Advances in Clinical Medicine
Vol. 13  No. 02 ( 2023 ), Article ID: 61404 , 6 pages
10.12677/ACM.2023.132287

近红外光谱技术在颅脑损伤监护中的临床应用

王宸浩,许峰*

重庆医科大学附属儿童医院重症医学科,重庆

收稿日期:2023年1月14日;录用日期:2023年2月8日;发布日期:2023年2月16日

摘要

继发性颅脑损伤引发的水肿、缺血、血管痉挛等会引起颅内压升高、脑血流量下降,最终导致脑组织缺氧以及不良预后,积极有效的脑氧饱和度监测有助于降低病死率及改善预后。近红外光谱技术是一项能够无创实时反映脑组织氧合的新兴技术,利用近红外光原理反映出脑组织氧供和氧耗平衡信息。本文就近红外光谱技术在颅脑损伤患者中的研究进展进行综述。

关键词

颅脑损伤,脑氧合监测,近红外光谱技术,临床应用

Clinical Application of Near-Infrared Spectroscopy (NIRS) in Neurocritical Care of Patients with Brain Injury

Chenhao Wang, Feng Xu*

Department of PICU, Children’s Hospital of Chongqing Medical University, Chongqing

Received: Jan. 14th, 2023; accepted: Feb. 8th, 2023; published: Feb. 16th, 2023

ABSTRACT

Cerebral edema, ischemia and vasospasm caused by secondary brain injury can lead to increased intracranial pressure and decreased cerebral blood flow, leading to cerebral tissue hypoxia and poor prognosis. Active and effective cerebral oxygen saturation monitoring can help reduce the mortality rate and improve prognosis. Near-infrared spectroscopy is an emerging technology that can reflect the oxygenation of brain tissues non-invasively and continuously, reflecting the balance of oxygen supply and oxygen consumption in brain tissues. This article reviews the progress of near-infrared spectroscopy in patients with brain injury.

Keywords:Brain Injury, Cerebral Oxygenation Monitoring, Near-Infrared Spectroscopy (NIRS), Clinical Application

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

继发性颅脑损伤(secondary brain injury, SBI)主要发生在伤后数小时至数天,主要包括血肿、水肿的形成、脑组织的缺血缺氧以及血管痉挛 [1] 。颅脑损伤患者因继发性损伤引起脑水肿或血肿形成,颅内压(intracranial pressure, ICP)大幅升高,最终会引起脑血流量(cerebral blood flow, CBF)及脑灌注压(cerebral perfusion pressure, CPP)降低,导致脑组织缺血缺氧 [2] 。脑组织缺氧与颅脑损伤患者的不良预后相关 [3] ,因此,对于颅脑损伤的患儿进行积极有效的脑氧饱和度的监测,有助于帮助临床医生及时调整治疗方案,降低病死率,改善预后 [4] 。

近红外光谱技术(near-infrared spectroscopy, NIRS)是一项可以实现无创、动态、实时监测脑组织氧合情况的新兴手段,自从1977年Jobbis [5] 首次发现并应用于临床后,近年来已经越来越多地应用于先天性心脏病围术期监测 [6] 、重点人群麻醉监测 [7] 等,并逐步扩展至颅脑损伤的重症监护中 [3] 。本文就相关研究进展进行综述。

2. NIRS的原理

近红外光的波长在700纳米到1000纳米之间,它可以穿透包括骨骼的人体组织。在此波长范围内,氧合血红蛋白和脱氧血红蛋白等吸收光团的吸收贡献最大,而水分子等其他物质的吸收贡献最小,可最大限度避免其他物质的干扰。NIRS技术基于Beer-Lambert公式和光散射理论,根据氧合血红蛋白和脱氧血红蛋白吸收光谱的差异,我们可以得到脑组织供氧和耗氧平衡的信息 [8] [9] 。NIRS的主要输出参数之一是局部脑组织氧饱和度(regional cerebral oxygen saturation, rSO2),它反映脑组织混合血的氧饱和度情况,包括25%~30%的动脉、70%~75%的静脉成分 [10] 。目前认为rSO2的正常范围在60%~75%之间 [11] ,不同研究给出的正常范围也存在少许差异 [12] ,且患者的年龄、肤色、环境光源、探头部位以及局部的其他吸收光团(例如头皮肿胀、硬膜外/下血肿等)均会影响测得的rSO2值。因此,选择合适的探头位置并进行合理避光有助于获取准确的数值,根据患者基线水平的趋势性监测似乎更为准确有效。目前在围术期监测中多以rSO2较基线水平下降20%或绝对值低于50%为干预阈值 [13] ,而在颅脑损伤患者中反映脑组织缺氧及进行干预的阈值尚无定论。

3. 其他脑氧合监测方法

1) 颈静脉球血氧饱和度(SjO2)

颈静脉球血氧饱和度(jugular bulb oxygen saturation, SjO2)监测是首个应用于临床的脑氧监测手段。将导管置入至优势侧的颈静脉中(多为右侧),通过对该处的静脉血进行血气分析得到静脉血氧饱和度,反映出全脑的氧供(脑血流)和氧耗(脑代谢)信息,主要包括间歇性血液采集或是利用光纤导管连续测量这两种方式 [14] 。正常SjO2值的范围是55%~75%,过低的SjO2提示灌注不足 [15] ,而过高的SjO2可能意味着脑死亡 [16] 。但是作为一种有创的检测手段,颈静脉球血氧饱和度监测存在穿刺失败、感染、血栓形成、医源性失血等风险;此外,SjO2反映整体氧合情况,对于局部缺血不灵敏 [17] ;再者,SjO2反映单侧颈静脉情况,颅脑损伤患者双侧颈静脉氧合存在一定差异,可能会影响其临床应用。

2) 脑组织氧分压(PbtO2)

脑组织氧分压(brain tissue oxygen tension, PbtO2)测量是脑氧合监测中的金标准。通过在脑实质中植入与有创颅内压监测类似的探针,通过不同类型的传感器,实时获得探针附近区域的脑组织氧分压,进而提供脑组织氧合的直接证据 [18] 。目前有Licox和Neurovent-PTO这两类系统可以用于监测脑组织氧分压,前者采用Clark型电化学探头,仅能监测PbtO2和温度,敏感区域约13 mm2,而后者采用荧光光纤传感器,能够同时监测PbtO2、温度以及ICP,敏感区域约22 mm2,二者具有相似的准确度 [19] 。正常脑组织PbtO2介于20~35 mmHg,而目前研究显示,颅脑损伤患者的缺血阈值为14 mmHg [20] ,PbtO2小于10 mmHg则应被认定为严重脑缺氧 [21] 。由于PbtO2探头很小,目前认为将其植入在缺血区时最具有临床价值 [22] 。但其作为一种有创操作,仍存在出血、感染等风险,且反映的是局部脑组织的氧合情况,不能反映其余部位脑组织的氧合,且探头位置不同也会影响到临床监测,这些局限性限制了其在临床中的使用。

4. NIRS在颅脑损伤患者中的研究进展

1) NIRS参数与其他脑氧合监测参数的相关性

NIRS作为新兴的非侵入性手段,其衍生参数已被证实与SjO2及PbtO2相关。Tateishi等人 [23] 通过研究9名成人急性脑损伤患者脑血管对二氧化碳的反应性得出结论,基于NIRS的脑氧合血红蛋白(HbO2)变化的方向和幅度与SjO2的变化相似。而McLeod等人 [24] 比较了8名重度颅脑损伤患者的rSO2和SjO2,通过改变吸氧浓度发现,rSO2在改变吸氧浓度后的变化趋势与SjO2的变化相似,但在程度和反应速度上有所不同。Kirkpatrick等人 [25] 通过比较14名闭合性头部损伤的相关参数证实了NIRS信号与SjO2有明显相关性。Leal-Noval等人 [26] 在22名处于稳定期的重度颅脑损伤患者的研究提示rSO2与PbtO2显著相关性,且rSO2对重度缺氧的敏感度高于中度缺氧。Brawanski等人 [27] 研究了颅脑损伤患者rSO2与PbtO2数据并进行统计学分析,认为rSO2包含了与PbtO2包含相似的信息。Davie等人 [28] 在16名创伤性颅脑损伤患者中的研究也证实了rSO2与侵入性测量的PbtO2之间的明确预测关系,但作者认为由于缺乏可重复性,NIRS尚不能取代有创的脑组织氧合监测手段。但也有研究认为 [29] ,NIRS衍生参数与SjO2的相关性并不够充分,这可能与异常红外光信号污染、算法错误以及颅脑损伤的异质性等因素相关。

2) NIRS参数与临床参数的相关性

Kampfl等人 [30] 发现,在外周血氧饱和度、氧分压、二氧化碳分压相似的情况下,ICP > 25 mmHg的颅脑损伤患者的rSO2显著低于ICP < 25 mmHg的脑损伤患者。同样在另一项研究中,Dunham等人 [31] 研究了4名创伤性颅脑损伤患者,发现rSO2与CPP具有显著的相关性,且研究认为,rSO2 < 55%可能与脑灌注不足有关。Davie等人 [32] 在近期的一项观察性队列研究中将rSO2下降定义为<65%,在成人重型颅脑损伤中,ICP升高、平均动脉压(mean arterial pressure, MAP)下降与脑组织去氧合具有中度的相关性,且ICP > 20 mmHg的患者发生rSO2下降的可能性是其他患者的6倍。Kirkpatrick等人 [25] 研究了14名接受机械通气的闭合性头部损伤患者的NIRS衍生的氧合和脱氧血红蛋白发色团的信号变化与ICP、CPP、外周血氧饱和度的相关性,发现NIRS参数的改变其可能与ICP和CPP改变相关,且相对SjO2监测更加灵敏。此外,Taussky等人 [33] 回顾性研究了8例颅脑损伤患者发现rSO2与CT灌注得出的CBF值呈线性相关,认为NIRS作为一种床旁工具,可以直接评估脑氧合情况。

充足的脑组织氧合对于维持神经系统功能至关重要,继发性颅脑损伤引发的颅高压及脑灌注压及脑血流量降低会导致脑组织缺血缺氧,导致患者的不良预后,上述研究均表明NIRS能够反映出颅脑损伤患者的颅内病理生理变化情况,是一种可行的床旁监护手段。

3) NIRS参数与临床结局的相关性

Vilkė等人 [34] 通过对61名创伤性颅脑损伤患者的研究发现,相比于入院GCS评分、血糖、血红蛋白水平,NIRS更加准确地区分院内死亡患者,入ICU后1小时内的左右侧脑氧低于68.0%和68.3%时,死亡风险会增加17.7倍和5.1倍。Jacob等人 [35] 的前瞻性观察性研究纳入了78名重度颅脑损伤患者,结果显示存活组的rSO2均值在60.74%~64.98%之间,而死亡组的均值则波动在37.17%~52.17%,而在rSO2低于50%的患者中,死亡或者持续植物状态的比例很高,这表明降低的rSO2与更差的神经系统结果或死亡显著相关。此外,Rivera-Lara等人 [36] 针对88名脑损伤患者研究了基于NIRS的衍生参数脑血氧饱和度指数(cerebral oximetry index, COx)与短期及长期临床结局的关联,发现平均Cox ≥ 0.05与住院死亡率(OR = 2.9)、6个月时死亡率(OR = 4.4)及6个月时严重残疾(OR = 4.4)相关,NIRS在颅脑损伤患者的预后判断中发挥着重要作用。而在Durnev等人 [37] 对15名创伤性颅脑损伤患者的研究发现,rSO2紊乱与MAP降低有关,且较基础值升高 ≥ 15%与遗留神经系统后遗症相关,rSO2反映供氧和耗氧的平衡,升高可能意味着脑组织的代谢需求下降 [29] 。综上所述,NIRS可反映颅脑损伤患者的预后情况,但是目前的研究多为单中心的观察性研究,后续研究还应包括干预性措施来判断对于NIRS参数的早期及时干预能否真正改善患者预后。

5. 总结

目前的研究显示NIRS作为一种无创实时床旁的监测工具,在颅脑损伤患者的重症神经监护中具有一定的临床价值。但目前对于颅脑损伤患者的监护研究中多为单中心的观察性研究,缺乏大样本量及干预性研究来证实其有效性;此外,不同的研究使用了不同的NIRS衍生参数,目前缺乏统一的参考范围及干预阈值;颅脑损伤作为一组异质性疾病,对其进行连续动态监护可能更具临床价值。

文章引用

王宸浩,许 峰. 近红外光谱技术在颅脑损伤监护中的临床应用
Clinical Application of Near-Infrared Spectroscopy (NIRS) in Neurocritical Care of Patients with Brain Injury[J]. 临床医学进展, 2023, 13(02): 2059-2064. https://doi.org/10.12677/ACM.2023.132287

参考文献

  1. 1. Lazaridis, C., Rusin, C.G. and Robertson, C.S. (2019) Secondary Brain Injury: Predicting and Preventing Insults. Neu-ropharmacology, 145, 145-152. https://doi.org/10.1016/j.neuropharm.2018.06.005

  2. 2. Veenith, T.V., Carter, E.L., Geeraerts, T., et al. (2016) Pathophysiologic Mechanisms of Cerebral Ischemia and Diffusion Hypoxia in Traumatic Brain Injury. JAMA Neurology, 73, 542-550. https://doi.org/10.1001/jamaneurol.2016.0091

  3. 3. Roldán, M. and Kyriacou, P.A. (2021) Near-Infrared Spectros-copy (NIRS) in Traumatic Brain Injury (TBI). Sensors, 21, Article No. 1586. https://doi.org/10.3390/s21051586

  4. 4. Stein, S.C., Georgoff, P., Meghan, S., Mirza, K.L. and El Falaky, O.M. (2010) Relationship of Aggressive Monitoring and Treatment to Improved Outcomes in Severe Traumatic Brain Injury. Journal of Neurosurgery, 112, 1105-1112. https://doi.org/10.3171/2009.8.JNS09738

  5. 5. Jobsis, F.F. (1977) Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters. Science, 198, 1264-1267. https://doi.org/10.1126/science.929199

  6. 6. Ghanayem, N.S. and Hoffman, G.M. (2016) Near Infrared Spectros-copy as a Hemodynamic Monitor in Critical Illness. Pediatric Critical Care Medicine, 17, S201-S206. https://doi.org/10.1097/PCC.0000000000000780

  7. 7. Sørensen, H. (2016) Near Infrared Spectroscopy Evaluated Cerebral Oxygenation during Anesthesia. Danish Medical Journal, 63, Article No. B5318.

  8. 8. Mathieu, F., Khellaf, A., Ku, J.C., et al. (2020) Continuous Near-Infrared Spectroscopy Monitoring in Adult Traumatic Brain Injury: A Systematic Review. Journal of Neurosurgical Anesthesiology, 32, 288-299. https://doi.org/10.1097/ANA.0000000000000620

  9. 9. Misra, M., Stark, J., Dujovny, M., Widman, R. and Aus-man, J. (1998) Transcranial Cerebral Oximetry in Random Normal Subjects. Neurological Research, 20, 137-141. https://doi.org/10.1080/01616412.1998.11740496

  10. 10. Li, H.Y., Liu, X.W. and Zhao, J. (2017) Clinical Applica-tion and Development of Near-infrared Spectroscopy for Monitoring Regional Cerebral Oxygen Saturation. Acta Aca-demiae Medicinae Sinicae, 39, 846-850. (In Chinese)

  11. 11. Kirkman, M.A. and Smith, M. (2016) Brain Oxygenation Monitoring. Anesthesiology Clinics, 34, 537-556. https://doi.org/10.1016/j.anclin.2016.04.007

  12. 12. Vretzakis, G., Georgopoulou, S., Stamoulis, K., et al. (2014) Cerebral Oximetry in Cardiac Anesthesia. Journal of Thoracic Disease, 6, S60-S69.

  13. 13. Yoshitani, K., Kawaguchi, M., Ishida, K., et al. (2019) Guidelines for the Use of Cerebral Oximetry by Near-Infrared Spectroscopy in Cardiovascular Anesthesia: A Report by the Cerebrospinal Division of the Academic Committee of the Japanese Society of Cardiovas-cular Anesthesiologists (JSCVA). Journal of Anesthesia, 33, 167-196. https://doi.org/10.1007/s00540-019-02610-y

  14. 14. Bhardwaj, A., Bhagat, H. and Grover, V.K. (2015) Jugular Ve-nous Oximetry. Journal of Neuroanaesthesiology and Critical Care, 2, 225-231. https://doi.org/10.4103/2348-0548.165046

  15. 15. Schell, R.M. and Cole, D.J. (2000) Cerebral Monitoring: Jugular Venous Oximetry. Anesthesia & Analgesia, 90, 559-566. https://doi.org/10.1097/00000539-200003000-00012

  16. 16. Cormio, M., Valadka, A.B. and Robertson, C.S. (1999) Elevated Jugular Venous Oxygen Saturation after Severe Head Injury. Journal of Neurosurgery, 90, 9-15. https://doi.org/10.3171/jns.1999.90.1.0009

  17. 17. Macmillan, C.S. and Andrews, P.J. (2000) Cerebrovenous Oxy-gen Saturation Monitoring: Practical Considerations and Clinical Relevance. Intensive Care Medicine, 26, 1028-1036. https://doi.org/10.1007/s001340051315

  18. 18. Martini, R.P., Deem, S. and Treggiari, M.M. (2013) Targeting Brain Tissue Oxygenation in Traumatic Brain Injury. Respiratory Care, 58, 162-172. https://doi.org/10.4187/respcare.01942

  19. 19. Purins, K., Enblad, P., Sandhagen, B. and Lewén, A. (2010) Brain Tissue Oxygen Monitoring: A Study of in Vitro Accuracy and Stability of Neurovent-PTO and Licox Sensors. Acta Neurochirurgica, 152, 681-688. https://doi.org/10.1007/s00701-009-0532-x

  20. 20. Johnston, A.J., Steiner, L.A., Coles, J.P., et al. (2005) Effect of Cerebral Perfusion Pressure Augmentation on Regional Oxygenation and Metabolism after Head Injury. Critical Care Medicine, 33, 189-195. https://doi.org/10.1097/01.CCM.0000149837.09225.BD

  21. 21. van den Brink, W.A., van Santbrink, H., Steyerberg, E.W., et al. (2000) Brain Oxygen Tension in Severe Head Injury. Neurosurgery, 46, 868878. https://doi.org/10.1227/00006123-200004000-00018

  22. 22. Le Roux, P.D. and Oddo, M. (2013) Parenchymal Brain Oxygen Monitoring in the Neurocritical Care Unit. Neurosurgery Clinics of North America, 24, 427-439. https://doi.org/10.1016/j.nec.2013.03.001

  23. 23. Tateishi, A., Maekawa, T., Soejima, Y., et al. (1995) Qualitative Comparison of Carbon Dioxide-Induced Change in Cerebral Near-Infrared Spectroscopy versus Jugular Venous Oxygen Saturation in Adults with Acute Brain Disease. Critical Care Medicine, 23, 1734-1738. https://doi.org/10.1097/00003246-199510000-00019

  24. 24. McLeod, A.D., Igielman, F., Elwell, C., et al. (2003) Measuring Cerebral Oxygenation during Normobaric Hyperoxia: A Comparison of Tissue Microprobes, Near-Infrared Spectroscopy, and Jugular Venous Oximetry in Head Injury. Anesthesia & Analgesia, 97, 851-856. https://doi.org/10.1213/01.ANE.0000072541.57132.BA

  25. 25. Kirkpatrick, P.J., Smielewski, P., Czosnyka, M., et al. (1995) Near-Infrared Spectroscopy Use in Patients with Head Injury. Journal of Neurosurgery, 83, 963-970. https://doi.org/10.3171/jns.1995.83.6.0963

  26. 26. Leal-Noval, S.R., Cayuela, A., Arellano-Orden, V., et al. (2010) Invasive and Noninvasive Assessment of Cerebral Oxygenation in Patients with Severe Traumatic Brain Injury. Intensive Care Medicine, 36, 1309-1317. https://doi.org/10.1007/s00134-010-1920-7

  27. 27. Brawanski, A., Faltermeier, R., Rothoerl, R.D., et al. (20022) Comparison of Near-Infrared Spectroscopy and Tissue Po2 Time Series in Patients after Severe Head Injury and Aneu-rysmal Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow & Metabolism, 22, 605-611. https://doi.org/10.1097/00004647-200205000-00012

  28. 28. Davies, D.J., Clancy, M., Dehghani, H., et al. (2019) Cerebral Oxygenation in Traumatic Brain Injury: Can a Non-Inva- sive Frequency Domain Near-Infrared Spectroscopy Device Detect Changes in Brain Tissue Oxygen Tension as Well as the Established Invasive Monitor? Journal of Neuro-trauma, 36, 1175-1183. https://doi.org/10.1089/neu.2018.5667

  29. 29. Ter Minassian, A., Poirier, N., Pierrot, M., et al. (1999) Correlation between Cerebral Oxygen Saturation Measured by Near-Infrared Spectroscopy and Jugular Oxy-gen Saturation in Patients with Severe Closed Head Injury. Anesthesiology, 91, 985-990. https://doi.org/10.1097/00000542-199910000-00018

  30. 30. Kampfl, A., Pfausler, B., Denchev, D., Jaring, H.P. and Schmutzhard, E. (1997) Near Infrared Spectroscopy (NIRS) in Patients with Severe Brain Injury and Elevated Intracrani-al Pressure. In: James, H.E., et al., Eds., Brain Edema X. Acta Neurochirurgica Supplements, Vol. 70, Springer, Vienna, 112-114. https://doi.org/10.1007/978-3-7091-6837-0_35

  31. 31. Dunham, C.M., Sosnowski, C., Porter, J.M., et al. (2002) Correlation of Noninvasive Cerebral Oximetry with Cerebral Perfusion in the Severe Head Injured Patient: A Pilot Study. The Journal of Trauma: Injury, Infection, and Critical Care, 52, 40-46. https://doi.org/10.1097/00005373-200201000-00009

  32. 32. Davie, S., Mutch, W., Monterola, M., Fidler, K. and Funk, D.J. et al. (2021) The Incidence and Magnitude of Cerebral Desaturation in Traumatic Brain Injury: An Observa-tional Cohort Study. Journal of Neurosurgical Anesthesiology, 33, 258-262.

  33. 33. Taussky, P., O’Neal, B., Daugherty, W.P., et al. (2012) Validation of Frontal Near-Infrared Spectroscopy as Noninvasive Bedside Monitoring for Regional Cerebral Blood Flow in Brain-Injured Patients. Neurosurgical Focus, 32, Article No. E2. https://doi.org/10.3171/2011.12.FOCUS11280

  34. 34. Vilke, A., Bilskiene, D., Saferis, V., et al. (2014) Predictive Value of Early Near-Infrared Spectroscopy Monitoring of Patients with Traumatic Brain Injury. Medicina, 50, 263-268. https://doi.org/10.1016/j.medici.2014.10.001

  35. 35. Jacob, M., Kale, M.N. and Hasnain, S. (2019) Correlation be-tween Cerebral Co-Oximetry (rSO2) and Outcomes in Traumatic Brain Injury Cases: A Prospective, Observational Study. Medical Journal Armed Forces India, 75, 190-196. https://doi.org/10.1016/j.mjafi.2018.08.007

  36. 36. Rivera-Lara, L., Geocadin, R., Zorrilla-Vaca, A., et al. (2020) Near-Infrared Spectroscopy-Derived Cerebral Autoregulation Indices Independently Predict Clinical Outcome in Acutely Ill Comatose Patients. Journal of Neurosurgical Anesthesiology, 32, 234-241. https://doi.org/10.1097/ANA.0000000000000589

  37. 37. Durnev, V., Filipce, V., Brzanov, A.G., et al. (2017) Cere-bral Oxygenation Non Invasive Monitoring in Traumatic Brain Injury—А Pilot Study. Macedonian Medical Review, 71, 113-118. https://doi.org/10.1515/mmr-2017-0019

  38. NOTES

    *通讯作者。

期刊菜单