Advances in Clinical Medicine
Vol. 12  No. 05 ( 2022 ), Article ID: 51893 , 6 pages
10.12677/ACM.2022.125669

长链非编码RNA TINCR在肿瘤中的作用研究进展

郑欣,罗烨*

衢州职业技术学院医学院,浙江 衢州

收稿日期:2022年4月27日;录用日期:2022年5月21日;发布日期:2022年5月30日

摘要

随着高通量测序技术的发展,一类转录本长度大于200 nt的RNA分子——长链非编码RNA (long non-coding RNA, lncRNA),成为了肿瘤领域的研究热点。研究表明,lncRNA在诸多肿瘤的发生发展过程中均发挥着十分重要的作用。组织分化诱导非蛋白编码RNA (Terminal differentiation-induced non-coding RNA, TINCR)在表皮细胞分化过程中至关重要。近年来研究发现,TINCR在肝细胞癌、乳腺癌、肺癌、前列腺癌、膀胱癌等多种恶性肿瘤中表达异常,且能通过不同机制影响肿瘤进程。TINCR有望成为肿瘤早期诊断、治疗及预后的分子靶标。

关键词

长链非编码RNA,组织分化诱导非蛋白编码RNA (TINCR),肿瘤

Research Progress of Long Non-Coding RNA TINCR Involved in Tumor

Xin Zheng, Ye Luo*

School of Medicine, Quzhou College of Technology, Quzhou Zhejiang

Received: Apr. 27th, 2022; accepted: May 21st, 2022; published: May 30th, 2022

ABSTRACT

With the development of high-throughput sequencing technology, lncRNA, whose transcripts are longer than 200 nt, has become the research hotspots in tumorigenesis. Research shows that lncRNA plays a key role in the occurrence and development of numerous tumors. Terminal differentiation-induced non-coding RNA (TINCR) was found to control human epidermal differentiation. Recently, TINCR has been found to have aberrant expression in multiple malignant tumors such as hepatocellular carcinoma, breast cancer, lung cancer, prostate cancer and bladder cancer, and be involved in tumorigenesis through different mechanism. TINCR are expected to be a new molecular target for early diagnosis, treatment and prognosis of malignant tumors.

Keywords:Long Non-Coding RNA (lncRNA), Terminal Differentiation-Induced Non-Coding RNA (TINCR), Tumor

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

根据美国癌症学会(American Cancer Society, ACS)提供的最新数据,2020年全球有近1930万的新发癌症患者,其中癌症死亡患者数量达到了1000万 [1]。随着癌症发病率和死亡率的逐年升高,如何提高癌症的早期诊断和治疗水平成为了全球十分重要的公共卫生问题。长链非编码RNA (long non-coding RNA, lncRNA)是长度大于200 nt的RNA分子,起初被认为是“转录噪音” [2],随着研究的深入,科学家们发现lncRNA参与调节细胞的多个生物学进程,如选择性剪接、染色质修饰、基因互作或者作为竞争性内源RNA (competing endogenous RNA, ceRNA)调节microRNA的表达等等,在多种生理病理活动中起到关键调控的作用 [3] [4] [5]。如今,lncRNA已成为研究热点,在癌症的早期诊断、治疗及预后方面均存在着巨大的应用价值 [5]。组织分化诱导非蛋白编码RNA (tissue differentiation inducing non-protein coding RNA, TINCR)在多种癌症中异常表达 [6] - [11],其能够通过不同的机制如:作为分子海绵调节miRNA的功能或者靶向癌症相关信号通路中的关键分子等影响肿瘤的发生发展 [12]。本文主要对TINCR在不同类型肿瘤中的表达、功能及作用机制进行综述。

2. TINCR概述

组织分化诱导非蛋白编码RNA (Terminal differentiation-induced non-coding RNA, TINCR),又称LINC00036或者胎盘特异蛋白2 (placenta-specific protein 2, PLAC2),位于人类染色体19p13.3上,大小为3.7 kb [13]。2013年,Kretz等首次报道了TINCR是体细胞组织分化所必需的lncRNA,TINCR能够在转录后水平调控多种分化基因的表达,缺失TINCR会导致表皮终末分化的超微结构如透明角质颗粒和完整的板层小体的缺乏 [14]。HPA (Human Protein Atlas)数据库的数据显示,TINCR在皮肤、胎盘和食管中均有特异性表达 [15]。随着研究的深入,科学家们发现TINCR参与多种恶性肿瘤的发生发展,并且其在不同类型肿瘤中发挥着不同的功能。

3. TINCR在肿瘤中的异常表达及临床价值

研究表明,TINCR在多种肿瘤中表达失调 [12]。有趣的是,其在一些肿瘤组织中表达上调,而在另一些肿瘤组织中表达下调,这表明TINCR在不同肿瘤中可能发挥着不同的作用。

3.1. 肝细胞癌(Hepatocellular Carcinom, HCC)

Tian等通过qRT PCR检测了248例肝癌样本中TINCR的表达水平,发现与健康对照组相比,肝癌组织中TINCR的表达水平显著升高,且高表达TINCR的肝癌患者预后更差 [16]。TINCR是肝癌患者无病生存率(DFS)和总生存率(OS)的独立预后指标 [16]。

3.2. 膀胱癌(Bladder Cancer, BC)

Guo等研究发现,与匹配的相邻正常组织相比,膀胱癌组织中TINCR的表达显著增加。此外,与正常膀胱上皮细胞(SV-HUC-1细胞)相比,膀胱癌细胞系中的TINCR水平也同样增加 [11]。与TINCR低表达患者相比,TINCR高表达的膀胱患者的生存率更低。TINCR的高表达与肿瘤转移、晚期临床分期以及膀胱癌患者的生存率降低有关,TINCR可能被用作膀胱癌的潜在预后指标 [11]。

3.3. 前列腺癌(Prostate Cancer, PCa)

Dong等对比分析了TCGA数据库中52对正常前列腺组织与前列腺癌组织中TINCR的表达水平,发现TINCR在前列腺癌组织中的表达显著降低。此外,与前列腺上皮细胞系(RWPE-1和P69)相比,前列腺癌细胞系(LNCaP、PC3、DU145和22Rv1)中TINCR的表达水平显著降低 [9]。TINCR的低表达水平与前列腺癌患者的晚期临床分期、淋巴结转移、远处转移和总生存期降低显著相关,是前列腺癌患者的一个不良预后指标 [9]。

3.4. 肺癌(Lung Cancer, LCA)

目前,TINCR在肺癌中的表达状况存在争议。Liu等发现,相比健康肺组织样本,肺癌组织样本中的TINCR表达显著下调,TINCR在肺癌中发挥抑制肿瘤的作用 [17]。Zhu等发现,在非小细胞肺癌组织样本中TINCR的表达明显上调,并且其较高的表达水平与较差的生存率相关。TINCR能够激活MAPK信号通路,进而促进非小细胞肺癌的发生发展 [18]。这两项结果之间存在的差异很可能是由于肺癌的异质性。

4. TINCR参与肿瘤进程的致病机制

4.1. 作为ceRNA调节MicroRNA的功能

MicroRNA是一类长度约为20~24 nt的内源性单链非编码RNA,其能够与mRNA的3'UTR区域结合,调节转录后水平的基因表达 [19]。MicroRNA广泛参与细胞增殖、器官发育、免疫应答和肿瘤发生等生理病理过程 [20] [21] [22] [23]。

MiR-544是一种癌基因,能够促进多种癌症的发展 [24] [25]。F-box家族的FBXW7是一个经典的抑癌蛋白 [26]。研究发现,在肺癌中,TINCR能够作为miR-544a的分子海绵,通过与miR-544a竞争性结合增强FBXW7的表达,进而抑制肺癌细胞的增殖和侵袭,TINCR在肺癌中发挥肿瘤抑制的功能 [17]。

Chen等分析了56例胃癌患者肿瘤样本中TINCR和miR-375的表达,发现TINCR在胃癌组织中的表达显著降低,相反,miR-375在肿瘤组织中表达显著升高。进一步实验表明,TINCR能够作为miR-375的ceRNA促进3-磷酸肌醇依赖性蛋白激酶1 (3-phosphoinositide dependent protein kinase 1, PDK1)的表达,进而抑制细胞凋亡,促进细胞增殖。TINCR在胃癌中发挥致癌作用 [7]

在乳腺癌中,TINCR能够作为通过miR-589-3p的分子海绵,促进IGF1R-Akt信号通路的激活,进而提高乳腺癌细胞的增殖、迁移和侵袭能力,并抑制癌细胞凋亡 [27]。

4.2. 靶向信号通路中的关键分子

STAT3信号通路与肿瘤细胞增殖、浸润和免疫抑制有关 [28]。在肝癌中,TINCR能够直接与T细胞蛋白酪氨酸磷酸酶(T cell protein tyrosine phosphatase, TCPTP)结合并抑制STAT3的去磷酸化,进而促进STAT3信号通路的激活及其下游靶基因的表达,促进肝癌细胞生长、迁移和浸润 [29]。在乳腺癌中,TINCR作为ceRNA发挥作用,通过吸附miR-503-5p上调EGFR表达,进而激活EGFR下游的STAT3信号通路,STAT3又能反过来促进TINCR的转录表达。STAT3-TINCR-EGFR反馈环的发现为乳腺癌的治疗提供了潜在靶点 [30]。

Zhu等研究发现,TINCR可以与B-Raf原癌基因丝氨酸/苏氨酸蛋白激酶(B-Raf Proto Oncogene Serine/Threonine Protein Kinase, BRAF)相互作用,促进BRAF的激酶活性,进而激活MEK1/2蛋白。MEK1/2可进一步激活MAPK信号通路,促进非小细胞肺癌的发生 [18]。

TINCR还可作为ceRNA与miR-195-3p竞争性结合,促进人β半乳糖苷α-2,6-唾液酸转移酶1 (ST6 Beta-Galactoside Alpha-2,6-Sialyltransferase 1, ST6GAL1)的表达,并激活NF-κB信号通路,进而促进肝癌的发生发展 [31]。

4.3. 与其他蛋白互作

甲状腺激素受体相互作用分子13 (thyroid hormone receptor interactor 13, TRIP13)在多种肿瘤中作为癌基因发挥作用 [32]。研究发现,在前列腺癌中,TINCR能够通过抑制TRIP13的表达进而抑制前列腺癌细胞增殖、迁移和侵袭,其在前列腺癌中发挥抑癌作用 [9]。

4.4. 促进肿瘤细胞耐药

Dong等收集了30份对曲妥珠单抗治疗反应不佳的HER-2+乳腺癌患者的组织样本,以及另外30份对曲妥珠单抗治疗有反应的HER-2+乳腺癌患者的组织样本,发现与曲妥珠单抗应答患者相比,曲妥珠单抗耐药患者的TINCR表达上调。另外,与敏感细胞相比,曲妥珠单抗耐药的乳腺癌细胞中TINCR的表达水平显著升高。深入研究发现,TINCR能够作为miR-125b的ceRNA,促进HER-2的释放,进而诱导乳腺癌细胞的曲妥珠单抗耐药。临床上,TINCR高表达的HER-2+乳腺癌患者对曲妥珠单抗治疗反应差,生存时间短,TINCR是提高乳腺癌曲妥珠单抗临床疗效的潜在治疗靶点 [8]。

另一项研究表明,TINCR在肝癌组织中表达上调,且沉默TINCR可抑制肝癌细胞的增殖、迁移、侵袭和奥沙利铂抵抗。小鼠异种移植实验进一步证实,敲除TINCR可在体内抑制肿瘤生长,减弱肿瘤细胞对奥沙利铂的耐药性 [31]。

4.5. 促进上皮细胞间充质转化

Snail-1在肿瘤的上皮细胞间充质转化、化疗和免疫抵抗的调节中起着关键作用。在乳腺癌中,TINCR能够通过与miR-125b竞争性抑制促进Snail-1的表达,进而促进乳腺癌细胞的上皮细胞间充质转化 [8]。

5. 总结与展望

近年来的研究已证实,lncRNA TINCR同时具有致癌和抑瘤的潜能,能够改变多种肿瘤的细胞功能,如细胞存活和增殖、侵袭和转移、凋亡和耐药性。TINCR影响肿瘤进程的机制也极其复杂,涉及多个步骤,包括作为ceRNA改变microRNA的功能,激活STAT3、MAPK、NF-κB等肿瘤相关信号通路以及与其他蛋白互作等等。在临床应用方面,因TINCR的异常表达与较差的临床病理参数密切相关,如总生存期降低和晚期临床分期,所以TINCR可作为肿瘤预后的潜在生物标志物。

综上所述,TINCR在多种肿瘤的发生、发展过程中扮演着十分重要的角色,是肿瘤的潜在治疗靶点和预后标志物。随着人们对lncRNA在肿瘤发病机制的研究不断深入,必将为肿瘤的诊治提供新方案、开辟新路径。

基金项目

衢州市科技竞争性项目2020K42,衢州职业技术学院重点项目QZYZ1903。

文章引用

郑 欣,罗 烨. 长链非编码RNA TINCR在肿瘤中的作用研究进展
Research Progress of Long Non-Coding RNA TINCR Involved in Tumor[J]. 临床医学进展, 2022, 12(05): 4632-4637. https://doi.org/10.12677/ACM.2022.125669

参考文献

  1. 1. Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  2. 2. Blythe, A.J., Fox, A.H. and Bond, C.S. (2016) The Ins and Outs of lncRNA Structure: How, Why and What Comes Next? Biochimica et Biophysica Acta, 1859, 46-58. https://doi.org/10.1016/j.bbagrm.2015.08.009

  3. 3. He, J., Tu, C. and Liu, Y. (2018) Role of lncRNAs in Aging and Age-Related Diseases. Aging Medicine, 1, 158-175. https://doi.org/10.1002/agm2.12030

  4. 4. Bartonicek, N., Maag, J.L. and Dinger, M.E. (2016) Long Noncoding RNAs in Cancer: Mechanisms of Action and Technological Advancements. Molecular Cancer, 15, Article No. 43. https://doi.org/10.1186/s12943-016-0530-6

  5. 5. Gibb, E.A., Brown, C.J. and Lam, W.L. (2011) The Functional Role of Long Non-Coding RNA in Human Carcinomas. Molecular Cancer, 10, Article No. 38. https://doi.org/10.1186/1476-4598-10-38

  6. 6. Xu, T.P., Wang, Y.F., Xiong, W.L., et al. (2017) E2F1 Induces TINCR Transcriptional Activity and Accelerates Gastric Cancer Progression via Activation of TINCR/STAU1/CDKN2B Signaling Axis. Cell Death & Disease, 8, e2837. https://doi.org/10.1038/cddis.2017.205

  7. 7. Chen, Z., Liu, H., Yang, H., et al. (2017) The Long Noncoding RNA, TINCR, Functions as a Competing Endogenous RNA to Regulate PDK1 Expression by Sponging miR-375 in Gastric Cancer. OncoTargets and Therapy, 10, 3353-3362. https://doi.org/10.2147/OTT.S137726

  8. 8. Dong, H., Hu, J., Zou, K., et al. (2019) Activation of LncRNA TINCR by H3K27 Acetylation Promotes Trastuzumab Resistance and Epi-thelial-Mesenchymal Transition by Targeting MicroRNA-125b in Breast Cancer. Molecular Cancer, 18, Article No. 3. https://doi.org/10.1186/s12943-018-0931-9

  9. 9. Dong, L., Ding, H., Li, Y., et al. (2018) LncRNA TINCR Is Associated with Clinical Progression and Serves as Tumor Suppressive Role in Prostate Cancer. Cancer Management and Research, 10, 2799-2807. https://doi.org/10.2147/CMAR.S170526

  10. 10. Hou, A., Zhang, Y., Zheng, Y., et al. (2019) LncRNA Terminal Differentiation-Induced ncRNA (TINCR) Sponges miR-302 to Upregulate Cyclin D1 in Cervical Squamous Cell Carci-noma (CSCC). Human Cell, 32, 515-521. https://doi.org/10.1007/s13577-019-00268-y

  11. 11. Xu, G., Yang, H., Liu, M., et al. (2020) lncRNA TINCR Facili-ties Bladder Cancer Progression via Regulating miR7 and mTOR. Molecular Medicine Reports, 22, 4243-4253. https://doi.org/10.3892/mmr.2020.11530

  12. 12. Ghafouri-Fard, S., Dashti, S., Taheri, M., et al. (2020) TINCR: An lncRNA with Dual Functions in the Carcinogenesis Process. Non-Coding RNA Research, 5, 109-115. https://doi.org/10.1016/j.ncrna.2020.06.003

  13. 13. Sharma, U., Barwal, T.S., Malhotra, A., et al. (2020) Long Non-Coding RNA TINCR as Potential Biomarker and Therapeutic Target for Cancer. Life Sciences, 257, Article ID: 118035. https://doi.org/10.1016/j.lfs.2020.118035

  14. 14. Kretz, M., Siprashvili, Z., Chu, C., et al. (2013) Control of Somatic Tissue Differentiation by the Long Non-Coding RNA TINCR. Nature, 493, 231-235. https://doi.org/10.1038/nature11661

  15. 15. Iwakiri, J., Terai, G. and Hamada, M. (2017) Computational Prediction of lncRNA-mRNA Interactionsby Integrating Tissue Specificity in Human Transcriptome. Biology Direct, 12, Article No. 15. https://doi.org/10.1186/s13062-017-0183-4

  16. 16. Tian, F., Xu, J., Xue, F., et al. (2017) TINCR Expression Is As-sociated with Unfavorable Prognosis in Patients with Hepatocellular Carcinoma. Bioscience Reports, 37, BSR20170301. https://doi.org/10.1042/BSR20170301

  17. 17. Liu, X., Ma, J., Xu, F., Li, L., et al. (2018) TINCR Suppresses Prolif-eration and Invasion through Regulating miR- 544a/FBXW7 Axis in Lung Cancer. Biomedicine & Pharmacotherapy, 99, 9-17. https://doi.org/10.1016/j.biopha.2018.01.049

  18. 18. Zhu, Z.J. and He, J.K. (2018) TINCR Facilitates Non-Small Cell Lung Cancer Progression through BRAF-Activated MAPK Pathway. Biochemical and Biophysical Research Commu-nications, 497, 971-977. https://doi.org/10.1016/j.bbrc.2018.02.059

  19. 19. Ali Syeda, Z., Langden, S.S.S., Munkhzul, C., et al. (2020) Regu-latory Mechanism of MicroRNA Expression in Cancer. International Journal of Molecular Sciences, 21, Article No. 1723. https://doi.org/10.3390/ijms21051723

  20. 20. Hill, M. and Tran, N. (2021) miRNA Interplay: Mechanisms and Consequences in Cancer. Disease Models & Mechanisms, 14, dmm047662. https://doi.org/10.1242/dmm.047662

  21. 21. Zhao, Z., Sun, W., Guo, Z., et al. (2020) Mechanisms of lncRNA/MicroRNA Interactions in Angiogenesis. Life Sciences, 254, Article ID: 116900. https://doi.org/10.1016/j.lfs.2019.116900

  22. 22. Liu Y., Song J. W., Lin J. Y., et al. (2020) Roles of Mi-croRNA-122 in Cardiovascular Fibrosis and Related Diseases. Cardiovascular Toxicology, 20, 463-473. https://doi.org/10.1007/s12012-020-09603-4

  23. 23. Wu, K.L., Tsai, Y.M., Lien, C.T., et al. (2019) The Roles of MicroRNA in Lung Cancer. International Journal of Molecular Sciences, 20, Article No. 1611. https://doi.org/10.3390/ijms20071611

  24. 24. Kong, W., Liu, X., Yin, G., et al. (2020) Extracellular Vesicle Derived miR-544 Downregulates Expression of Tumor Suppressor Promyelocytic Leukemia Zinc Finger Resulting in Increased Peritoneal Metastasis in Gastric Cancer. Aging, 12, 24009-24022. https://doi.org/10.18632/aging.104082

  25. 25. Fang, P., Xiang, L., Chen, W., et al. (2019) LncRNA GAS5 Enhanced the Killing Effect of NK Cell on Liver Cancer through Regulating miR-544/RUNX3. Innate Immunity, 25, 99-109. https://doi.org/10.1177/1753425919827632

  26. 26. Yeh, C.H., Bellon, M. and Nicot, C. (2018) FBXW7: A Critical Tumor Suppressor of Human Cancers. Molecular Cancer, 17, Article No. 115. https://doi.org/10.1186/s12943-018-0857-2

  27. 27. Guo, F., Zhu, X., Zhao, Q., et al. (2020) miR5893p Sponged by the lncRNA TINCR Inhibits the Proliferation, Migration and Invasion and Promotes the Apoptosis of Breast Cancer Cells by Suppressing the Akt Pathway via IGF1R. International Journal of Molecular Medicine, 46, 989-1002. https://doi.org/10.3892/ijmm.2020.4666

  28. 28. Yu, H., Lee, H., Herrmann, A., et al. (2014) Revisiting STAT3 Sig-nalling in Cancer: New and Unexpected Biological Functions. Nature Reviews Cancer, 14, 736-746. https://doi.org/10.1038/nrc3818

  29. 29. Tang, C., Feng, W., Bao, Y., et al. (2021) Long Non-Coding RNA TINCR Promotes Hepatocellular Carcinoma Proliferation and Invasion via STAT3 Signaling by Direct Interacting with T-Cell Protein Tyrosine Phosphatase (TCPTP). Bioengineered, 12, 2119-2131. https://doi.org/10.1080/21655979.2021.1930336

  30. 30. Wang, Q., Liu, J., You, Z., et al. (2021) LncRNA TINCR Favors Tumorigenesis via STAT3-TINCR-EGFR-Feedback Loop by Recruiting DNMT1 and Acting as a Competing Endogenous RNA in Human Breast Cancer. Cell Death & Disease, 12, Article No. 83. https://doi.org/10.1038/s41419-020-03188-0

  31. 31. Mei, J., Lin, W., Li, S., et al. (2022) Long Noncoding RNA TINCR Facilitates Hepatocellular Carcinoma Progression and Dampens Chemosensitivity to Oxaliplatin by Regulating the miR-195-3p/ST6GAL1/NF-kappaB Pathway. Journal of Experimental & Clinical Cancer Research, 41, Article No. 5. https://doi.org/10.1186/s13046-021-02197-x

  32. 32. Lu, S., Qian, J., Guo, M., et al. (2019) Insights into a Crucial Role of TRIP13 in Human Cancer. Computational and Structural Biotechnology Journal, 17, 854-861. https://doi.org/10.1016/j.csbj.2019.06.005

  33. NOTES

    *通讯作者。

期刊菜单