﻿ 基于四元数插值的虚拟人运动框架研究 Research on Movement Framework of Virtual Human Based on Quaternion Interpolation

Computer Science and Application
Vol.06 No.11(2016), Article ID:19082,7 pages
10.12677/CSA.2016.611089

Research on Movement Framework of Virtual Human Based on Quaternion Interpolation

Qiaoqiao Wu, Han Wang, Peng Zhang, Jun Zhang

School of Computer Science & Technology, Wuhan Institute of Technology, Wuhan Hubei

Received: Nov. 10th, 2016; accepted: Nov. 26th, 2016; published: Nov. 29th, 2016

ABSTRACT

Quaternion interpolation method was proposed to present the rotation movements of virtual human, which can void the waste of time and space caused by the tedious calculations of matrix and the gimbal lock caused by the Euler angles. After the analysis and research on the walking, running, boxing of human beings, the movement framework of virtual human was established and the movements were simulated in the Visual Studio 2013 installed with OpenGL. The experimental results show that quaternion interpolation method can stimulate the movements of virtual human smoothly and the movement framework of virtual human is feasible.

Keywords:Quaternion Interpolation, Virtual Human, Movement Framework, OpenGL

1. 引言

2. 运动框架研究的基础

2.1. 四元数插值理论

(2-1)

(2-2)

2.2. OpenGL图形库简介

OpenGL (Open Graphics Library)是一个用于三维图像的专业的图形程序接口。在OpenGL中提供了一组功能强大但又非常基本的渲染函数，所有的高级绘图都是建立在这些函数的基础上完成的。它们都在 OpenGL 的基本函数库中：

OpenGL工具函数库(GLU)

OpenGL实用工具库(GLUT)

3. 虚拟人骨骼模型建立

4. 虚拟人运动控制技术

Figure 1. Connection diagram of joints and bones

5. 虚拟人的运动框架分析

6. 虚拟人运动的实现

7. 结束语

Figure 2. Walking of virtual human

Figure 3. Jumping of virtual human

Figure 4. Boxing of virtual human

Figure 5. Greeting of virtual human

Research on Movement Framework of Virtual Human Based on Quaternion Interpolation[J]. 计算机科学与应用, 2016, 06(11): 748-754. http://dx.doi.org/10.12677/CSA.2016.611089

1. 1. Xia, S.H. and Wang, Z.Q. (2009) Recent Advances on Virtual Human Synthesis. Science in China Series F: Information Sciences, 52, 741-757. https:/doi.org/10.1007/s11432-009-0088-7

2. 2. Philips, B. (1991) Interaction Behaviour for Bipedal Articulated Figures. Computerv Graphics, 25, 359-362. https:/doi.org/10.1145/127719.122756

3. 3. Korein, B. (1992) Techniques for Generating the Goal-Directed Motion of Articulated Structures. IEEE Computer Graphics and Applications, 2, 71-81.

4. 4. Zhao, J.M. and Badler, N.I. (1994) Inverse Kinematics Positioning Using Nonlinear Programming for Highly Articulated Figures. ACM Transactions on Graphics, 11, 313-336. https:/doi.org/10.1145/195826.195827

5. 5. Tolani, D., Goswami, A. and Badler, N.I. (2000) Real-Time Inverse Kinematics Techniques for Anthropomorphic Limbs. Graphical Models, 62, 353-388. https:/doi.org/10.1006/gmod.2000.0528

6. 6. 李丹. 计算机动画中运动生成与控制问题研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2008.

7. 7. 李卉. 三维人物动画关键技术的研究与实现[D]: [硕士学位论文]. 长沙: 中南大学, 2012。

8. 8. 贺怀清, 洪炳熔. 虚拟人实时运动控制的研究[J]. 计算机工程, 2000, 11(2): 145-150.