Advances in Clinical Medicine
Vol.08 No.02(2018), Article ID:24408,8 pages
10.12677/ACM.2018.82029

Establishment of a Cochlear Intoxication Model and Investigation on Peripheral Coding and Recognition of Ultrasonic Signals

Fusen Wang1, Chengcheng Huang2, Tiegang Li3, Qian Li4, Shaoyan Zhang1, Xinyu Zeng1, Chaoyan Wang1

1Department of Otorhinolaryngology, Southern Medical University Affiliated Shenzhen Baoan Hospital, Shenzhen Guangdong

2Department of Otorhinolaryngology, Wuhan General Hospital of PLA, Wuhan Hubei

3Molecular Imaging Center, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing

4Chinese People’s Liberation Army 301 Hospital ENT Research Institute, Beijing

Received: Mar. 19th, 2018; accepted: Apr. 11th, 2018; published: Apr. 18th, 2018

ABSTRACT

Objective: To make a cochlear injury model with a certain dose of gentamycin injection, and to use different frequencies and different intensity of bone-guided ultrasound to induce the cerebral cortex oxygen level dependence (BLOD) effect of magnetic resonance imaging (Region of Interest, ROI), to investigate the damage mechanism of gentamicin of cochlear hair cells and the identification of bone-guided ultrasound cochlear peripheral coding. Methods: The cochlear intoxication injury model of Guinea pig was made by the dosage of intraperitoneal injection of gentamicin, the ROI of the BLOD effect in the cerebral cortex was induced by 20 - 25 khz and 70 - 80 khz ultrasound, respectively, Immunofluorescence assay of outer hair cell (OHC) Prestin and inner hair cell (IHC) Otofelin was performed to verify the intoxication models. Results: Gentamicin intoxication can cause the injury of prestin and otofelin in the outer hair cells of the whole cochlea. The ROI extraction rate of BLOD effect in normal control group and guinea pig cochlea intoxication model induced by 30 - 35 khz Bone conduction ultrasounds (BCU) was 30% and 0%, 80 - 90 khz BCU was 20% and 20% respectively. Conclusion: Gentamicin intoxication in Guinea pigs can cause the injury of cochlear hair cells and the different injury of cochlear hair cells in different parts. The cochlea of gentamicin poisoned guinea pig can not feel lower frequency ultrasound, but can feel higher frequency ultrasound, suggesting that the space of the hair cell has the encoding function to the lower frequency ultrasound and the peripheral perception of high frequency BCU may not require the participation of cochlear hair cells.

Keywords:Ultrasound, Gentamicin, Cochlea, Hair Cell, fMRI

豚鼠耳毒性耳蜗损伤模型的建立与超声信号末梢编码识别

王富森1,黄成成2,李铁刚3,李 倩4,张少燕1,曾新宇1,王朝燕1

1南方医科大学附属深圳宝安医院耳鼻喉科,广东 深圳

2中国人民解放军武汉总医院耳鼻喉科,湖北 武汉

3中国医学科学院药物研究所分子影像中心,北京

4中国人民解放军301医院耳鼻喉科研究所,北京

收稿日期:2018年3月19日;录用日期:2018年4月11日;发布日期:2018年4月18日

摘 要

目的:用一定剂量庆大霉素腹腔注射制作耳蜗损伤模型;用不同频率、不同声强的骨导超声诱发大脑皮层血氧台水平依赖(BLOD)效应的磁共振成像(fMRI)感兴趣区(Region of interest, ROI),探究庆大霉素耳蜗毛细胞损伤机制及骨导超声耳蜗末梢编码识别。方法:以庆大霉素100 mg/kg的剂量腹腔注射14天制作豚鼠耳蜗中毒损伤模型,分别以20~25 kHz、70~80 kHz骨导超声诱发豚鼠大脑皮层BLOD效应的fMRI ROI,耳蜗中毒模型分别行外马达蛋白(Prestin)及内毛细胞Otofelin免疫荧光检测。结果:庆大霉素中毒可引起全耳蜗外毛细胞Prestin及内毛细胞Otofelin表达明显下降;30~35 Khz骨导超声诱发正常对照组及豚鼠耳蜗中毒模型大脑皮层BLOD效应的fMRI ROI引出率分别为30%、0%,80~90 kHz骨导超声引出率分别为20%、20%。结论:豚鼠庆大霉素中毒可引起全耳蜗外毛细胞的损伤,不同部位耳蜗毛细胞损伤程度有差异;庆大霉素中毒豚鼠耳蜗不能感受较低频率超声,但可感受较高频率超声,提示毛细胞的空间部位对较低频率超声频率具有编码功能,较高频率骨导超声的末梢感受可能不需耳蜗毛细胞的参与,可能直接刺激螺旋神经节或脑干相关神经核感受。

关键词 :超声,庆大霉素,耳蜗,毛细胞,fMRI

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

氨基甙类药物引起的内耳损伤的预防及康复是人类面临的极大困难。氨基甙类药物的耳蜗损伤范围广泛,且对不同部位Corti’s器损伤程度有一定选差异,总之,氨基甙类药物对内耳的损伤机制尚未完全明了 [1] [2] 。氨基甙类药物造成听力严重受损的患者大部分为语后聋,电子耳蜗植入的应用受到很大限制,寻求合适的康复手段尤为重要。

超声助听器在听力康复的潜在应用前景而受到广泛关注。但是超声听觉的末梢感受识别仍有很大争议,相关超声听觉的末梢感受识别假说也为得到证实。因此超声助听器的语音识别率较低,远未达到应用的程度。在超声终末感受机制方面:有学者用骨导超声信号诱发豚鼠耳蜗近场电位,推断超声终末感受器位于耳蜗,且由耳蜗内毛细胞感受 [3] ;Lenhardt等首次报道骨导超声助听器,对重度感音神经性耳聋(球囊功能正常)行超声语言测试,发现病人语言识别率大于随机识别率,推测超声末梢感受器位于球囊 [4] 。也有学者认为示超声信号的直接刺激螺旋神经节或脑干蜗神经核,推测超声末梢感受部位在激螺旋神经节或脑干蜗神经核 [3] 。

目前的相关研究仅明确耳蜗为超声信号的末梢感受器官之一,前庭是否也为超声感受器官也未明确,且耳蜗对超声频率、声强的编码机制仍未有明确,其中毛细胞部位及内、外毛细胞在超声频率及声强编码中的作用仍不明确,且研究尚缺乏细胞、分子学水平直接证据,结论为推测性假说。豚鼠声信号的频率范围远高于人类,为超声听觉研究的理想模型 [5] [6] [7] [8] [9] 。本实验用庆大霉素豚鼠腹腔注射制作豚鼠耳蜗损伤模型;分别用不同频率、声强骨导超声诱发正常豚鼠、耳蜗中毒模型大脑皮层BLO效应的ROI,探究庆大霉素对豚鼠耳蜗毛细胞的损伤机制及大霉素对豚鼠耳蜗毛细胞对超声信号末梢感受的编码识别。

2. 材料与方法

1) 实验动物与分组:选取健康纯白豚鼠30只,3月龄,雌雄不限,体重250~300 g,耳廓反射灵敏,随机分为正常对照组(10只)、氨基甙类药物耳蜗损伤组(30~35 kHz骨导超声检测组10只,80~90 kHz骨导超声检查组10只)。

2) 耳蜗中毒损伤模型的制备:按100 mg/kg庆大霉素腹腔注射,连续注射14天,每天观察记录耳廓反射及24 h尿量 [9] 。

3) 骨导超声诱发豚鼠正常对照组及耳蜗中毒组大脑皮层BLOD效应的ROI检测:

待测豚鼠经异氟烷气导吸入麻醉,呼吸频率维持40~60次/分钟,血氧饱和度维持90以上。磁共振扫描应用Bruker 7.0T全身超导件磁共振成像系统.单通道小动物头颅高分辨率相控阵线圈。定位扫描后,功能像分别用30~35 kHz脉冲方波、80~90 kHz脉冲方波骨导超声诱发正常对照组、耳蜗中毒组大脑皮层ROI。诱发参数:TR2000, TE20, repetitions: 600,扫描时间:20分钟,20秒给声刺激,10秒不给声刺激。

4) 正常对照组及耳蜗中毒模型毛细胞耳蜗外毛细胞Prestin及内毛细胞Otofelin蛋白免疫荧光检测

样本ROI检测完毕后立即处死豚鼠,取出听泡,4%多聚甲醛灌注固定,固定8 h后显微镜下解剖分段取出基底膜铺片,行毛细胞耳蜗毛细胞Prestin及Otofelin蛋白免疫荧光检测。免疫荧光Prestin检测试剂及设备:一抗(rabbit anti-Prestin 1:200, Santa Cruz, SC-30163), mouse anti-Otoferlin (1:200, Abcam, AB53233);二抗(Alexa Fluor 568 conjugated goat anti-rabbit IgG, 1:1000, Molecular probe. A-11011); Confocal显微镜(Zesis LSM800)

3. 结果

1) 骨导超声诱发耳蜗中毒模型大脑皮层BLOD效应ROI检测

a) 20~25 kHz脉冲方波骨导超声诱发正常对照组大脑皮层BLOD效应的fMRI ROI为3只,2只正常豚鼠用70~80 kHz脉冲方波骨导超声成功诱发皮层感兴趣区ROI。

b) 20~25 kHz脉冲方波骨导超声诱发耳蜗中毒模型大脑皮层BLOD效应ROI,无豚鼠能成功诱导出大脑皮层ROI, 70~80 kHz脉冲方波诱发组则有2只能诱发出皮层ROI (图1图2)。

2) 70~80 kHz脉冲方波骨导超声诱发耳蜗中毒模型豚鼠大脑皮层BLOD感兴趣区ROI, (16 voxels)

3) 耳蜗中毒模型耳蜗毛细胞Prestin蛋白及Otofelin蛋白免疫荧光检测

Figure 1. Apoptosis of 70 - 80 kHz bone guided ultrasound cochlear intoxication model cortical BLOD ROI (6 voxels)

图1. 70~80 kHz脉冲方波骨导超声诱发耳蜗中毒模型豚鼠大脑皮层BLOD感兴趣区ROI (6 voxels)

Figure 2. Apoptosis of 70 - 80 kHz bone guided ultrasound cochlear intoxication model cortical BLOD ROI (16 voxels)

图2. 70~80 kHz脉冲方波骨导超声诱发耳蜗中毒模型豚鼠大脑皮层BLOD感兴趣区ROI, (16 voxels)

耳蜗中毒模型组距基底膜底周起段95 mm ± 10 um处400 um ± 5 um范围耳蜗外毛细胞马达蛋白(Prestin,红色)及内毛细胞Otofelin蛋白荧光较正常对照组相应部位荧光较正常对照组相应部位明显减弱(图3);耳蜗中毒模型组距基底膜底周起始段950 um ± 10 um处400 um ± 5 um范围毛细胞Prestin免疫荧光(红色) + Otofelin蛋白免疫荧光(绿色)激光共聚焦检测,外毛细胞马达蛋白(Prestin,红色)及内毛细胞Otofelin蛋白荧光较正常对照组相应部位荧光明显减弱,较基底周相应部位荧光减弱轻(图4)。

4. 结论

1) 庆大霉素达一定剂量可引起豚鼠耳蜗毛细胞Prestin及内毛细胞Otofelin蛋白损伤,且不同部位耳蜗毛细胞Prestin及内毛细胞Otofelin蛋白损伤程度有一定差异。

2) 庆大霉素中毒豚鼠可感受高频超声信号,不能告诉较低频率超声,提示毛细胞的空间部位对较低频率超声频率具有编码功能,而较高频率骨导超声的末梢感受可能不需耳蜗毛细胞的参与,可能直接刺激螺旋神经节或脑干相关神经核感受超声信号。

5. 讨论

氨基甙类药物的临床应用每年引起近120,000人群听力下降,氨基甙类药物引起的耳蜗损伤的预防及康复是人类面临的极大困难。氨基甙类药物的内耳损伤不仅损伤听觉感受细胞,还会损伤支持细胞、血管纹等组织细胞,损伤范围广泛,且对不同部位Corti’s器损伤有差异,总之,氨基甙类药物对内耳的损伤机制尚未完全明了。氨基甙类药物造成听力严重受损的患者大部分为语后聋,电子耳蜗植入的应用受到很大限制,寻求合适的康复手段尤为重要。超声助听器在重度耳聋患者的康复的潜在应用前景而受到广泛关注。由于超声助听器在听力康复方面无创、较电子耳蜗植入相对价格低廉的特点,对氨基甙类

Figure 3. The cochlear intoxication model group from the basement membrane at the beginning of the segment 95 um ± 10 um at 400 um ± 5 um range of hair cell motor protein (Prestin) immunofluorescence (red) + Otofelin (green) laser confocal detection, and inner hair cells, outer hair cell fluorescence were weakened, ×200 times

图3. 耳蜗中毒模型组距基底膜底周起始段95 um ± 10 um处400 um ± 5 um范围毛细胞Prestin免疫荧光(红色) + Otofelin蛋白免疫荧光(绿色)激光共聚焦检测,外毛细胞马达蛋白(Prestin,红色)及内毛细胞Otofelin蛋白荧光较正常对照组相应部位荧光明显减弱,×200倍

Figure 4. The cochlear intoxication model group from the basement membrane at the beginning of the segment 950 um ± 10 um at 400 um ± 5 um range of hair cell motor protein (Prestin) immunofluorescence (red) + Otofelin (green) laser confocal detection, the fluorescence of Prestin (red) in outer hair cell and Otofelin in inner hair cell was significantly weaker than that in the normal control group, and the fluorescence of the cochlear intoxication model group decreased lighter than that in the corresponding parts of the basement week, ×200 times

图4. 耳蜗中毒模型组距基底膜底周起始段950 um ± 10 um处400 um ± 5 um范围毛细胞Prestin免疫荧光(红色)+ Otofelin蛋白免疫荧光(绿色)激光共聚焦检测,外毛细胞马达蛋白(Prestin,红色)及内毛细胞Otofelin蛋白荧光较正常对照组相应部位荧光明显减弱,较基底周相应部位荧光减弱轻,×200倍

药物造成听力严重受损的患者的听力康复可能有应用前景。但是超声听觉的末梢感受识别仍有很大争议,相关超声听觉的末梢感受识别假说也未得到证实。

目前,超声助听器的应用也进入临床试验阶段,但重度耳聋受试者超声语言识别率仍较低,与超声的末梢感受及中枢感知机制不明确有很大关系 [10] 。超声听觉方面的研究,有关超声感受及感知机制的研究仍有很大争议。在超声终末感受机制方面:Kenji Ohyma等报道用骨导超声信(98.8 kHz、143.5 kHz)号激励引出豚鼠超声耳蜗电图,推断超声终末感受器位于耳蜗,且由耳蜗内毛细胞感受;Lenhardt等首次在Scince杂志报道骨导超声助听器,发现重度感音神经性耳聋(球囊功能正常)行超声语言识别率可达40%,推测超声末梢感受器位于球囊。Nishimura T等报道人的骨导超声信号可被高频气导语频声掩蔽,推测超声的外周感受器官位于耳蜗 [10] 。有学者认为骨导超声可能直接刺激螺旋神经节或脑干而引起超声听觉 [11] [12] [13] 。目前仅明确耳蜗为超声信号的末梢感受器官之一,前庭是否也为超声感受器官也未明确,且耳蜗对超声频率、声强的编码机制仍未有明确,其中基底膜部位及内外毛细胞在超声频率及声强编码中的作用仍不明确,且研究目前的研究缺乏细胞、分子学水平直接证据,结论为推测性假说。

我们曾用不同频率骨导超声信号照射正常豚鼠达一定剂量,观察到不同频率骨导超声可引起不同部位毛细胞琥珀酸脱氢酶活性降低及毛细胞Prestin蛋白和Otofelin蛋白表达降低 [14] [15] 。庆大霉素对豚鼠的耳蜗的损伤广泛,且对耳蜗不同组织的损伤程度不同,本实验中庆大霉素中毒模型全耳蜗毛细胞Prestin蛋白和Otofelin蛋白损伤,但不同部位毛细胞Prestin蛋白和Otofelin蛋白损伤程度不同,其中基底周毛细胞损伤最重,与相关学者报道的结果吻合 [1] [2] ;试验中分别用20~25 kHz脉冲方波、70~80 kHz脉冲方波骨导超声诱发耳蜗中毒模型豚鼠大脑皮层BLODROI,结果显示部分正常豚鼠可感受较低频率及较高频率超声信号,但庆大霉素中毒豚鼠不能感受较低频率超声却可感受高频率超声信号,提示豚鼠感受较低频率超声需耳蜗毛细胞的参与,而感受较高频率超声则不一定需要耳蜗毛细胞的参与。可能庆大霉素对螺旋神经节的损伤较弱,豚鼠对高频超声的感受部位在螺旋神经节或更高级的中枢相应神经核团。

致谢

感谢香港威尔士亲王医院影像中心王德峰教授超声诱发豚鼠脑功能成像分析方面的技术支持。

课题资助

广东省科技厅科技计划项目(2014A020212616),深圳市科创委科技计划项目(JCYJ20150402152005639)。

文章引用

王富森,黄成成,李铁刚,李 倩,张少燕,曾新宇,王朝燕. 豚鼠耳毒性耳蜗损伤模型的建立与超声信号末梢编码识别
Establishment of a Cochlear Intoxication Model and Investigation on Peripheral Coding and Recognition of Ultrasonic Signals[J]. 临床医学进展, 2018, 08(02): 171-178. https://doi.org/10.12677/ACM.2018.82029

参考文献

  1. 1. Heinrich, U.R., Strieth, S. and Schmidtmann, I. (2015) Gentamicin Alters Akt-Expression and Its Activation in the Guinea Pig Cochlea. Neuroscience, 311, 490-498.
    https://doi.org/10.1016/j.neuroscience.2015.10.050

  2. 2. Zholudeva, L.V., Ward, K.G. and Nichols, M.G. (2015) Gentamicin Differentially Alters Cellular Metabolism of Cochlear hair Cells as Revealed by NAD(P)H Fluorescence Lifetime Imaging. Journal of Biomedical Optics, 20, 051032.
    https://doi.org/10.1117/1.JBO.20.5.051032

  3. 3. Ohyama, K., Kusakari, J. and Kawamoto, K. (1985) Ultrasonic Electrochleography in Guinea Pig. Hearing Research, 17, 143-151.
    https://doi.org/10.1016/0378-5955(85)90017-6

  4. 4. Lenhardt, M.L., Skellett, R. and Wang, P. (1991) Human Ultrasonic Speech Perception. Science, 253, 82-84.
    https://doi.org/10.1126/science.2063208

  5. 5. Koizumi, T., Nishimura, T., Yamashita, A., Yamanaka, T., Imamura, T. and Hosoi, H. (2014) Residual Inhibition of Tinnitus Induced by 30-kHz Bone-Conducted Ultrasound. Hearing Research, 310, 48-53.
    https://doi.org/10.1016/j.heares.2014.01.011

  6. 6. Lau, C., Zhang, J.W., Cheng, J.S., et al. (2013) Noninvasive fMRI Investigation of Interaural Level Difference Processing in the Rat Auditory Subcortex. PLoS One, 8, e70706.
    https://doi.org/10.1371/journal.pone.0070706

  7. 7. Portfors, C.V. and Perkel, D.J. (2014) The Role of Ultrasonic Vocalizations in Mouse Communication. Current Opinion in Neurobiology, 28, 115-120.
    https://doi.org/10.1016/j.conb.2014.07.002

  8. 8. Okayasu, T., Nishimura, T., Yamashita, A., et al. (2013) Human Ultrasonic Hearing Is Induced by a Direct Ultrasonic Stimulation of the Cochlea. Neuroscience Letters, 539, 71-76.
    https://doi.org/10.1016/j.neulet.2013.01.040

  9. 9. Garcia-Lazaro, J.A., Shepard, K.N., Miranda, J.A., et al. (2015) An Overrepresentation of High Frequencies in the Mouse Inferior Colliculus Supports the Processing of Ultrasonic Vocalizations. PLoS One, 10, e0133251.
    https://doi.org/10.1371/journal.pone.0133251

  10. 10. Tsukano, H., Hone, M. and Bo, T. (2015) Delineation of a Frequency-Organized Region Isolated from the Mouse Primary Auditory Cortex. Journal of Neurophysiology, 113, 2900-2920.
    https://doi.org/10.1152/jn.00932.2014

  11. 11. Nishimura, T., Okayasu, T. and Uratani, Y. (2011) Pe-ripheral Perception Mechanism of Ultrasonic Hearing. Hearing Research, 277, 176-183.
    https://doi.org/10.1016/j.heares.2011.01.004

  12. 12. Okayasu, T., Nishimura, T. and Nakagawa, S. (2013) Evaluation of Prosodic and Segmental Change in Speech-Modulated Bone-Conducted Ultrasound by Mismatch Fields. Neurosci-ence Letters, 559, 117-121.

  13. 13. Torbatian, Z., Garland, P., Adamson, R., Savage, J., Bance, M. and Brown, J. (2012) Listening to the Cochlea with High-Frequency Ultrasound. Ultrasound in Medicine & Biology, 38, 2208-2217.
    https://doi.org/10.1016/j.ultrasmedbio.2012.07.015

  14. 14. Wang, F.S., Wang, J.B. and Gong, S.S. (2013) A Study of the Histologic and Enzyme Histochemical Changes in the Cochlea of Guinea Pigs after Non-Focused Ultrasound Ir-radiation. Cell Biochemistry and Biophysics, 66, 409-415.
    https://doi.org/10.1007/s12013-012-9484-5

  15. 15. Wang, F.S., Cao, C. and Huang, C.C. (2018) Establishment of a Cochlear Injury Model Using Bone-Conducted Ultrasound Irradiation in Guinea Pigs and Investigation on Peripheral Coding and Recognition of Ultrasonic Signals. Cellular and Molecular Biology.

期刊菜单