Advances in Clinical Medicine
Vol. 13  No. 02 ( 2023 ), Article ID: 61410 , 10 pages
10.12677/ACM.2023.132292

结直肠高危腺瘤与血清胆红素相关性研究

许子桐1,张海燕2,修辉2,张珊2,姜娜2,王荣玉2,刘希双2*

1青岛大学青岛医学院,山东 青岛

2青岛大学附属医院消化内科,山东 青岛

收稿日期:2023年1月14日;录用日期:2023年2月9日;发布日期:2023年2月16日

摘要

目的:本研究旨在分析结直肠高危腺瘤的风险因素,以及与血清胆红素水平的关系。方法:本研究纳入2017年5月至2022年6月在青岛大学附属医院接受结肠镜检查的415例患者。采用单因素分析研究结直肠高危腺瘤风险因素,多因素logistic回归进一步分析结直肠高危腺瘤与血清胆红素的关系。结果:高危腺瘤组中男性、结直肠癌家族史患者更多。与非高危腺瘤组相比,高危腺瘤组患者平均年龄、血清直接胆红素(DBIL)、中性粒细胞/淋巴细胞比值(NLR)更高,总胆固醇(TC)更低。血清直接胆红素与结直肠高危腺瘤独立相关。结论:性别、年龄、结直肠癌家族史、直接胆红素、中性粒细胞/淋巴细胞比值、总胆固醇与结直肠高危腺瘤相关。血清直接胆红素水平是结直肠高危腺瘤的独立风险因素。

关键词

结直肠高危腺瘤,血清胆红素,风险因素

Association between Advanced Colorectal Adenoma and Serum Bilirubin

Zitong Xu1, Haiyan Zhang2, Hui Xiu2, Shan Zhang2, Na Jiang2, Rongyu Wang2, Xishuang Liu2*

1Qingdao Medical College, Qingdao University, Qingdao Shandong

2Department of Digestive Diseases, The Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Jan. 14th, 2023; accepted: Feb. 9th, 2023; published: Feb. 16th, 2023

ABSTRACT

Objective: The purpose of this study was to analyze risk factors of advanced colorectal adenoma and the association between advanced colorectal adenoma and serum bilirubin. Methods: A total of 415 patients who underwent colonoscopy in the Affiliated Hospital of Qingdao University from May 2017 to June 2022 were included in this study. Univariate analysis was used to study the risk factors of advanced colorectal adenoma, and multivariate logistic regression was used to further analyze the association between advanced colorectal adenoma and serum bilirubin. Results: The advanced colorectal adenoma group had more patients with male sex and a family history of colorectal cancer. The mean age, serum direct bilirubin (DBIL), neutrophil/lymphocyte ratio (NLR) of patients with advanced colorectal adenoma was higher than those without. Patients with advanced colorectal adenoma had lower total cholesterol (TC). Serum direct bilirubin was independently associated with advanced colorectal adenoma. Conclusions: Gender, age, a family history of colorectal cancer, serum direct bilirubin, neutrophil/lymphocyte ratio and total cholesterol are associated with advanced colorectal adenoma. Serum direct bilirubin level is an independent risk factor for advanced colorectal adenoma.

Keywords:Advanced Colorectal Adenoma, Serum Bilirubin, Risk Factors

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

根据2018年全球癌症统计数据,结直肠癌(CRC)被认为是全球发病率第三高、死亡率第二高的恶性肿瘤 [1] 。在中国,近几十年来CRC的发病率和死亡率一直呈上升趋势 [2] [3] ,CRC已成为威胁中国居民生命健康的主要癌症之一。

大多数CRC是散发性的,“腺瘤–腺癌”是CRC发生最主要的途径,结直肠腺瘤是CRC最主要的癌前疾病 [4] 。早期发现和切除结直肠腺瘤,尤其是高危腺瘤,对于降低CRC的发病率有重要意义。具备以下三项条件之一者即为高危腺瘤 [5] :① 腺瘤直径 ≥ 10 mm;② 绒毛状腺瘤或混合性腺瘤而绒毛状结构超过25%;③ 伴有高级别上皮内瘤变。

血清胆红素与多种癌症相关,包括CRC [6] 、胃癌 [7] 、肺癌 [8] 、乳腺癌 [9] 。胃癌患者的总胆红素(TBIL)和DBIL较健康对照组显著降低,对预后的影响类似于CEA和糖类抗原19-9 [7] ,可以作为胃癌生存期的独立预测因子 [10] 。在非小细胞肺癌中,高TBIL和高间接胆红素(Indirect bilirubin, IBIL)与更长的术后生存期显著相关 [11] 。非转移性浸润性乳腺癌中,TBIL水平较高的患者5年生存期显著延长 [9] 。在美国一项大型健康调查中,研究者观察到血清胆红素浓度略有升高的人群患CRC的风险降低 [12] 。血清胆红素水平升高与CRC患者的淋巴结转移和预后不良有关,可以作为CRC预后有效预测指标 [13] [14] 。Gumpenberger等人进行的一项代谢组学研究显示,CRC患者血清胆红素水平低于腺瘤患者,提示胆红素参与CRC的发生 [15] 。然而,还没有研究报道血清胆红素水平与结直肠高危腺瘤之间的关系。

本研究回顾性分析415名结肠镜检查患者的临床特征,并探究结直肠高危腺瘤与血清胆红素水平的关系。

2. 方法

2.1. 数据收集

收集2017年5月至2022年6月在青岛大学附属医院接受结肠镜检查并实验室检查完整的患者数据。排除标准为 [16] [17] :1) 恶性肿瘤(包括CRC)和器官衰竭的患者;2) 既往接受过结肠镜下治疗或结直肠手术的患者;3) 炎症性肠病、遗传性非息肉病性结直肠癌综合征、家族性腺瘤性息肉病患者;4) 拒绝参加研究的患者。最终纳入415名患者。由于该研究是回顾性的,因此通过电话获得知情同意。这项研究没有违反1964年《赫尔辛基宣言》及其修正案,以及后来颁布的类似道德标准。青岛大学附属医院伦理委员会批准了该研究(伦理批准文号:QYFYWZLL27184)。本研究通过电话收集问卷信息,实验室检查结果来自青岛大学附属医院医渡云平台数据库。

所有患者签署结肠镜检查知情同意书。经验丰富的内镜医师参考活检钳估计每个息肉的大小,并送检组织病理学检查。

2.2. 统计分析

分类变量以数字(百分比)表示,使用c2检验或费舍尔精确检验进行统计学分析。连续变量根据数据是否呈正态分布表示为平均值 ± 标准差或中位数(四分位距),使用t检验或曼–惠特尼检验分析。应用二元logistic回归进行多因素分析。统计学显著差异设定为p < 0.05。SPSS26.0软件用于数据分析,GraphpadPrism8.0软件用于绘图。

3. 结果

3.1. 一般资料

本研究共纳入415例结肠镜检查患者,包括高危腺瘤患者86例(20.72%),无息肉患者170例(40.96%),非腺瘤息肉(包括炎性息肉与增生性息肉)患者68例(16.39%),腺瘤患者91例(21.93%),后三者共同归入非高危腺瘤组,共329例(79.28%)。表1为415例患者的临床特征,其中高危腺瘤组患者男性68例(25.19%),女性18例(12.41%),平均年龄57岁;非高危腺瘤组男性202例(74.81%),女性127例(87.59%),平均年龄52岁。

Table 1. Clinical characters of 415 patients

表1. 415例患者临床特征

SII,系统性免疫炎症指数;PLR,血小板计数/淋巴细胞计数比值;TG,甘油三酯;HDL,高密度脂蛋白;LDL,低密度脂蛋白。

3.2. 高危腺瘤风险因素分析

单因素分析显示(表1),高危腺瘤组中男性比例(25.19%)显著高于女性(12.41%)。高危腺瘤组平均年龄57岁,年长于平均年龄52岁的非高危腺瘤组,两组有显著性统计学差异。高危腺瘤组中有结直肠癌家族史的患者比例更高、NLR更高、TC更低。高危腺瘤组与非高腺瘤组相比,BMI无显著统计学差异。高危腺瘤组中吸烟史、饮酒史患者尽管比例更高,但并无显著统计学差异。

图1所示,与非高危腺瘤组相比,高危腺瘤组患者DBIL更高,TBIL和IBIL无显著差异。在临床实践中,将DBIL转化为分类变量,应用ROC曲线(图2)确定最佳临界值为3.78 µmol/L,曲线下面积(AUC)为0.62 (95%CI: 0.55~0.69, p < 0.05)。如表2所示,在多因素logistic回归分析中,模型1校正性别、年龄、吸烟史、结直肠癌家族史,DBIL ≥ 3.78 µmol/L是高危腺瘤的独立危险因素,OR值为2.20 (95%CI: 1.28~3.80);模型2校正性别、年龄、结直肠癌家族史、NLR、TC,DBIL ≥ 3.78 µmol/L是高危腺瘤的独立危险因素,OR值为2.11 (95%CI: 1.22~3.65)。

3.3. 不同性别血清胆红素与高危腺瘤关系分析

表3所示,血清胆红素水平在性别中具有差别。男性的TBIL与DBIL水平比女性更高,IBIL无显著性差异。如图3,在男性中,高危腺瘤患者的DBIL水平较非高危腺瘤患者更高,在女性中DBIL在二者间无显著差异。在男性和女性中,高危腺瘤患者TBIL与IBIL水平与非高危腺瘤患者均无显著差异。

(a) (b) (c)

Figure 1. Association between serum bilirubin and advanced colorectal adenoma

图1. 胆红素与结直肠高危腺瘤之间的关系

Figure 2. ROC curve of direct bilirubin

图2. 直接胆红素ROC曲线

Table 2. Multivariate logistic regression analysis

表2. 多因素logistic回归分析

a模型1:校正性别、年龄、吸烟史、结直肠癌家族史;b模型2:校正性别、年龄、结直肠癌家族史、NLR、TC。

Table 3. Association between serum bilirubin and gender

表3. 血清胆红素与性别的关系

(a) (b) (c)

Figure 3. Association among gender, serum bilirubin and advanced colorectal adenoma

图3. 不同性别血清胆红素与结直肠高危腺瘤关系

4. 讨论

在流行病学调查中,性别、年龄与高危腺瘤的患病率密切相关 [16] ,本研究同样显示,高危腺瘤组男性比例更高,平均年龄高于非高危腺瘤组。性别差异可能与遗传、生活方式、饮食习惯有关 [17] 。吸烟与CRC之间存在剂量依赖关系,一项观察性研究meta分析显示,每天吸烟20支人群患CRC风险比(Risk ratio, RR)为1.14 (95%CI 1.06~1.23),每天吸烟40支人群RR为1.31 (95%CI 1.12~1.52)。与当前吸烟者相比,既往吸烟者戒烟10年后患CRC风险开始下降,戒烟26年后CRC风险显著下降(RR 0.88, 95%CI 0.79~0.98) [18] [19] 。本研究中吸烟史与高危腺瘤无显著相关。与CRC相比,吸烟与高危腺瘤风险之间的相关性可能较弱 [20] [21] 。遗传因素在CRC的发病机制中起着重要作用 [22] [23] ,本研究同样表明有结直肠癌家族史的患者高危腺瘤患病率更高。肿瘤的发生发展与炎症反应密切相关 [24] ,外周血计数系数包括SII、NLR、PLR可以在一定程度上反映全身炎症反应。有研究显示高NLR与结直肠腺瘤增多 [25] 、复发 [26] 有关。一些研究也提出NLR与CRC患者预后独立相关,高NLR时CRC患者总生存期和无病生存期显著减少 [27] [28] 。炎症激活肿瘤细胞中的转录因子,如核因子-κB (Nuclear factor kappa-B, NF-κB)、信号转导和转录激活因子3 (Signal transducer and activator of transcription 3, STAT3),进一步产生与癌症相关的炎症介质 [29] 。这些炎症介质与细胞增殖、细胞活性、上皮–间质转化(EMT)、血管生成和肿瘤–细胞迁移相关 [30] 。我们的研究中结直肠高危腺瘤患者NLR显著升高,反映炎症在高危腺瘤–癌转化中可能起到一定的作用。

血清胆红素水平与结直肠癌发病风险尚有争议。有研究显示血清胆红素浓度略有升高的人群患CRC的风险降低 [12] [31] ,也有队列研究显示基线血清胆红素浓度与结直肠癌发病风险无关 [32] 。基线血清胆红素水平存在种族差异 [12] [33] ,这些研究的差异可能与种族、地域人群差异有关。血清胆红素与CRC风险之间的关系需要更多的研究证实。高DBIL组(≥3.60 μmol/L) CRC患者有更高的淋巴结转移和淋巴管浸润比例,生存率降低,DBIL可作为CRC总生存期和无病生存期的独立预后生物标志物 [13] [14] [34] 。高TBIL组(≥13.1 μmol/L) CRC患者比低TBIL组平均肿瘤直径更小,但淋巴结转移率更高 [6] 。一项代谢组学研究表明CRC患者血清胆红素水平低于腺瘤患者,提示胆红素在CRC发展中可能起到一定作用 [15] ,具体的机制需要更多研究探索。在我们的研究中,高危腺瘤组患者DBIL显著高于非高危腺瘤组,TBIL与IBIL在高危腺瘤患病与否中无显著差异。应用ROC曲线,结合敏感度、特异度、约登指数,确定DBIL最佳临界值为3.78 μmol/L。在多因素logistic回归分析中,2个校正模型均显示DBIL ≥ 3.78 µmol/L是高危腺瘤的独立危险因素,OR值分别为2.20、2.11,说明DBIL ≥ 3.78 µmol/L时高危腺瘤患病风险升高约2倍。由于种族、地域、人群,甚至是检测试剂的差异性,这个由单个队列确定的临界值不具有普遍性,但仍说明正常参考值范围内的血清胆红素水平较高时,结直肠高危腺瘤患病风险升高。

血清胆红素水平存在性别差异 [35] 。在美国的一项全国调查中,男性的血清胆红素水平显著高于女性 [12] ,这可能是由于男性较低的雌激素和较高的红细胞代谢水平 [36] 。一项来自欧洲的多中心研究显示,较高的血清IBIL水平与男性的CRC风险呈正相关,而与女性的呈负相关 [36] 。而我们的数据显示,男性和女性IBIL水平与结直肠高危腺瘤风险无关。男性中,高危腺瘤患者的DBIL水平较非高危腺瘤患者更高。尿苷二磷酸葡萄糖苷酸基转移酶同工酶(UGT1A1)在胆红素代谢中起到重要作用 [37] 。IBIL与UGT1A1结合,然后通过胆汁输送到肠道,IBIL由粪便中排出或被重新吸收。研究报道UGT1A1酶基因在CRC中呈现多态性,并与CRC患者伊立替康化疗预后相关 [38] 。男性和女性血清胆红素水平的差异可能与性激素影响UGT1A1表达、活性相关 [39] 。UGT1A1基因和CRC风险关系可能存在性别差异,UGT1A1*28等位基因是男性中结直肠癌的危险因素,而在女性人群中没有发现显著的风险 [40] 。

血清胆红素与结直肠肿瘤关联的机制尚不明确。在IBIL作用于大鼠神经细胞的研究中显示,IBIL直接与线粒体相互作用,影响膜脂质和蛋白性质、氧化还原状态和细胞色素c含量,并进一步诱导细胞凋亡 [41] 。相似地,胆红素可通过激活线粒体途径刺激结肠腺癌细胞凋亡,胆红素引起caspase-9的特异性激活,促进细胞色素c释放到细胞质中,并触发结肠癌细胞中的线粒体通透性的改变。这为胆红素在CRC发生发展中的作用提供思路和基础 [42] 。血清胆红素具有显著的抗炎和抗氧化特性 [43] [44] ,实验显示胆红素对人类癌细胞系的作用具有双重性。胆红素对肝癌细胞具有抗氧化作用,但在胃癌细胞中表现出促氧化剂的特性 [45] ,这也解释了血清胆红素水平在不同癌症中风险、预后趋势不同。一项鼻咽癌的动物实验研究表明,IBIL可通过抑制活性氧的产生,降低裸鼠鼻咽癌细胞的侵袭能力,并有效抑制了鼻咽癌细胞的肺转移 [46] 。iNOS (诱导型一氧化氮合酶)抑制剂已显示可减少APCMin/+小鼠的结直肠腺瘤形成 [47] ,Smith等人的研究表明,APCMin/+小鼠口服胆红素可降低肠道iNOS表达,但并未抑制肠道腺瘤形成,对结直肠肿瘤的影响难以确定 [48] 。血管细胞粘附分子信号通路已被证实与多种癌症的发生有关,该通路可能被胆红素抑制 [49] [50] 。血清胆红素与结直肠肿瘤之间关系的相关机制需要更多的研究探索。

这项研究也有一些局限性。首先,数据是从单个中心收集的,需要外部验证研究来证实我们的结果。此外,问卷调查的数据是通过电话收集的,这可能导致了本次回顾性研究中的回忆偏倚。

5. 结论

性别、年龄、结直肠癌家族史、直接胆红素、血清中性粒细胞/淋巴细胞比值、血清总胆固醇与结直肠高危腺瘤相关。正常参考值范围内高血清直接胆红素水平是结直肠高危腺瘤的独立风险因素。

致谢

感谢所有参与研究的人员提供的宝贵数据,感谢医学数据库工作人员的技术支持,感谢刘希双教授的严格指导。

文章引用

许子桐,张海燕,修 辉,张 珊,姜 娜,王荣玉,刘希双. 结直肠高危腺瘤与血清胆红素相关性研究
Association between Advanced Colorectal Adenoma and Serum Bilirubin[J]. 临床医学进展, 2023, 13(02): 2093-2102. https://doi.org/10.12677/ACM.2023.132292

参考文献

  1. 1. Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492

  2. 2. Sung, J.J., Ng, S.C., Chan, F.K., et al. (2015) An Updated Asia Pacific Consensus Recommendations on Colorectal Cancer Screening. Gut, 64, 121-132. https://doi.org/10.1136/gutjnl-2013-306503

  3. 3. Chen, W., Sun, K., Zheng, R., et al. (2018) Cancer Incidence and Mortality in China, 2014. Chinese Journal of Cancer Research, 30, 1-12. https://doi.org/10.21147/j.issn.1000-9604.2018.01.01

  4. 4. Vogelstein, B., Fearon, E.R., Hamilton, S.R., et al. (1988) Genetic Alterations during Colorectal-Tumor Development. The New England Journal of Medicine, 319, 525-532. https://doi.org/10.1056/NEJM198809013190901

  5. 5. 中华医学会消化病学分会. 中国结直肠肿瘤综合预防共识意见(2021年, 上海) [J]. 中华消化杂志, 2021, 41(11): 726-759.

  6. 6. Cao, Y., Deng, S., Yan, L., et al. (2021) A Nomogram Based on Pretreatment Levels of Serum Bilirubin and Total Bile Acid Levels Predicts Survival in Colorectal Cancer Patients. BMC Cancer, 21, 85. https://doi.org/10.1186/s12885-021-07805-9

  7. 7. Wei, T.T., Wang, L.L., Yin, J.R., et al. (2017) Relationship be-tween Red Blood Cell Distribution Width, Bilirubin, and Clinical Characteristics of Patients with Gastric Cancer. Interna-tional Journal of Laboratory Hematology, 39, 497-501. https://doi.org/10.1111/ijlh.12675

  8. 8. Horsfall, L.J., Rait, G., Walters, K., et al. (2011) Serum Bilirubin and Risk of Respiratory Disease and Death. JAMA, 305, 691-697. https://doi.org/10.1001/jama.2011.124

  9. 9. Liu, X., Meng, Q.H., Ye, Y., et al. (2015) Prognostic Significance of Pretreatment Serum Levels of Albumin, LDH and Total Bilirubin in Patients with Non-Metastatic Breast Cancer. Carcinogenesis, 36, 243-248. https://doi.org/10.1093/carcin/bgu247

  10. 10. Sun, H., He, B., Nie, Z., et al. (2017) A Nomogram Based on Serum Bilirubin and Albumin Levels Predicts Survival in Gastric Cancer Patients. Oncotarget, 8, 41305-41318. https://doi.org/10.18632/oncotarget.17181

  11. 11. Li, N., Xu, M., Cai, M.-Y., et al. (2015) Elevated Serum Bilirubin Levels Are Associated with Improved Survival in Patients with Curatively Resected Non-Small-Cell Lung Cancer. Can-cer Epidemiology, 39, 763-768. https://doi.org/10.1016/j.canep.2015.06.007

  12. 12. Zucker, S.D., Horn, P.S. and Sherman, K.E. (2004) Serum Bili-rubin Levels in the U.S. Population: Gender Effect and Inverse Correlation with Colorectal Cancer. Hepatology, 40, 827-835. https://doi.org/10.1002/hep.1840400412

  13. 13. Zhang, Q., Ma, X., Xu, Q., et al. (2017) Nomograms In-corporated Serum Direct Bilirubin Level for Predicting Prognosis in Stages II and III Colorectal Cancer after Radical Re-section. Oncotarget, 8, 71138-71146. https://doi.org/10.18632/oncotarget.11424

  14. 14. Gao, C., Fang, L., Li, J.T. and Zhao, H.C. (2016) Significance and Prognostic Value of Increased Serum Direct Bilirubin Level for Lymph Node Metastasis in Chinese Rectal Cancer Pa-tients. World Journal of Gastroenterology, 22, 2576-2584. https://doi.org/10.3748/wjg.v22.i8.2576

  15. 15. Gumpenberger, T., Brezina, S., Keski-Rahkonen, P., et al. (2021) Untargeted Metabolomics Reveals Major Differences in the Plasma Metabolome between Colorectal Cancer and Colo-rectal Adenomas. Metabolites, 11, 119. https://doi.org/10.3390/metabo11020119

  16. 16. Yeoh, K.G., Ho, K.Y., Chiu, H.M., et al. (2011) The Asia-Pacific Colorectal Screening Score: A Validated Tool That Stratifies Risk for Colorectal Advanced Neoplasia in Asymptomatic Asian Subjects. Gut, 60, 1236-1241. https://doi.org/10.1136/gut.2010.221168

  17. 17. Kim, S.E., Paik, H.Y., Yoon, H., et al. (2015) Sex- and Gen-der-Specific Disparities in Colorectal Cancer Risk. World Journal of Gastroenterology, 21, 5167-5175. https://doi.org/10.3748/wjg.v21.i17.5167

  18. 18. Keum, N. and Giovannucci, E. (2019) Global Burden of Colorectal Cancer: Emerging Trends, Risk Factors and Prevention Strategies. Nature Reviews Gastroenterology & Hepatology, 16, 713-732. https://doi.org/10.1038/s41575-019-0189-8

  19. 19. Botteri, E., Borroni, E., Sloan, E.K., et al. (2020) Smoking and Colorectal Cancer Risk, Overall and by Molecular Subtypes: A Meta-Analysis. The American Journal of Gastroenterol-ogy, 115, 1940-1949. https://doi.org/10.14309/ajg.0000000000000803

  20. 20. Figueiredo, J.C., Crockett, S.D., Snover, D.C., et al. (2015) Smoking-Associated Risks of Conventional Adenomas and Serrated Polyps in the Colorectum. Cancer Causes Control, 26, 377-386. https://doi.org/10.1007/s10552-014-0513-0

  21. 21. Soltani, G., Poursheikhani, A., Yassi, M., et al. (2019) Obesity, Diabetes and the Risk of Colorectal Adenoma and Cancer. BMC Endocrine Disorders, 19, 113. https://doi.org/10.1186/s12902-019-0444-6

  22. 22. Thanikachalam, K. and Khan, G. (2019) Colorectal Cancer and Nutrition. Nutrients, 11, 164. https://doi.org/10.3390/nu11010164

  23. 23. Dekker, E., Tanis, P.J., Vleugels, J.L.A., et al. (2019) Colorectal Cancer. The Lancet, 394, 1467-1480. https://doi.org/10.1016/S0140-6736(19)32319-0

  24. 24. Lu, Y., Xin, D. and Wang, F. (2019) Predictive Significance of Preoperative Systemic Immune-Inflammation Index Determination in Postoperative Liver Metastasis of Colorectal Cancer. OncoTargets and Therapy, 12, 7791-7799. https://doi.org/10.2147/OTT.S223419

  25. 25. Kim, J.H., Cho, K.I., Kim, Y.A. and Park, S.J. (2017) Elevated Neu-trophil-to-Lymphocyte Ratio in Metabolic Syndrome Is Associated with Increased Risk of Colorectal Adenoma. Meta-bolic Syndrome and Related Disorders, 15, 393-399. https://doi.org/10.1089/met.2017.0041

  26. 26. He, Q., Du, S., Wang, X., et al. (2022) Development and Validation of a Nomogram Based on Neutrophil-to-Lymphocyte Ratio and Fibrinogen-to-Lymphocyte Ratio for Predicting Recurrence of Colorectal Adenoma. Journal of Gastrointestinal Oncology, 13, 2269-2281. https://doi.org/10.21037/jgo-22-410

  27. 27. Li, Y., Jia, H., Yu, W., et al. (2016) Nomograms for Predicting Prognos-tic Value of Inflammatory Biomarkers in Colorectal Cancer Patients after Radical Resection. International Journal of Cancer, 139, 220-231. https://doi.org/10.1002/ijc.30071

  28. 28. Pine, J.K., Morris, E., Hutchins, G.G., et al. (2015) Systemic Neutro-phil-to-Lymphocyte Ratio in Colorectal Cancer: the Relationship to Patient Survival, Tumour Biology and Local Lym-phocytic Response to Tumour. British Journal of Cancer, 113, 204-211. https://doi.org/10.1038/bjc.2015.87

  29. 29. Mantovani, A., Allavena, P., Sica, A. and Balkwill, F. (2008) Can-cer-Related Inflammation. Nature, 454, 436-444. https://doi.org/10.1038/nature07205

  30. 30. Condeelis, J. and Pollard, J.W. (2006) Macrophages: Obligate Partners for Tumor Cell Migration, Invasion, and Metastasis. Cell, 124, 263-266. https://doi.org/10.1016/j.cell.2006.01.007

  31. 31. Jiraskova, A., Novotny, J., Novotny, L., et al. (2012) Association of Serum Bilirubin and Promoter Variations in HMOX1 and UGT1A1 Genes with sporadic Colorectal Cancer. Internation-al Journal of Cancer, 131, 1549-1555. https://doi.org/10.1002/ijc.27412

  32. 32. Ioannou, G.N., Liou, I.W. and Weiss, N.S. (2006) Serum Bilirubin and Col-orectal Cancer Risk: A Population-Based Cohort Study. Alimentary Pharmacology & Therapeutics, 23, 1637-1642. https://doi.org/10.1111/j.1365-2036.2006.02939.x

  33. 33. Carmel, R., Wong, E.T., Weiner, J.M. and Johnson, C.S. (1985) Racial Differences in Serum Total Bilirubin Levels in Health and in Disease (Pernicious Anemia). JAMA, 253, 3416-3418. https://doi.org/10.1001/jama.1985.03350470068022

  34. 34. Yang, L., Ge, L.-Y., Yu, T., et al. (2018) The Prognostic Impact of Serum Bilirubin in Stage IV Colorectal Cancer Patients. Journal of Clinical Laboratory Analysis, 32, e22272. https://doi.org/10.1002/jcla.22272

  35. 35. Wagner, K.-H., Shiels, R.G., Lang, C.A., et al. (2018) Diagnostic Criteria and Contributors to Gilbert’s Syndrome. Critical Reviews in Clinical Laboratory Sciences, 55, 129-139. https://doi.org/10.1080/10408363.2018.1428526

  36. 36. Seyed Khoei, N., Jenab, M., Murphy, N., et al. (2020) Cir-culating Bilirubin Levels and Risk of Colorectal Cancer: Serological and Mendelian Randomization Analyses. BMC Medicine, 18, 229. https://doi.org/10.1186/s12916-020-01703-w

  37. 37. Vítek, L. and Ostrow, J.D. (2009) Bilirubin Chemistry and Me-tabolism; Harmful and Protective Aspects. Current Pharmaceutical Design, 15, 2869-2883. https://doi.org/10.2174/138161209789058237

  38. 38. Liu, X., Cheng, D., Kuang, Q., et al. (2013) Association be-tween UGT1A1*28 Polymorphisms and Clinical Outcomes of Irinotecan-Based Chemotherapies in Colorectal Cancer: A Meta-Analysis in Caucasians. PLOS ONE, 8, e58489. https://doi.org/10.1371/journal.pone.0058489

  39. 39. Muraca, M. and Fevery, J. (1984) Influence of Sex and Sex Steroids on Bilirubin Uridine Diphosphate-Glucuronosyl- transferase Activity of Rat Liver. Gastroenterology, 87, 308-313. https://doi.org/10.1016/0016-5085(84)90705-4

  40. 40. Bajro, M.H., Josifovski, T., Panovski, M., et al. (2012) Pro-moter Length Polymorphism in UGT1A1 and the Risk of Sporadic Colorectal Cancer. Cancer Genetics, 205, 163-167. https://doi.org/10.1016/j.cancergen.2012.01.015

  41. 41. Rodrigues, C.M.P., Solá, S., Brito, M.A., et al. (2002) Bili-rubin Directly Disrupts Membrane Lipid Polarity and Fluidity, Protein Order, and Redox Status in Rat Mitochondria. Journal of Hepatology, 36, 335-341. https://doi.org/10.1016/S0168-8278(01)00279-3

  42. 42. Keshavan, P., Schwemberger, S.J., Smith, D.L., et al. (2004) Unconjugated Bilirubin Induces Apoptosis in Colon Cancer Cells by Triggering Mitochondrial Depolarization. Interna-tional Journal of Cancer, 112, 433-445. https://doi.org/10.1002/ijc.20418

  43. 43. Wagner, K.-H., Wallner, M., Mölzer, C., et al. (2015) Looking to the Hori-zon: The Role of Bilirubin in the Development and Prevention of Age-Related Chronic Diseases. Clinical Science (Lon-don), 129, 1-25. https://doi.org/10.1042/CS20140566

  44. 44. Sedlak, T.W., Saleh, M., Higginson, D.S., et al. (2009) Bilirubin and Glutathione Have Complementary Antioxidant and Cytoprotective Roles. Proceedings of the National Academy of Sci-ences of the United States of America, 106, 5171-5176. https://doi.org/10.1073/pnas.0813132106

  45. 45. Rao, P., Suzuki, R., Mizobuchi, S., et al. (2006) Bilirubin Exhibits a Novel Anti-Cancer Effect on Human Adenocarcinoma. Bio-chemical and Biophysical Research Communications, 342, 1279-1283. https://doi.org/10.1016/j.bbrc.2006.02.074

  46. 46. Deng, C.-C., Xu, M., Li, J., et al. (2016) Unconjugated Bilirubin Is a Novel Prognostic Biomarker for Nasopharyngeal Carcinoma and Inhibits Its Metastasis via Antioxidation Activity. Cancer Prevention Research (Phila), 9, 180-188. https://doi.org/10.1158/1940-6207.CAPR-15-0257

  47. 47. Ahn, B. and Ohshima, H. (2001) Suppression of Intestinal Polyposis in Apc(Min/+) Mice by Inhibiting Nitric Oxide Production. Cancer Research, 61, 8357-8360.

  48. 48. Smith, D.L., Keshavan, P., Avissar, U., et al. (2010) Sodium Taurocholate Inhibits Intestinal Adenoma Formation in APCMin/+ Mice, Potentially through activation of the Farnesoid X Receptor. Carcinogenesis, 31, 1100-1109. https://doi.org/10.1093/carcin/bgq050

  49. 49. Keshavan, P., Deem, T.L., Schwemberger, S.J., et al. (2005) Unconju-gated Bilirubin Inhibits VCAM-1-Mediated Transendothelial Leukocyte Migration. The Journal of Immunology, 174, 3709-3718. https://doi.org/10.4049/jimmunol.174.6.3709

  50. 50. Wu, T.C. (2007) The Role of Vascular Cell Adhesion Mole-cule-1 in Tumor Immune Evasion. Cancer Research, 67, 6003-6006. https://doi.org/10.1158/0008-5472.CAN-07-1543

  51. NOTES

    *通讯作者。

期刊菜单