Advances in Clinical Medicine
Vol. 13  No. 09 ( 2023 ), Article ID: 72586 , 9 pages
10.12677/ACM.2023.1392052

间充质干细胞治疗炎症性疾病的研究进展

陈于1,曾勇2

1重庆医科大学第二临床学院,重庆

2重庆医科大学附属第二医院急诊科,重庆

收稿日期:2023年8月19日;录用日期:2023年9月14日;发布日期:2023年9月18日

摘要

炎症性疾病是存在于人类生命活动中的普遍性疾病,严重威胁着人们的生命健康。目前,炎症性疾病的治疗方法主要是药物对症治疗。由于缺乏有效的治疗方式,患者面临预后不良的问题。间充质干细胞(mesenchymal stem cells, MSCs)具有抗炎和免疫调节、分化成损伤细胞、归巢到炎症部位等功能,所有这些都是炎症性疾病治疗的关键点。尽管目前国内外有大量制备MSCs的方法,但由于缺乏统一标准,导致制备的MSCs数量、活性、纯度、表型和分化潜能有较大差异,从而进一步导致临床试验效果各异和基础研究结论不一。本文就MSCs的制备、MSCs在炎症性疾病中的作用机制、MSCs在炎症性疾病中的应用进行综述。

关键词

间充质干细胞,炎症性疾病,治疗,制备

Research Progress in the Treatment of Inflammatory Diseases with Mesenchymal Stem Cells

Yu Chen1, Yong Zeng2

1The Second Clinical College of Chongqing Medical University, Chongqing

2Department of Emergency, The Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Aug. 19th, 2023; accepted: Sep. 14th, 2023; published: Sep. 18th, 2023

ABSTRACT

Inflammatory diseases are universal diseases existing in human life activities, which seriously threaten people’s life and health. At present, the treatment of inflammatory diseases is mainly drug symptomatic treatment. Due to the lack of effective treatment, patients face a poor prognosis. mesenchymal stem cells (MSCs) have functions such as anti-inflammatory and immune regulation, differentiation into damaged cells, and homing to inflammatory sites, all of which are key points in the treatment of inflammatory diseases. Although there are a large number of methods for preparing MSCs at home and abroad, due to the lack of unified standards, the number, activity, purity, phenotype and differentiation potential of prepared MSCs are quite different, which further leads to different clinical trial effects and different basic research conclusions. This article reviews the preparation of MSCs, the mechanism of action of MSCs in inflammatory diseases, and the application of MSCs in inflammatory diseases.

Keywords:Mesenchymal Stem Cells, Inflammatory Diseases, Treatment, Preparation

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

炎症是机体为应对各种有害刺激时产生的一种保护性免疫反应,这些刺激包括病原体、受损细胞、化学物质或自身免疫。其中较弱的炎症反应导致机体的持续感染,而过度的炎性反应会引起炎症性疾病的发生 [1] 。炎症的主要症状包括充血、细胞和组织增生、代谢增强和局部感染引起的血管扩张、水肿和炎症部位白细胞增多。虽然炎症对机体起保护作用,但不受控制或未解决的炎症可导致组织损伤,促炎因子和抑炎因子失衡,炎症会持续性存在,从而导致慢性炎症的形成 [2] 。目前,治疗炎症的传统药物以非甾体类抗炎药(NSAIDs)、肾上腺皮质激素类药和用于缓解疾病的抗风湿药物(DMARDs)为主,这些药物的一个重要机制是减少炎症性白细胞的募集从而抑制适应性免疫反应 [3] 。间充质干细胞可以作为一种新的治疗策略,以实现改善炎症性疾病的目的。

1. MSCs的制备

1970年,Fridenstein等 [4] 首次从大鼠骨髓中分离出MSCs,并提出这是一种多能干细胞。国际细胞治疗学会在2006年提出了最低标准,用于定义MSCs:1) MSCs在标准培养条件下具有塑料粘附性。2) MSCs的表面标记物包括CD105、CD73和CD90,并且不表达造血标志物CD45、CD34、CD14、CD11b、CD79α、CD19和HLA-DR。3) MSCs可以通过体外实验展示其分化为脂肪细胞、成骨细胞以及成软骨细胞的能力 [5] 。目前国内外常用的MSCs制备方法包括贴壁筛选法、密度梯度离心法、流式细胞仪分选法和免疫磁珠分离法。其制备过程通常包括分离各种组织,消化以获得细胞,并在培养瓶中培养,随后丢弃非贴壁细胞并连续培养扩增贴壁细胞至所需传代。

贴壁筛选法是根据MSCs塑料粘附特性,排除无法附着于塑料表面的造血干细胞及造血细胞,并通过使用胰酶消化作用去除成纤维细胞等不易被胰酶消化的非干细胞杂质。制备方法如下:首先:骨髓制备成细胞悬液,然后将其接种在培养皿中,每3天更换培养基以去除未能附着于表面的细胞,经过胰酶消化并进行传代,从而逐渐纯化BMSCs [6] 。

密度梯度离心法通过使用低黏度和低渗透压的密度梯度溶液,根据MSCs与其它细胞密度的差异,从而将其分离出来 [7] 。将细胞悬液加入到密度梯度离心液中,经过离心使得不同类型细胞在其等密度点沉降,然后吸取经特定位置富集的细胞。在进行离心分层的过程中,红细胞及其他成熟细胞会以大于1.080 g/dL的比例沉降于底部。其次是一些单核细胞,包括BMSCs、造血干细胞、单核细胞等,它们会保持在密度为1.053至1.073 g/dL的血浆溶液中,直到离心过程结束。血浆及其溶解物悬浮密度较低,小于1.050 g/dL。而脂肪细胞由于密度最低,所以会漂浮在最上层 [8] 。此后再通过800 g转速离心20 min,可以观察到离心管内液体被明显分层。在分离液之上会形成一个灰白色云雾状层,这就是单个核细胞层。在获取该层细胞后,再通过差速贴壁法去除未贴壁细胞,从而获得纯化的BMSCs。

细胞表面标志物分选法包括流式细胞仪分选法和免疫磁珠分离法。流式细胞仪分选法利用MSCs细胞体积及其表达标志物的特征,将其从混合物中分离出来 [9] 。免疫磁珠分离法则是根据MSCs表面抗原的存在或缺失的进行正选或负选,通过包被抗体的磁珠从而获得相对纯化的MSCs [10] 。

长时间高速离心导致细胞活力降低,且密度梯度离心法操作技术难度大,推广困难;而流式细胞仪分选法和免疫磁珠法对实验条件要求高,费用昂贵,即使能短时间内培养出高纯度的MSCs,性价比低,临床上应用不多;贴壁筛选法可以更好地保护细胞活力,并且操作全程不会对细胞活性造成损伤,同时具有快速、简单、经济的特点,因此在实验室及临床上广泛应用 [11] 。但是MSCs的分离纯化和培养扩增至今仍缺乏统一的标准。

2. MSCs的作用机制

MSCs通过调节免疫细胞控制抗炎、归巢到炎症部位、分化成损伤细胞等,从而促进炎症性疾病恢复。

2.1. 免疫调节

MSCs主要通过与各种免疫细胞的相互作用,通过细胞间接触和旁分泌发挥免疫调节功能 [12] 。

2.1.1. 先天性免疫

巨噬细胞是天然免疫屏障的重要细胞组分,首先感知到外来的危险信号并做出快速反应,吞噬和清除外来生物体和凋亡细胞。巨噬细胞可分为两种亚型:M1巨噬细胞和M2巨噬细胞,M1型通过分泌促炎细胞因子如肿瘤坏死因子(TNF)-α、白细胞介素(IL)-1β和IL-6来诱导炎症反应,而M2型通过释放抗炎细胞因子如IL-10来发挥抗炎反应。这两种活动的不平衡会导致持续的炎症,阻碍正常的修复过程,对组织修复造成损害。MSCs促进巨噬细胞表型从M1转变为M2,通过减少IL-6和IL-23的生成,增加IL-10和TGF-β的表达,发挥抗炎作用 [13] 。Geng等 [14] 发现MSCs可以通过激活M2型巨噬细胞来改善炎症,研究表明与MSCs共培养的巨噬细胞可以获得抗炎M2表型,增加CD206和分泌型细胞因子IL-10的表达。此外,将正常的巨噬细胞、脂多糖刺激的巨噬细胞和MSCs共培养的巨噬细胞分别注射到急性肾损伤(AKI)小鼠中,发现输注正常巨噬细胞和脂多糖刺激的巨噬细胞的小鼠遭受了更严重的功能和组织学损伤,而输注MSCs共培养的巨噬细胞的小鼠肾损伤更轻。

中性粒细胞是炎症反应的第一效应物,在炎症早期迅速被招募到炎症感染部位,但是,中性粒细胞的过度募集可能会放大炎症效应并加重炎症损伤。中性粒细胞除了可通过产生更高水平的活性氧(ROS)、髓过氧化物酶(MPO)以及抗微生物肽而表现出较强的杀菌活性外,还可产生更低水平的促炎细胞因子(如IL-17A、IFN-γ和IL-6),从而在炎症性肠病中产生保护作用 [15] 。MSCs可减少促炎细胞因子的产生,增加IL-10的产生,从而减少中性粒细胞向炎症部位的流入和积聚 [16] 。MSCs还可以通过调节免疫调节因子(如TGF-β, PGE2, HLA-G5)和膜结合分子(PD-L1, VCAM-1和Gal-1),从而抑制T细胞的活化。在葡聚糖硫酸钠(DSS)诱导的急性结肠炎小鼠模型中,产生IL-22的中性粒细胞靶向结肠上皮细胞以增加保护性抗微生物肽的产生 [17] 。

树突状细胞(DC)是人免疫系统中的主要抗原呈递细胞。活化的DC可以产生多种促炎细胞因子(如TNF-α, IL-1β, IL-6和IL-12),并表达高水平的共刺激分子(如CD40, CD80和CD86),从而促进炎症的发展。MSCs通过影响表型、细胞因子释放、分化和成熟,从而削弱其抗原呈递能力 [18] 。MSCs还可通过阻止DC对CCL19的迁移能力,从而干扰了DC抗原的呈递 [19] 。MSCs减少成熟树突状细胞(DC)上主要组织相容性复合体II类、CD40和CD86共刺激分子的表达,从而抑制T细胞增殖,此外,MSCs可通过IL-6依赖性机制抑制树突细胞的分化 [20] 。MSCs可以通过释放TSG-6来抑制DC的成熟和功能,在MSCs存在的情况下,成熟DC表面表型(CD80, CD86, MHC-II和CD11c)的低表达。此外,当与MSCs共培养时,典型的DC功能,如IL-12的产生和引发T细胞的能力下降 [21] 。因此,MSCs可维持树突状细胞的不成熟或半成熟抑制表型。Benkhoucha等 [22] 发现HGF预处理的树突状细胞可使程序性死亡配体1 (PD-L1)的表达增加,并能够促进分泌IL-10的调节性T细胞的发育。总之,MSCs主要破坏DC的三个主要功能,即抗原呈递、共刺激分子表达的上调和迁移的能力 [12] 。

自然杀伤(NK)细胞是自然免疫系统的主要效应细胞,不依赖抗体和补体,即能直接杀死靶细胞。MSCs能抑制IL-2诱导的灭活NK细胞的增殖;此外,IL-2激活的NK细胞能有效地溶解MSCs,其中活化的NK受体NKp30、NKG2D和DNAM-1是负责诱导NK介导的针对MSCs的细胞毒性的主要受体 [23] 。研究表明,IFN-γ处理的MSCs可以通过增加HLA类的表达来阻止NK介导的细胞溶解效应 [23] 。进一步的研究发现,MSCs可通过分泌可溶性因子,包括转化生长因子-b1 (TGF-b1)和PGE2,改变NK细胞的表型,从而抑制其增殖 [24] 。Spaggiari等 [25] 发现吲哚胺2, 3-IDO和PGE2对NK细胞发挥协同作用,有助于介导MSCs诱导的抑制。此外,据报道,MSCs通过释放的HLA-G5抑制NK细胞介导的细胞溶解作用 [26] 。

2.1.2. 适应性免疫

T淋巴细胞是适应性免疫系统的主要效应细胞。MSCs被证明在混合淋巴细胞反应(MLR)中抑制CD4+和CD8+ T细胞的增殖,此外,MSCs还可抑制T细胞对其同源抗原的反应 [27] 。MSCs可以通过分泌CXCL9、CXCL10、18和CCL2 (单核细胞趋化因子蛋白-1)来化学吸引T淋巴细胞。研究表明,MSCs可抑制幼稚的和记忆T细胞与抗原呈递细胞交流的反应 [27] 。Ren等 [28] 发现当MSCs与T细胞共培养时,由于细胞间粘附分子-1 (ICAM-1)和血管细胞粘附分子-1 (VCAM-1)的表达增加,MSCs显著上调了T细胞的粘附能力,从而对T细胞活化和白细胞募集到炎症部位至关重要。与CD4+ T细胞共培养的MSCs通过激活Notch1/FOXP3通路,从而提高CD4+ CD25 FOXP3+细胞的百分比 [29] 。Wang等 [30] 发现人类胎盘MSCs可抑制T细胞增殖,其机制是通过表达高水平的细胞粘附分子程序性死亡配体1和2 (PD-L1和PD-L2)来阻止细胞周期。此外,骨髓来源的MSCs可表达高水平的Toll样受体(TLR) 3、4,它们负责核因子-kB (NF-kB)活性和细胞因子的产生,TLR3和TLR4的表达表明在感染情况下可恢复有效的T细胞反应 [31] 。当MSCs受到干扰素-γ和一种额外的促炎细胞因子(如TNFα、IL1α或β)的刺激时,激发MSCs高水平表达几种趋化因子和诱导型一氧化氮合酶(iNOS),趋化因子驱使T细胞迁移到MSCs附近,在那里T细胞的反应性被一氧化氮(NO)抑制 [32] 。

MSCs还可通过细胞间接触影响B细胞。研究表明MSCs可抑制B细胞的增殖,这种作用依赖于T细胞的存在,但是,MSCs直接靶向B细胞分化,不依赖于T细胞。在MSCs存在的情况下,成浆细胞的形成减少,并诱导产生调节B细胞 [33] 。此外,MSC和B细胞接触会导致MSCs产生的血管内皮生长因子(VEGF)增加,促进B细胞内的AKT磷酸化,抑制caspase 3介导B细胞的凋亡 [34] 。除了直接接触,MSCs还通过分泌趋化因子促进B细胞的趋化和运动 [35] 。MSCs通过G0/G1的细胞周期阻滞从而抑制B细胞的增殖,此过程主要由可溶化性因子介导 [36] 。MSCs可通过改变了细胞外反应激酶和p38丝裂原激活蛋白激酶途径的磷酸化模式,增强B淋巴细胞的活力,并阻断了其在G0/G1期的细胞周期 [37] 。

2.2. 归巢

归巢是指MSCs在血管系统内阻滞,然后跨过内皮细胞进行迁移 [38] 。归巢可分为非系统和系统归巢两种 [39] 。MSCs被移植到靶组织,然后通过趋化因子梯度被迁移到损伤部位,这种方式被称为非系统性归巢;相反,在系统归巢中,MSCs首先被募集进入到血流中,然后经历一系列步骤退出循环并迁移到损伤部位。全身归巢大致可分为五个步骤:1) 束缚和滚动;2) 激活;3) 逮捕;4) 移行或滞育;5) 迁移 [40] 。

2.3. 分化

分化也是MSCs治疗炎症性疾病的关键机制,它具有炎症损伤恢复和促进组织修复所需的强大增殖、分化、趋化和免疫调节特性 [41] 。MSCs可以分化为中胚层细胞,如软骨细胞、成骨细胞、内皮细胞、脂肪细胞,并且还具备转分化为其他胚层细胞的能力,如神经元细胞及肝卵圆细胞 [42] 。研究表明,MSCs可在结肠炎小鼠的肠道损伤部位直接分化为肠上皮细胞或内皮细胞,还可通过与肠上皮干细胞结合并分泌细胞因子保护胃黏膜 [43] 。此外,MSCs还可以通过分化为血管内皮细胞,促进血管生成,改善局部血供,在组织修复中发挥显著作用 [44] 。在生理条件下,MSCs可以通过分化为肾小管上皮细胞和肾小球内皮细胞从而促进急性肾损伤恢复和维持肾功能 [45] 。

2.4. 旁分泌

MSCs的另一个关键机制是抗炎因子(趋化因子、生长因子和细胞因子)的旁分泌,包括转化生长因子-β1 (TGF-β1)、肿瘤坏死因子-α (TNF-α)、前列腺素E2、干扰素-γ、肝细胞生长因子(HGF)、成纤维细胞生长因子(FGF)、双加氧酶(IDO)和一氧化氮(NO)等 [46] 。这些抗炎因子可增加血管生成,减少凋亡和纤维化,增强神经元存活和分化,抑制纤维化(疤痕形成)和凋亡,限制局部炎症,调节免疫反应 [47] 。此外,MSCs还可通过旁分泌通路分泌外泌体,一种与亲代MSCs相似的免疫调节功能的细胞外囊泡,MSC-Exos可以通过将它们的成分(如DNA、蛋白质/肽、mRNA、微小RNA (miRNA)、脂质和细胞器)转移到受体细胞来模拟亲代MSC的功能 [48] 。

3. MSCs在炎症性疾病中的应用

MSCs可用于治疗多种炎症性疾病,包括炎症性肠病、I型糖尿病、特应性皮炎、系统性红斑狼疮、类风湿关节炎、骨关节炎、多发性硬化症、移植物抗宿主疾病、神经退行性疾病(帕金森病)等。在一项为评估局部注射MSCs治疗克罗恩病狭窄的安全性及有效性的临床试验中 [49] ,对10例克罗恩病患者进行了11次MSCs注射,结果显示MSCs注射治疗克罗恩病具有良好的耐受性,患者狭窄完全或部分消退。在一项包括10名初诊I型糖尿病患者的随机、三盲、安慰剂对照的I~II期临床试验中 [50] ,患者静脉注射自体MSCs1年后,低血糖发作的次数减少、HbA1c和c肽水平下降、病人的生活质量得到了显著的改善。此外,一项关于评估MSCs在实验性特应性皮炎模型中的免疫调节作用的研究中发现 [51] ,MSCs可以通过降低嗜酸性粒细胞、免疫球蛋白E (IgE)和前列腺素G2 (PEG2)的水平,并提高Tregs的百分比,从而减轻特应性皮炎相应症状。2010年此外,一项为确定异基因间充质干细胞移植(MSCT)治疗难治性先天性红斑狼疮(SLE)的安全性和有效性的临床试验,15名持续活动的SLE患者在接受MSCs治疗后SLESDAI评分和24小时蛋白尿显著下降,临床症状均有所改善 [52] 。在一项15例膝骨关节炎患者的前瞻性、单盲、随机对照试验研究中 [53] ,经关节内注射自体骨髓抽吸浓缩物和富含血小板血浆12个月后,关节炎患者症状、功能和膝关节相关生活质量明显改善。另外,一项旨在评估MSCs对活动性类风湿关节炎患者的安全性及有效性的非随机的、开放的I/IIa的临床试验中 [54] ,15名年龄在18~65岁的符合条件的患者在接受MSCs后的第4、12、26和52周进行了随访,发现虽然炎症标志物、TNF-α、IL-6和ESR的水平与基线相比保持不变,但两种S/TJC的ACR66/68评分均显示出显著改善,与基线相比具有较大的疗效(ES) (p < 0.01, ES = 0.83和p < 0.001, ES = 0.93)。由于MSCs具有免疫调节和生物再生特性,一项基于上述特性的旨在评估其应用于多发性硬化症的安全性及疗效的双盲、随机对照的I/IIa的试验中 [55] ,通过定期随访、实验室评估及影像学分析发现,21名多发性硬化症患者均未观察到严重的即刻或晚期不良事件。此外,在一项旨在评估MSCs治疗帕金森病的安全性及耐受性的单中心、开放、剂量递增的I期临床试验中 [56] ,研究表明在最高剂量的52周时,包括肿瘤坏死因子-α、趋化因子(C-C基序)配体22等外周炎症标志物较前减少,而脑源性神经营养因子有所增加,患者症状有所缓解。

4. 总结与展望

综上所述,MSCs作为一种非传统治疗方法,在治疗炎症性疾病方面具有广阔应用前景。MSCs具有抗炎和免疫调节、分化成损伤细胞、归巢到炎症部位、促进细胞增殖和血管生成等功能,从而有效促进炎症性疾病的治疗。此外,MSCs还具备来源充足、取材方便、自身移植无免疫排斥反应和不涉及伦理学问题等诸多优点。但是,不同的研究者有不同的分离和培养MSCs的方法、不同的培养条件(如补充剂、细胞接种密度、氧浓度、供体的年龄)可能会影响细胞增殖和分化潜能,细胞移植剂量、移植频率、细胞移植时间窗的选择、给药途径、注射速率等技术问题尚未得到解决,因此,无法保证其能达到最佳的临床效果和安全性。此外,作为一种细胞疗法,MSCs主要的风险是致瘤性、促炎性和纤维化。因此,仍需要进一步进行更多的多中心、大样本的队列研究来验证MSCs治疗炎症性疾病的有效性和安全性。

致谢

感谢重庆医科大学附属第二医院感染病学实验室提供的研究平台,感谢重庆医科大学附属第二医院中药冲洗联合NPWT对糖尿病足创面细菌生物膜的清除效果研究课题组的老师与同学在本文撰写方面提供的宝贵意见和帮助。

基金项目

重庆市卫生计生委中医药科技项目(ZY201802020)。

文章引用

陈 于,曾 勇. 间充质干细胞治疗炎症性疾病的研究进展
Research Progress in the Treatment of Inflammatory Diseases with Mesenchymal Stem Cells[J]. 临床医学进展, 2023, 13(09): 14678-14686. https://doi.org/10.12677/ACM.2023.1392052

参考文献

  1. 1. Visan, I. (2020) Inflammasomes Drive Tau Pathology. Nature Immunology, 21, Article No. 8. https://doi.org/10.1038/s41590-019-0572-1

  2. 2. Alessandri, A.L., Sousa, L.P., Lucas, C.D., et al. (2013) Resolu-tion of Inflammation: Mechanisms and Opportunity for Drug Development. Pharmacology & Therapeutics, 139, 189-212. https://doi.org/10.1016/j.pharmthera.2013.04.006

  3. 3. Iqbal, A.J., Fisher, E.A. and Greaves, D.R. (2016) Inflam-mation—A Critical Appreciation of the Role of Myeloid Cells. Microbiology Spectrum, 4. https://doi.org/10.1128/microbiolspec.MCHD-0027-2016

  4. 4. Friedenstein, A.J., Gorskaja, J.F. and Kulagina, N.N. (1976) Fibroblast Precursors in Normal and Irradiated Mouse Hematopoietic Organs. Experimental Hematology, 4, 267-274.

  5. 5. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006) Minimal Criteria for Defining Multipotent Mesen-chymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy, 8, 315-317. https://doi.org/10.1080/14653240600855905

  6. 6. Polisetti, N., Chaitanya, V.G., Babu, P.P. and Vemuganti, G.K. (2010) Isolation, Characterization and Differentiation Potential of Rat Bone Marrow Stromal Cells. Neurology India, 58, 201-208. https://doi.org/10.4103/0028-3886.63789

  7. 7. 段长伟, 柴彦杰, 赵疆东, 等. 骨髓间充质干细胞分离与培养技术[J]. 宁夏医学杂志, 2021, 43(6): 573-576. https://doi.org/10.13621/j.1001-5949.2021.06.0573

  8. 8. Insausti, C.L., Blanquer, M.B., Olmo, L.M., et al. (2012) Isolation and Characterization of Mesenchymal Stem Cells from the Fat Layer on the Density Gradient Separated Bone Marrow. Stem Cells and Development, 21, 260-272. https://doi.org/10.1089/scd.2010.0572

  9. 9. Zohar, R., Sodek, J. and McCulloch, C.A. (1997) Characterization of Stromal Progenitor Cells Enriched by Flow Cytometry. Blood, 90, 3471-3481. https://doi.org/10.1182/blood.V90.9.3471

  10. 10. Encina, N.R., Billotte, W.G. and Hofmann, M.C. (1999) Immuno-magnetic Isolation of Osteoprogenitors from Human Bone Marrow Stroma. Laboratory Investigation: A Journal of Technical Methods and Pathology, 79, 449-457.

  11. 11. 刘元果 & 刘志勇. (2015).大鼠骨髓间充质干细胞分离、培养与鉴定.现代医学(03),291-296.

  12. 12. Zhou, Y., Yamamoto, Y., Xiao, Z. and Ochiya, T. (2019) The Immunomodulatory Functions of Mesenchymal Stromal/Stem Cells Mediated via Paracrine Activity. Journal of Clinical Medicine, 8, Article No. 1025. https://doi.org/10.3390/jcm8071025

  13. 13. Song, W.J., Li, Q., Ryu, M.-O., et al. (2018) TSG-6 Released from In-traperitoneally Injected Canine Adipose Tissue-Derived Mesenchymal Stem Cells Ameliorate Inflammatory Bowel Dis-ease by Inducing M2 Macrophage Switch in Mice. Stem Cell Research & Therapy, 9, Article No. 91. https://doi.org/10.1186/s13287-018-0841-1

  14. 14. Geng, Y., Zhang, L., Fu, B., et al. (2014) Mesenchymal Stem Cells Ameliorate Rhabdomyolysis-Induced Acute Kidney Injury via the Activation of M2 Macrophages. Stem Cell Re-search & Therapy, 5, Article No. 80. https://doi.org/10.1186/scrt469

  15. 15. Zhou, G., Yu, L., Fang, L., et al. (2018) CD177+ Neutrophils as Functionally Activated Neutrophils Negatively Regulate IBD. Gut, 67, 1052-1063. https://doi.org/10.1136/gutjnl-2016-313535

  16. 16. Ye, Q., Wang, B. and Mao, J. (2020) The Pathogenesis and Treatment of the ‘Cytokine Storm’ in COVID-19. The Journal of Infection, 80, 607-613. https://doi.org/10.1016/j.jinf.2020.03.037

  17. 17. Zindl, C.L., Lai, J.-F., Lee, Y.K., et al. (2013) IL-22-Producing Neutrophils Contribute to Antimicrobial Defense and Restitution of Colonic Epithelial Integrity during Colitis. Proceed-ings of the National Academy of Sciences of the United States of America, 110, 12768-12773. https://doi.org/10.1073/pnas.1300318110

  18. 18. Bacskai, I., Mázló, A., Kis-Tóth, K., et al. (2015) Mesenchymal Stromal Cell-Like Cells Set the Balance of Stimulatory and Inhibitory Signals in Monocyte-Derived Dendritic Cells. Stem Cells and Development, 24, 1805-1816. https://doi.org/10.1089/scd.2014.0509

  19. 19. English, K., Barry, F.P. and Mahon, B.P. (2008) Murine Mesenchymal Stem Cells Suppress Dendritic Cell Migration, Maturation and Antigen Presentation. Immunology Letters, 115, 50-58. https://doi.org/10.1016/j.imlet.2007.10.002

  20. 20. Djouad, F., Charbonnier, L.-M., et al. (2007) Mesenchymal Stem Cells Inhibit the Differentiation of Dendritic Cells through an Interleukin-6-Dependent Mechanism. Stem Cells, 25, 2025-2032. https://doi.org/10.1634/stemcells.2006-0548

  21. 21. Liu, Y., Yin, Z., Zhang, R., et al. (2014) MSCs Inhibit Bone Marrow-Derived DC Maturation and Function through the Release of TSG-6. Biochemical and Biophysical Research Communications, 450, 1409-1415. https://doi.org/10.1016/j.bbrc.2014.07.001

  22. 22. Benkhoucha, M., Molnarfi, N., et al. (2014) Hepatocyte Growth Factor Limits Autoimmune Neuroinflammation via Glucocorticoid-Induced Leucine Zipper Expression in Dendritic Cells. Journal of Immunology, 193, 2743-2752. https://doi.org/10.4049/jimmunol.1302338

  23. 23. Spaggiari, G.M., Capobianco, A., Becchetti, S., Mingari, M.C. and Moretta, L. (2006) Mesenchymal Stem Cell-Natural Killer Cell Interactions: Evidence That Activated NK Cells Are Ca-pable of Killing MSCs, Whereas MSCs Can Inhibit IL-2-Induced NK-Cell Proliferation. Blood, 107, 1484-1490. https://doi.org/10.1182/blood-2005-07-2775

  24. 24. Sotiropoulou, P.A., Perez, S.A., Gritzapis, A.D., Baxevanis, C.N. and Papamichail, M. (2006) Interactions between Human Mesenchymal Stem Cells and Natural Killer Cells. Stem Cells, 24, 74-85. https://doi.org/10.1634/stemcells.2004-0359

  25. 25. Spaggiari, G.M., Capobianco, A., et al. (2008) Mesenchymal Stem Cells Inhibit Natural Killer-Cell Proliferation, Cytotoxicity, and Cytokine Production: Role of Indoleamine 2,3-Dioxygenase and Prostaglandin E2. Blood, 111, 1327-1333. https://doi.org/10.1182/blood-2007-02-074997

  26. 26. Selmani, Z., Naji, A., Zidi, I., et al. (2008) Human Leukocyte Antigen-G5 Secretion by Human Mesenchymal Stem Cells Is Required to Suppress T Lymphocyte and Natural Killer Function and to Induce CD4+CD25highFOXP3+ Regulatory T Cells. Stem Cells, 26, 212-222. https://doi.org/10.1634/stemcells.2007-0554

  27. 27. Krampera, M., Glennie, S., Dyson, J., et al. (2003) Bone Marrow Mesenchymal Stem Cells Inhibit the Response of Naive and Memory Antigen-Specific T Cells to Their Cognate Peptide. Blood, 101, 3722-3729. https://doi.org/10.1182/blood-2002-07-2104

  28. 28. Ren, G., Zhao, X., Zhang, L., et al. (2010) Inflammatory Cyto-kine-Induced Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 in Mesenchymal Stem Cells Are Critical for Immunosuppression. Journal of Immunology, 184, 2321-2328. https://doi.org/10.4049/jimmunol.0902023

  29. 29. Del Papa, B., Sportoletti, P., Cecchini, D., et al. (2013) Notch1 Modulates Mesenchymal Stem Cells Mediated Regulatory T-Cell Induction. European Journal of Immunology, 43, 182-187. https://doi.org/10.1002/eji.201242643

  30. 30. Wang, G., Zhang, S., et al. (2013) Expression and Biological Function of Programmed Death Ligands in Human Placenta Mesenchymal Stem Cells. Cell Biology International, 37, 137-148. https://doi.org/10.1002/cbin.10024

  31. 31. Liotta, F., Angeli, R., Cosmi, L., et al. (2008) Toll-Like Recep-tors 3 and 4 Are Expressed by Human Bone Marrow-Derived Mesenchymal Stem Cells and Can Inhibit Their T-Cell Modulatory Activity by Impairing Notch Signaling. Stem Cells, 26, 279-289. https://doi.org/10.1634/stemcells.2007-0454

  32. 32. Ren, G., Zhang, L., Zhao, X., et al. (2008) Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide. Cell Stem Cell, 2, 141-150. https://doi.org/10.1016/j.stem.2007.11.014

  33. 33. Franquesa, M., Mensah, F.K., Huizinga, R., et al. (2015) Human Adipose Tissue-Derived Mesenchymal Stem Cells Abrogate Plasmablast Formation and Induce Regulatory B Cells Independently of T Helper Cells. Stem Cells, 33, 880-891. https://doi.org/10.1002/stem.1881

  34. 34. Healy, M.E., Bergin, R., Mahon, B.P. and English, K. (2015) Mesenchymal Stromal Cells Protect against Caspase 3-Mediated Apoptosis of CD19+ Peripheral B Cells through Contact-Dependent Upregulation of VEGF. Stem Cells and Develop-ment, 24, 2391-2402. https://doi.org/10.1089/scd.2015.0089

  35. 35. Barrio, L., Cuevas, V.D., Menta, R., et al. (2014) Human Adipose Tissue-Derived Mesenchymal Stromal Cells Promote B-Cell Motility and Chemoattraction. Cytotherapy, 16, 1692-1699. https://doi.org/10.1016/j.jcyt.2014.07.012

  36. 36. Corcione, A., Benvenuto, F., Ferretti, E., et al. (2006) Human Mesenchymal Stem Cells Modulate B-Cell Functions. Blood, 107, 367-372. https://doi.org/10.1182/blood-2005-07-2657

  37. 37. Tabera, S., Pérez-Simón, J.A., Díez-Campelo, M., et al. (2008) The Effect of Mesenchymal Stem Cells on the Viability, Proliferation and Differentiation of B-Lymphocytes. Haemato-logica, 93, 1301-1309. https://doi.org/10.3324/haematol.12857

  38. 38. Karp, J.M. and Leng Teo, G.S. (2009) Mesenchymal Stem Cell Hom-ing: The Devil Is in the Details. Cell Stem Cell, 4, 206-216. https://doi.org/10.1016/j.stem.2009.02.001

  39. 39. Nitzsche, F., Müller, C., Lukomska, B., et al. (2017) Concise Re-view: MSC Adhesion Cascade-Insights into Homing and Transendothelial Migration. Stem Cells, 35, 1446-1460. https://doi.org/10.1002/stem.2614

  40. 40. Ullah, M., Liu, D.D. and Thakor, A.S. (2019) Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience, 15, 421-438. https://doi.org/10.1016/j.isci.2019.05.004

  41. 41. Han, Y., Li, X., Zhang, Y., et al. (2019) Mesenchymal Stem Cells for Regenerative Medicine. Cells, 8, Article No. 886. https://doi.org/10.3390/cells8080886

  42. 42. Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., et al. (2002) Pluripotency of Mesenchymal Stem Cells Derived from Adult Marrow. Nature, 418, 41-49. https://doi.org/10.1038/nature00870

  43. 43. Barker N. (2014) Adult Intestinal Stem Cells: Critical Drivers of Epithelial Homeostasis and Regeneration. Nature Reviews Molecular Cell Biology, 15, 19-33. https://doi.org/10.1038/nrm3721

  44. 44. Wang, C., Li, Y., Yang, M., et al. (2018) Efficient Differentiation of Bone Marrow Mesenchymal Stem Cells into Endothelial Cells in Vitro. European Journal of Vascular and Endovascular Sur-gery, 55, 257-265. https://doi.org/10.1016/j.ejvs.2017.10.012

  45. 45. De Almeida, D.C., Donizetti-Oliveira, C., Barbosa-Costa, P., et al. (2013) In Search of Mechanisms Associated with Mesenchymal Stem Cell-Based Therapies for Acute Kidney Injury. The Clinical Biochemist Reviews, 34, 131-144.

  46. 46. Li, N. and Hua, J. (2017) Interactions between Mesenchymal Stem Cells and the Immune System. Cellular and Molecular Life Sciences, 74, 2345-2360. https://doi.org/10.1007/s00018-017-2473-5

  47. 47. Caplan, A.I. and Dennis, J.E. (2006) Mesenchymal Stem Cells as Trophic Mediators. Journal of Cellular Biochemistry, 98, 1076-1084. https://doi.org/10.1002/jcb.20886

  48. 48. Baglio, S.R., Rooijers, K., Koppers-Lalic, D., et al. (2015) Human Bone Marrow- and Adipose-Mesenchymal Stem Cells Secrete Exosomes Enriched in Distinctive miRNA and tRNA Species. Stem Cell Research & Therapy, 6, Article No. 127. https://doi.org/10.1186/s13287-015-0116-z

  49. 49. Panés, J., García-Olmo, D., Van Assche, G., et al. (2016) Ex-panded Allogeneic Adipose-Derived Mesenchymal Stem Cells (Cx601) for Complex Perianal Fistulas in Crohn’s Dis-ease: A Phase 3 Randomised, Double-Blind Controlled Trial. Lancet, 388, 1281-1290. https://doi.org/10.1016/S0140-6736(16)31203-X

  50. 50. Izadi, M., Nejad, A.S.H., et al. (2022) Mesenchymal Stem Cell Transplantation in Newly Diagnosed Type-1 Diabetes Patients: A Phase I/II Randomized Placebo-Controlled Clini-cal Trial. Stem Cell Research & Therapy, 13, Article No. 264. https://doi.org/10.1186/s13287-022-02941-w

  51. 51. Kang, S.J., Gu, N.-Y., Byeon, J.S., et al. (2023) Immunomodu-latory Effects of Canine Mesenchymal Stem Cells in an Experimental Atopic Dermatitis Model. Frontiers in Veterinary Science, 10, Article 1201382. https://doi.org/10.3389/fvets.2023.1201382

  52. 52. Liang, J., Zhang, H., Hua, B., et al. (2010) Allogenic Mesenchy-mal Stem Cells Transplantation in Refractory Systemic Lupus Erythematosus: A Pilot Clinical Study. Annals of the Rheumatic Diseases, 69, 1423-1429. https://doi.org/10.1136/ard.2009.123463

  53. 53. Ruane, J.J., Ross, A., Zigmont, V., et al. (2021) A Single-Blinded Randomized Controlled Trial of Mesenchymal Stem Cell Therapy for the Treatment of Osteoarthritis of the Knee with Active Control. Journal of Stem Cells & Regenerative Medicine, 17, 3-17. https://doi.org/10.46582/jsrm.1701002

  54. 54. Vij, R., Stebbings, K.A., Kim, H., Park, H. and Chang, D. (2022) Safety and Efficacy of Autologous, Adipose-Derived Mesenchymal Stem Cells in Patients with Rheumatoid Arthritis: A Phase I/IIa, Open-Label, Non-Randomized Pilot Trial. Stem Cell Research & Therapy, 13, Article No. 88. https://doi.org/10.1186/s13287-022-02763-w

  55. 55. Nabavi, S.M., Karimi, S., Arab, L., et al. (2023) Intravenous Transplantation of Bone Marrow-Derived Mesenchymal Stromal Cells in Patients with Multiple Sclerosis, a Phase I/IIa, Double Blind, Randomized Controlled Study. Multiple Sclerosis and Related Disorders, 78, Article ID: 104895. https://doi.org/10.1016/j.msard.2023.104895

  56. 56. Schiess, M., Suescun, J., Doursout, M.F., et al. (2021) Alloge-neic Bone Marrow-Derived Mesenchymal Stem Cell Safety in Idiopathic Parkinson’s Disease. Movement Disorders, 36, 1825-1834. https://doi.org/10.1002/mds.28582

期刊菜单