 23. Tantawy, A.A., Adly, A.A., Ismail, E.A., et al. (2015) En-dothelial Nitric Oxide Synthase Gene Intron 4 VNTR Polymorphism in Sickle Cell Disease: Relation to Vasculopathy and Disease Severity. Pediatric Blood & Cancer, 62, 389-394. https://doi.org/10.1002/pbc.25234

  24. 24. Shashar, M., Chernichovski, T., Pasvolsky, O., et al. (2017) Vascular Endothelial Growth Factor Augments Arginine Transport and Nitric Oxide Generation via a KDR Receptor Signaling Pathway. Kidney and Blood Pressure Research, 42, 201-208. https://doi.org/10.1159/000476016

  25. 25. Mamoshina, P., Rodriguez, B. and Bueno-Orovio, A. (2021) Toward a Broader View of Mechanisms of Drug Cardiotoxicity. Cell Reports Medicine, 2, Article ID: 100216. https://doi.org/10.1016/j.xcrm.2021.100216

  26. 26. Taimeh, Z., Loughran, J., Birks, E.J., et al. (2013) Vascular En-dothelial Growth Factor in Heart Failure. Nature Reviews Cardiology, 10, 519-530. https://doi.org/10.1038/nrcardio.2013.94

  27. 27. Izzedine, H., Ederhy, S., Goldwasser, F., et al. (2009) Management of Hypertension in Angiogenesis Inhibitor-Treated Patients. Annals of Oncology, 20, 807-815. https://doi.org/10.1093/annonc/mdn713

  28. 28. Pondé, N.F., Lambertini, M. and De Azambuja, E. (2016) Twenty Years of Anti-HER2 Therapy-Associated Cardiotoxicity. ESMO Open, 1, e000073. https://doi.org/10.1136/esmoopen-2016-000073

  29. 29. Goodwill, A.G., Dick, G.M., Kiel, A.M., et al. (2017) Regu-lation of Coronary Blood Flow. Compr Physiol Comprehensive Physiology, 7, 321-382. https://doi.org/10.1002/cphy.c160016

  30. 30. Niederer, S.A., Campbell, K.S. and Campbell, S.G. (2019) A Short History of the Development of Mathematical Models of Cardiac mechanics. Journal of Molecular and Cellular Cardiol-ogy, 127, 11-19. https://doi.org/10.1016/j.yjmcc.2018.11.015

  31. 31. Saleh, M. and Ambrose, J.A. (2018) Understanding Myocardial Infarction. F1000 Research, 7, Article 1378. https://doi.org/10.12688/f1000research.15096.1

  32. 32. Senst, B., Kumar, A. and Diaz, R.R. (2022) Cardiac Surgery. StatPearls Publishing, Treasure Island (FL).

  33. 33. Herrmann, J., Yang, E.H., Iliescu, C.A., et al. (2016) Vascular Toxic-ities of Cancer Therapies: The Old and the New—An Evolving Avenue. Circulation, 133, 1272-1289. https://doi.org/10.1161/CIRCULATIONAHA.115.018347

  34. 34. Venkatesh, P. and Kasi, A. Anthracyclines. StatPearls Publishing, Treasure Island (FL).

  35. 35. Martins-Teixeira, M.B. and Carvalho, I. (2020) Antitumour Anthracy-clines: Progress and Perspectives. ChemMedChem, 15, 933-948. https://doi.org/10.1002/cmdc.202000131

  36. 36. Volkova, M. and Russell, R. (2011) Anthracycline Cardiotoxicity: Prevalence, Pathogenesis and Treatment. Current Cardiology Reviews, 7, 214-220. https://doi.org/10.2174/157340311799960645

  37. 37. Cardinale, D., Colombo, A., Bacchiani, G., et al. (2015) Early Detection of Anthracycline Cardiotoxicity and Improvement with Heart Failure Therapy. Circulation, 131, 1981-1988. https://doi.org/10.1161/CIRCULATIONAHA.114.013777

  38. 38. Ichikawa Y., Ghanefar, M., Bayeva, M., et al. (2014) Cardiotoxicity of Doxorubicin Is Mediated through Mitochondrial Iron Accumulation. Journal of Clinical Investigation, 124, 617-630. https://doi.org/10.1172/JCI72931

  39. 39. Octavia, Y., Tocchetti, C.G., Gabrielson, K.L., et al. (2012) Doxorubicin-Induced Cardiomyopathy: from Molecular Mechanisms to Therapeutic Strategies. Journal of Molecular and Cellular Cardiology, 52, 1213-1225. https://doi.org/10.1016/j.yjmcc.2012.03.006

  40. 40. Chen, S., Meng, X.F. and Zhang, C. (2013) Role of NADPH Oxidase-Mediated Reactive Oxygen Species in Podocyte Injury. BioMed Research International, 2013, Article ID: 839761. https://doi.org/10.1155/2013/839761

  41. 41. Lubieniecka, J.M., Graham, J., Heffner, D., et al. (2013) A Discovery Study of Daunorubicin Induced Cardiotoxicity in a Sample of Acute Myeloid Leukemia Patients Prioritizes P450 Oxidoreductase Polymorphisms as a Potential Risk Factor. Frontiers in Genetics, 4, Article 231. https://doi.org/10.3389/fgene.2013.00231

  42. 42. Pantazi, D. and Tselepis, A.D. (2022) Cardiovascular Toxic Effects of Antitumor Agents: Pathogenetic Mechanisms. Thrombosis Research, 213, S95-S102. https://doi.org/10.1016/j.thromres.2021.12.017

  43. 43. Paul, M.K. and Mukhopadhyay, A.K. (2004) Tyrosine Ki-nase—Role and Significance in Cancer. International Journal of Medical Sciences, 1, 101-115. https://doi.org/10.7150/ijms.1.101

  44. 44. Schramm, A., De Gregorio, N., Widschwendter, P., et al. (2015) Targeted Therapies in HER2-Positive Breast Cancer—A Systematic Review. Breast Care, 10, 173-178. https://doi.org/10.1159/000431029

  45. 45. Barok, M., Joensuu, H. and Isola, J. (2014) Trastuzumab Emtansine: Mechanisms of Action and Drug Resistance. Breast Cancer Research, 16, Article No. 209. https://doi.org/10.1186/bcr3621

  46. 46. Gajria, D. and Chandarlapaty, S. (2011) HER2-Amplified Breast Cancer: Mechanisms of Trastuzumab Resistance and Novel Targeted Therapies. Expert Review of Anticancer Therapy, 11, 263-275. https://doi.org/10.1586/era.10.226

  47. 47. Yang, Z., Wang, W., Wang, X., et al. (2021) Cardiotoxicity of Epidermal Growth Factor Receptor 2-Targeted Drugs for Breast Cancer. Frontiers in Pharmacology, 12, Article ID: 741451. https://doi.org/10.3389/fphar.2021.741451

  48. 48. Nunes, A.T. and Annunziata, C.M. (2017) Proteasome Inhibitors: Structure and Function. Seminars in Oncology, 44, 377-380. https://doi.org/10.1053/j.seminoncol.2018.01.004

  49. 49. Wu, P., Oren, O., Gertz, M.A., et al. (2020) Proteasome In-hibitor-Related Cardiotoxicity: Mechanisms, Diagnosis, and Management. Current Oncology Reports, 22, Article No. 66. https://doi.org/10.1007/s11912-020-00931-w

  50. 50. Cole, D.C. and Frishman, W.H. (2018) Cardiovascular Compli-cations of Proteasome Inhibitors Used in Multiple Myeloma. Cardiology in Review, 26, 122-129. https://doi.org/10.1097/CRD.0000000000000183

  51. 51. Bodai, B.I. and Tuso, P. (2015) Breast Cancer Survivor-ship: A Comprehensive Review of Long-Term Medical Issues and Lifestyle Recommendations. The Permanente Jour-nal, 19, 48-79. https://doi.org/10.7812/TPP/14-241

  52. 52. Hershman, D.L., Mcbride, R.B., Eisenberger, A., et al. (2008) Doxorubicin, Cardiac Risk Factors, and Cardiac Toxicity in Elderly Patients with Diffuse B-Cell Non-Hodgkin’s Lymphoma. Journal of Clinical Oncology, 26, 3159-3165. https://doi.org/10.1200/JCO.2007.14.1242

  53. 53. Hequet, O., Le, Q.H., Moullet, I., et al. (2004) Subclinical Late Cardiomyopathy after Doxorubicin Therapy for Lymphoma in Adults. Journal of Clinical Oncology, 22, 1864-1871. https://doi.org/10.1200/JCO.2004.06.033

  54. NOTES

    *通讯作者。

期刊菜单