Advances in Clinical Medicine
Vol. 13  No. 07 ( 2023 ), Article ID: 68389 , 7 pages
10.12677/ACM.2023.1371497

CD4+、CD8+T淋巴细胞亚群在肿瘤中的 表达研究现状及进展

厉彦子,蔡圆圆,翟春波,耿晓涛,李洋,孙慧敏,刘杰*

潍坊市人民医院肿瘤放疗科,山东 潍坊

收稿日期:2023年6月6日;录用日期:2023年7月1日;发布日期:2023年7月7日

摘要

随着肿瘤免疫学的进展,肿瘤患者的免疫功能越来越受到大家的重视,目前对于T淋巴细胞亚群在肿瘤微环境及机体内所发挥的功能也逐渐深入。T淋巴细胞依据表面表达的2种辅助受体分子,即分化簇CD4和CD8来分类。本文将对CD4+T淋巴细胞、CD8+T淋巴细胞在肿瘤中表达的相关研究及其发挥的功能进行详细阐述。

关键词

CD4+T淋巴细胞,CD8+T淋巴细胞,免疫功能

Research Status and Progress on the Expression of CD4+, CD8+T Lymphocyte Subsets in Tumor

Yanzi Li, Yuanyuan Cai, Chunbo Zhai, Xiaotao Geng, Yang Li, Huimin Sun, Jie Liu*

Department of Tumor Radiotherapy, Weifang People’s Hospital, Weifang Shandong

Received: Jun. 6th, 2023; accepted: Jul. 1st, 2023; published: Jul. 7th, 2023

ABSTRACT

With the development of tumor immunology, more and more attention has been paid to the immune function of tumor patients. At present, the function of T lymphocyte subsets in the tumor microenvironment and the body has been gradually deepened. T lymphocytes are classified by their surface expression of two coreceptor molecules, namely, the differentiation clusters CD4 and CD8. In this paper, the expression of CD4+T lymphocytes and CD8+T lymphocytes in tumors and their functions will be elaborated.

Keywords:CD4+T Lymphocytes, CD8+T Lymphocytes, Immunefunction

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

根据目前的研究显示,CD4和CD8对T淋巴细胞发育、抗原识别以及成熟T淋巴细胞激活很重要。CD4+T淋巴细胞可识别MHC II类分子提呈的抗原,而CD8+T淋巴细胞可识别MHC I类分子提呈的抗原。CD4+T淋巴细胞分为两大类:一类是通过刺激(Th)或抑制(Treg)免疫应答来调节B细胞和其他T细胞的活性;另一类即细胞毒性T细胞,也可以称之为细胞毒性T淋巴细胞,具体功能是介导细胞免疫应答的效应细胞 [1] 。机体内大多数Treg细胞表达CD4,大多数细胞毒性T细胞表达CD8,但也有例外。表达CD4的细胞毒性T细胞在移植排斥反应中表现突出,在肿瘤免疫反应中也有出现 [2] 。表达CD8的细胞也产生诸多细胞因子,可能出现在某些正常或病理免疫应答中 [3] [4] 。

2. CD4+T淋巴细胞分型及功能

CD4+T淋巴细胞细胞有几个亚群,可分为有效应活性和有调节活性的细胞,前者包括Th1、Th2、Th9、Th17、Th22和滤泡辅助性T细胞(follicular helper T cell, Tfh),后者包括自然调节性T细胞(natural regulatory T cell, nTreg)、诱导调节性T细胞(induced regulatory T cell,iTreg,又称1型调节T细胞Tr1)和Th3 [5] 。这些细胞的区别在于产生的细胞因子和某些表面标志物不同。还有一种“未分化”的成熟T细胞(称为Th0)可能发育成各种效应细胞,具体取决于在抗原刺激过程中接触的细胞因子。以下将详细对Th1、Th2、Th9、Treg这四种效应T细胞的分子特征及抗肿瘤机制进行讨论。

Th1细胞主要参与迟发型超敏反应,但也能辅助B细胞。Th1可分泌IFN-γ和IL-2,可激活巨噬细胞,有利于去除细胞内的微生物,如分枝杆菌和病毒,并抑制肿瘤血管的活性 [6] 。Th1还可促进细胞毒性T细胞发育以及迟发型超敏反应。因此Th1可以促进炎症反应,可能参与了某些自身免疫性疾病的发病机制和维持。Th1还可以可表达白细胞介素12受体链(IL-12-R-β-1和IL-12-R-β-2) [7] [8] ,以及半胱氨酸-X-半胱氨酸基序受体(cysteine-X-cysteine motif receptor, CXCR) 3和半胱氨酸-半胱氨酸基序受体5 [9] [10] 。

Th2是合成抗体(尤其是IgE)的重要辅助细胞,可生成白细胞介素4、白细胞介素5、白细胞介素13和白细胞介素10,但不能生成白细胞介素2和IFN-γ。藉由白细胞介素4和白细胞介素13促进并合成IgE,而通过白细胞介素5刺激嗜酸性粒细胞发育成熟。Th2可以通过合成白细胞介素4抑制IFN-γ的分泌,起到抑制TH细胞和NK细胞的抗肿瘤功能,在机体内起到一定的促肿瘤作用 [11] 。同时白细胞介素4可以通过促进肿瘤组织产生白细胞介素10,而白细胞介素10可以通过负性调控抑制可通过负性调控作用抑制TH1细胞的增殖及树突状细胞( dendritic cells, DC)的功能。白细胞介素10 可降低TH1型炎症因子的表达,抑制抗原提呈细胞的增殖进而抑制抗肿瘤免疫反应 [12] [13] 。TH1和TH2在机体内互相调节平衡抗肿瘤免疫反应。

Th9能够产生白细胞介素9和白细胞介素10。在转化生长因子(transforming growth factor, TGF) β、白细胞介素2和白细胞介素4作用下,经转录因子信号转导及转录激活蛋白(signal transducer and activator of transcription, STAT) 6和PU.1介导(与一个富含嘌呤的DNA序列PU-box结合),由初始T细胞发育成为为的Th9 [14] [15] 在抗肿瘤免疫、变态反应和自身免疫性疾病发挥一定作用 [16] 。目前认为其对机体抵抗寄生虫也具有重要作用,并参与哮喘和其他变态反应性疾病的活动 [17] [18] 。

提起Treg细胞,目前认为其对免疫耐受的存在和保持至关重要。Treg细胞最早由日本学者去除胸腺的小鼠体内发现,发现其具有在免疫应答的负向调节中也起到重要作用 [19] 。Treg细胞通常仅占所有CD4+T淋巴细胞的1%~2%,但总体上对效应CD4+T淋巴细胞起到很重要的抑制作用,机制是通过接触抑制抗原呈递细胞(Antigen-presenting cells, APC)、效应T细胞的活性以及树突状细胞的成熟 [20] [21] ,产生免疫抑制效应。Treg还参与预防移植物排斥反应和移植物抗宿主病 [22] 。有相关研究发现,在乳腺恶性肿瘤和胰腺恶性肿瘤患者体内,Treg细胞的表达明显增加 [23] 。更多文献证实,在肺恶性肿瘤 [24] 、胃恶性肿瘤 [25] 及卵巢恶性肿瘤 [26] 中等更多恶性肿瘤中,均可以观察到大量Treg细胞浸润。证实Treg细胞在恶性肿瘤组织中具有高表达的特性,同时产生机体免疫抑制性,使肿瘤细胞免疫耐受。更有研究中还发现,程序性死亡分子-1配体(PD-L1)会诱导Treg细胞成熟,并与Treg细胞共同参与免疫抑制反应 [27] [28] 。有学者在乳腺癌患者体内发现,PD-L1在T细胞上的表达水平就与Treg的数量密切相关 [29] 。最新的研究发现,通过针对Treg细胞表面分子的特异性阻断,可以调节机体的免疫抑制反应 [21] 。同样,通过阻断Treg细胞分泌的细胞因子,可以产生抑制恶性肿瘤肿瘤生长的功能 [30] 。

3. CD8+T淋巴细胞的分型及功能

提到CD8+T淋巴细胞,其分化的记忆性T细胞是具有自我更新能力的多功能细胞,表达出免疫记忆功能,在机体受到病毒或细菌入侵后,多次出现免疫应答效应。CD8+T淋巴细胞常表现细胞毒活性,是主要的细胞毒效应细胞。而大多数细胞毒性T细胞都可表达MHC I类分子的CD8共受体,且与表达CD4的细胞一样,也可被淋巴组织中的专职APC活化。但APC必须首先与抗原特异性CD4+T淋巴细胞接触并活化,之后才能诱导初始CD8+T淋巴细胞成为完全成熟的效应(细胞毒性)T细胞。CD8+T淋巴细胞初次应答也需要直接的CD4+T淋巴细胞辅助 [31] 。根据目前的研究,CD8+T淋巴细胞可以分为效应记忆T细胞(Effector memory T Cell, TEM)、中枢记忆T细胞(Central memory T Cell, TCM)、外周记忆T细胞(Peripheral Memory T Cell, Tpm)、组织驻留记忆T细胞(Tissue Resident Memory, TRM)以及干细胞记忆T细胞(Stem cell memory T cell, TSCM)。在肿瘤微环境中,主要表达的是TRM,其主要存在于组织局部,在重新激活后还可以分化为TCM和TEM细胞 [32] [33] 。综合来看,CD8+T淋巴细胞在肿瘤的发生发展过程中通常表现为免疫抑制作用,通过细胞转化的方式损伤肿瘤浸润淋巴细胞(Tumor infiltrating lymphocytes, TIL),改变肿瘤微环境,降低机体清楚肿瘤的能力 [34] 。在一些早期研究中,有学者发现某些胃癌患者随着病期的不断进展,脾脏中CD8+T淋巴细胞的活性较外周血明显增高,而CD4+T淋巴细胞活性却明显降低 [35] 。其机制可能与Treg细胞在机体内产生的免疫抑制效应有关 [36] 。但CD8+T淋巴细胞在肿瘤微环境发挥其抑制作用的功能及其分化过程还需要进一步研究。

而提到由CD8+T淋巴细胞分化而来的Treg细胞,目前对其的认识还较为局限,不同于CD4+Treg,对于其存在似乎也没有被普遍接受。某些学者提出CD8+Treg代表了一个异质性群体,涉及不同来源、表型和功能特征的细胞,然而,CD8+Treg有时却被描述为单个亚群,对于其概念的争论目前还不存在肯定的结论 [37] 。在某些较早期的研究中发现,CD8+Treg在机体调节免疫反应中所发挥的作用甚至超过CD4+Treg,且其在外周血中的表达比例更低 [38] 。目前较为明确的是,CD8+Treg在肿瘤免疫中,参与了肿瘤的免疫逃逸并导致肿瘤发生和复发,这一点似乎与CD4+Treg所发挥的作用相似,但引起这一现象的具体机制目前仍未有确论 [39] 。在一项结肠炎相关结肠癌小鼠模型中发现,小鼠早期血液和脾脏中Treg细胞的百分比表达明显减少,而在肠系膜淋巴结的晚期检测中,Treg细胞百分比明显增加,且在这一模型的疾病早期中,Treg细胞的减少与预后呈相关性 [40] 。在一项良、恶性卵巢肿瘤患者的临床研究中,卵巢癌患者表达出更高比例的CD8+Treg [41] 。而在一项关于肝癌患者的研究中显示,与健康人相比肝癌患者其外周血中CD8+Treg、CD4+Treg均明显升高,且表达比例与肝癌预后肿瘤标志物甲胎蛋白呈正相关 [42] 。这是否也为我们提供了一种可能,即是否会有一种安全的靶向药物去阻断Treg细胞的表达来抑制肿瘤的发展,为临床治疗带来更多可能,我们期待未来能有更多的研究来证实这一猜想。

4. 总结与展望

基于目前的肿瘤免疫学相关研究,在机体内起到抗肿瘤效应的细胞主要包括抗体、T淋巴细胞和自然杀伤细胞 [43] ,其中T淋巴细胞主要通过抗原特异性反应来准确识别肿瘤细胞,可表达识别肿瘤特异性抗原的受体,并分化成效应性或记忆性T淋巴细胞,从而发挥识别并杀伤肿瘤的作用 [44] 。T淋巴细胞可以通过识别机体内“非自我”的抗原而杀灭肿瘤细胞,通过加强T淋巴细胞识别肿瘤的能力,增强其对肿瘤的杀伤力 [45] 。T淋巴细胞也能够穿过复杂的血脑屏障(BBB) [46] ,这种穿透特性使得T淋巴细胞能够杀灭一般药物难以到达的病灶脑转移部位,例如原发性脑肿瘤及脑转移瘤 [47] 。目前关于T淋巴细胞的肿瘤相关免疫疗法已经得到了证实,在肿瘤治疗过程中起到了不错的效果。在免疫检查点疗法中,PD-1和PD-L1就是通过是限制T淋巴细胞功能,为机体免疫应答发挥着持续的作用 [48] 。其中PD-1负责调节正在进行免疫反应的T淋巴细胞活性,发挥负反馈调节作用,而作为配体的PD-L1与受体PD-1结合后,通过下调肿瘤浸润淋巴细胞,来抑制T淋巴细胞的活性 [49] 。研究证实,通过阻断PD-1/PD-L1之间的相互联系,可明显提高T淋巴细胞数量,增强肿瘤特异性T淋巴细胞发挥其细胞杀伤作用 [50] 。在CAR-T疗法中,我们通过改造T淋巴细胞使其拥有更广泛且更强的目标识别能力,在血液系统肿瘤中已发挥了令人满意的疗效 [51] 。然而我们通过很多研究发现,T淋巴细胞亚群中不同的细胞类型在肿瘤发生发展过程中起到不同的作用,单纯通过增强或阻断T淋巴细胞不同亚群去发挥其抗肿瘤作用是否合适目前还未有明确的答案,不同的T淋巴细胞亚群在不同肿瘤中的表达也并不完全一致,期待未来能有更多的学者去深挖T淋巴细胞亚群及其机制与功能表达,继续深入免疫治疗的研究中,为肿瘤患者带来新的曙光。 文本框: 外周血CD3+T淋巴细胞流式分析

文本框: 外周血CD3+T淋巴细胞流式分析

基金项目

项目名称:食管癌新辅助放化疗疗效预测相关生物标记物的探索;项目编号:WFWSJK-2021-163。

文章引用

厉彦子,蔡圆圆,翟春波,耿晓涛,李 洋,孙慧敏,刘 杰. CD4+、CD8+T淋巴细胞亚群在肿瘤中的表达研究现状及进展
Research Status and Progress on the Expression of CD4+, CD8+T Lymphocyte Subsets in Tumor[J]. 临床医学进展, 2023, 13(07): 10720-10726. https://doi.org/10.12677/ACM.2023.1371497

参考文献

  1. 1. 熊玉琪, 任秀宝, 卢斌峰, 蒋敬庭. 肿瘤浸润CD4+T淋巴细胞的抗肿瘤免疫机制[J]. 临床检验杂志, 2015, 33(12): 919-922.

  2. 2. Prezzi, C., Casciaro, M., Francavilla, V., et al. (2015) Virus-Specific CD8+ T Cells with Type 1 or Type 2 Cytokine Profile Are Related to Different Disease Activity in Chronic Hepatitis C Virus Infection. European Journal of Immunology, 31, 894-906. https://doi.org/10.1002/1521-4141(200103)31:3<894::AID-IMMU894>3.0.CO;2-I

  3. 3. Tsuji-Yamada, J., Naka-zawa, M., Minami, M. and Sasaki, T. (2001) Increased Frequency of Interleukin 4 Producing CD4+ and CD8+ Cells in Peripheral Blood from Patients with Systemic Sclerosis. The Journal of Rheumatology, 28, 1252-1258.

  4. 4. Fontenot, J.D., Gavin, M.A. and Rudensky, A.Y. (2003) Foxp3 Programs the Development and Function of CD4+CD25+ Regu-latory T Cells. Nature Immunology, 4, 330-336. https://doi.org/10.1038/ni904

  5. 5. Schmitt, N. and Ueno, H. (2015) Regulation of Human Helper T Cell Subset Differentiation by Cytokines. Current Opinion in Immunology, 34, 130-136. https://doi.org/10.1016/j.coi.2015.03.007

  6. 6. Floros, T. and Tarhini, A.A. (2015) Anticancer Cytokines: Biology and Clinical Effects of Interferon-α2, Interleukin (IL)-2, IL-15, IL-21, and IL-12. Seminars in Oncology, 42, 539-548. https://doi.org/10.1053/j.seminoncol.2015.05.015

  7. 7. Bettelli, E., Korn, T., Oukka, M. and Kuchroo, V.K. (2008) Induction and Effector Functions of TH17 Cells. Nature, 453, 1051-1057. https://doi.org/10.1038/nature07036

  8. 8. Zhai, Y., Busuttil, R.W., Ghobrial, F.M. and Kupiec-Weglinski, J.W. (1999) Th1 and Th2 Cytokines in Organ Trans- plantation: Paradigm Lost? Critical Reviews in Immunology, 19, 155-172. https://doi.org/10.1615/CritRevImmunol.v19.i2.40

  9. 9. Bonecchi, R., Bianchi, G., Bordignon, P.P., et al. (1998) Differential Expression of Chemokine Receptors and Chemotactic Responsiveness of Type 1 T Helper Cells (Th1s) and Th2s. Journal of Experimental Medicine, 187, 129-134. https://doi.org/10.1084/jem.187.1.129

  10. 10. Jung, S. and Littman, D.R. (1999) Chemokine Receptors in Lymphoid Organ Homeostasis. Current Opinion in Immu- nology, 11, 319-325. https://doi.org/10.1016/S0952-7915(99)80051-X

  11. 11. Shin, H.S., See, H.-J., Jung, S.Y., et al. (2015) Turmeric (Curcuma longa) Attenuates Food Allergy Symptoms by Regulating Type 1/Type 2 Helper T Cells (Th1/Th2) Balance in a Mouse Model of Food Allergy. Journal of Ethno- pharmacology, 175, 21-29. https://doi.org/10.1016/j.jep.2015.08.038

  12. 12. Wang, K. and Karin, M. (2015) Tumor-Elicited Inflammation and Colorectal Cancer. In: Wang, X.-Y. and Fisher, P.B., Eds., Advances in Cancer Research, Vol. 128, Academic Press, Cambridge, 173-196. https://doi.org/10.1016/bs.acr.2015.04.014

  13. 13. Domagala-Kulawik, J., Osinska, I. and Hoser, G. (2014) Mecha-nisms of Immune Response Regulation in Lung Cancer. Translational Lung Cancer Research, 3, 15-22.

  14. 14. Goswami, R., Jabeen, R., Yagi, R., et al. (2012) STAT6-Dependent Regulation of Th9 Development. Journal of Immunology, 188, 968-975. https://doi.org/10.4049/jimmunol.1102840

  15. 15. Ramming, A., Druzd, D., Leipe, J., Schulze-Koops, H. and Skapenko, A. (2012) Maturation-Related Histone Modifications in the PU.1 Promoter Regulate Th9-Cell Develop-ment. Blood, 119, 4665-4674. https://doi.org/10.1182/blood-2011-11-392589

  16. 16. Schmitt, E., Klein, M. and Bopp, T. (2014) Th9 Cells, New Players in Adaptive Immunity. Trends in Immunology, 35, 61-68. https://doi.org/10.1016/j.it.2013.10.004

  17. 17. Staudt, V., Bothur, E., Klein, M., et al. (2010) Interferon-Regulatory Factor 4 Is Essential for the Developmental Program of T Helper 9 Cells. Immunity, 33, 192-202. https://doi.org/10.1016/j.immuni.2010.07.014

  18. 18. Soroosh, P. and Doherty, T.A. (2009) Th9 and Allergic Disease. Immunology, 127, 450-458. https://doi.org/10.1111/j.1365-2567.2009.03114.x

  19. 19. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. and Toda, M. (1995) Immunologic Self-Tolerance Maintained by Activated T Cells Expressing IL-2 Receptor Alpha-Chains (CD25). Breakdown of a Single Mechanism of Self-Tolerance Causes Various Autoimmune Diseases. Journal of Im-munology, 155, 1151-1164. https://doi.org/10.4049/jimmunol.155.3.1151

  20. 20. Hua, J., Davis, S.P., Hill, J.A. and Yamagata, T. (2015) Diverse Gene Expression in Human Regulatory T Cell Subsets Uncovers Connection between Regulatory T Cell Genes and Sup-pressive Function. The Journal of Immunology, 195, 3642-3653. https://doi.org/10.4049/jimmunol.1500349

  21. 21. Miragaia, R.J., Gomes, T., Chomka, A., et al. (2019) Single-Cell Transcriptomics of Regulatory T Cells Reveals Trajectories of Tissue Adaptation. Immunity, 50, 493-504. https://doi.org/10.1016/j.immuni.2019.01.001

  22. 22. Albert, M.H., Anasetti, C. and Yu, X.-Z. (2006) T Regulatory Cells as an Immunotherapy for Transplantation. Expert Opinion on Biological Therapy, 6, 315-324. https://doi.org/10.1517/14712598.6.4.315

  23. 23. Liyanage, U.K., Moore, T.T., Joo, H.-G., et al. (2002) Prevalence of Regulatory T Cells Is Increased in Peripheral Blood and Tumor Microenvironment of Patients with Pancreas or Breast Adenocarcinoma. Journal of Immunology, 169, 2756-2761. https://doi.org/10.4049/jimmunol.169.5.2756

  24. 24. Wolf, A.M., Wolf, D., Steurer, M., et al. (2003) Increase of Regulatory T Cells in the Peripheral Blood of Cancer Patients. Clinical Cancer Research, 9, 606-612.

  25. 25. Ichihara, F., Kono, K., Takahashi, A., et al. (2003) Increased Populations of Regulatory T Cells in Peripheral Blood and Tu-mor-Infiltrating Lymphocytes in Patients with Gastric and Esophageal Cancers. Clinical Cancer Research, 9, 4404- 4408.

  26. 26. Curiel, T., Coukos, G., Zou, L., et al. (2004) Specific Recruitment of Regulatory T Cells in Ovarian Carci-noma Fosters Immune Privilege and Predicts Reduced Survival. Nature Medicine, 10, 942-949. https://doi.org/10.1038/nm1093

  27. 27. Chen, W., Jin, W., Hardegen, N., et al. (2013) Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3. Journal of Experimental Medicine, 198, 1875- 1886. https://doi.org/10.1084/jem.20030152

  28. 28. 吴介恒, 杨安钢, 温伟红. PD-1/PD-L1参与肿瘤免疫逃逸的研究进展[J]. 细胞与分子免疫学杂志, 2014, 30(7): 777-780.

  29. 29. Ghebeh, H., Barhoush, E., Tulbah, A., et al. (2008) FOXP3+ Tregs and B7-H1+/PD-1+T Lymphocytes Co-Infiltrate the Tumor Tissues of High-Risk Breast Cancer Patients: Implication for Immunotherapy. BMC Cancer, 8, Article No. 57. https://doi.org/10.1186/1471-2407-8-57

  30. 30. Turnis, M.E., Sawant, D.V., Szymczak-Workman, A.L., et al. (2016) Interleukin-35 Limits Anti-Tumor Immunity. Immunity, 44, 316-329. https://doi.org/10.1016/j.immuni.2016.01.013

  31. 31. Zhang, S., Zhang, H. and Zhao, J. (2009) The Role of CD4 T Cell Help for CD8 CTL Activation. Biochemical & Biophysical Research Communications, 384, 405-408. https://doi.org/10.1016/j.bbrc.2009.04.134

  32. 32. Martin, M.D. and Badovinac, V.P. (2018) Defining Memory CD8 T Cell. Frontiers in Immunology, 9, Article 2692. https://doi.org/10.3389/fimmu.2018.02692

  33. 33. Han, J., Khatwani, N., Searles, T. G., Turk, M. J., & Angeles, C. V. (2020) Memory CD8+ T Cell Responses to Cancer. Seminars in Immunology, 49, Article ID: 101435. https://doi.org/10.1016/j.smim.2020.101435

  34. 34. Hwang, H.S., Kim, D. and Choi, J. (2021) Distinct Mutational Profile and Immune Microenvironment in Microsatellite-Unstable and POLE-Mutated Tumors. Journal for Immuno-Therapy of Cancer, 9, e002797. https://doi.org/10.1136/jitc-2021-002797

  35. 35. Toge, T., Kuroi, K., Kuninobu, H., et al. (1988) Role of the Spleen in Immunosuppression of Gastric Cancer: Predominance of Suppressor Precursor and Suppressor Inducer T Cells in the Recirculating Spleen Cells. Clinical & Experimental Immunology, 74, 409-412.

  36. 36. Serafini, P., Mgebroff, S., Noonan, K. and Borrello, I. (2008) Myeloid-Derived Suppressor Cells Promote Cross- Tolerance in B-Cell Lymphoma by Ex-panding Regulatory T Cells. Cancer Research, 68, 5439-5449. https://doi.org/10.1158/0008-5472.CAN-07-6621

  37. 37. Niederlova, V., Tsyklauri, O., Chadimova, T. and Stepanek, O. (2021) CD8+ Tregs Revisited: A Heterogeneous Population with Different Phenotypes and Properties. European Journal of Immunology, 51, 512-530. https://doi.org/10.1002/eji.202048614

  38. 38. Cosmi, L., Liotta, F., Lazzeri, E., et al. (2003) Human CD8+CD25+ Thymocytes Share Phenotypic and Functional Features with CD4+CD25+ Regulatory Thymocytes. Blood, 102, 4107-4114. https://doi.org/10.1182/blood-2003-04-1320

  39. 39. 周文超, 蔡祥胜, 熊小敏, 等. CD4+CD25+CD127Low调节性T细胞在原发性肝癌患者外周血的表达及临床意义[J]. 国际检验医学杂志, 2020, 41(4): 403-405, 409.

  40. 40. Olguín, J.E., Medina-Andrade, I., Molina, E., et al. (2018) Early and Partial Reduction in CD4+Foxp3+ Regulatory T Cells during Colitis-Associated Colon Cancer Induces CD4+ and CD8+ T Cell Activation Inhibiting Tumorigenesis. Journal of Can-cer, 9, 239-249. https://doi.org/10.7150/jca.21336

  41. 41. 卢永红. 卵巢癌患者组织及外周血CD8+T细胞中调节性T细胞相关分子标志物的表达及意义[J]. 实用癌症杂志, 2019, 34(8): 1271-1274.

  42. 42. Zahran, A.M., Nafady-Hego, H., Mansor, S.G., Abbas, W.A., Abdel-Malek, M.O., Mekky, M.A. and Hetta, H.F. (2019) Increased Frequency and FOXP3 Expression of Human CD8+CD25High+ T Lymphocytes and Its Relation to CD4 Regulatory T Cells in Patients with Hepatocellular Carcinoma. Human Immunology, 80, 510-516. https://doi.org/10.1016/j.humimm.2019.03.014

  43. 43. Zanetti, M. (2015) Tapping CD4 T Cells for Cancer Immuno-therapy: The Choice of Personalized Genomics. The Journal of Immunology, 194, 2049-2056. https://doi.org/10.4049/jimmunol.1402669

  44. 44. Schreiber, R.D., Old, L.J. and Smyth, M.J. (2011) Cancer Immu-noediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science, 331, 1565-1570. https://doi.org/10.1126/science.1203486

  45. 45. Chen, D.S. and Mellman, I. (2013) Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity, 39, 1-10. https://doi.org/10.1016/j.immuni.2013.07.012

  46. 46. Engelhardt, B. and Ransohoff, R.M. (2012) Capture, Crawl, Cross: The T Cell Code to Breach the Blood-Brain Barriers. Trends in Immunology, 33, 579-589. https://doi.org/10.1016/j.it.2012.07.004

  47. 47. Tsai, A.K. and Davila, E. (2016) Producer T Cells: Using Genetically Engineered T Cells as Vehicles to Generate and Deliver Therapeutics to Tumors. OncoImmunology, 5, e1122158. https://doi.org/10.1080/2162402X.2015.1122158

  48. 48. Fife, B.T. and Bluestone, J.A. (2008) Control of Peripheral T-Cell Tolerance and Autoimmunity via the CTLA-4 and PD-1 Pathways. Immunological Reviews, 224, 166-182. https://doi.org/10.1111/j.1600-065X.2008.00662.x

  49. 49. 莫敦昌, 黄剑锋, 罗鹏辉, 等. T淋巴细胞相关肿瘤免疫疗法的应用现状及进展[J]. 世界最新医学信息文摘, 2019, 19(24): 36-37.

  50. 50. Ma, W., Gilligan, B.M., Yuan, J. and Li, T. (2016) Current Status and Perspectives in Translational Biomarker Research for PD-1/PD-L1 Immune Check-point Blockade Therapy. Journal of Hematology & Oncology, 9, Article No. 47. https://doi.org/10.1186/s13045-016-0277-y

  51. 51. Enblad, G., Karlsson, H. and Loskog, A.S.I. (2015) CAR T-Cell Therapy: The Role of Physical Barriers and Immunosuppression in Lymphoma. Human Gene Therapy, 26, 498-505. https://doi.org/10.1089/hum.2015.054

  52. NOTES

    *通讯作者。

期刊菜单