Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 65563 , 11 pages
10.12677/ACM.2023.1351117

幽门螺杆菌感染与儿童营养不良的关系

任屹东1,冶秀兰2*

1青海大学研究生院,青海 西宁

2青海大学附属医院儿科,青海 西宁

收稿日期:2023年4月17日;录用日期:2023年5月9日;发布日期:2023年5月22日

摘要

幽门螺旋杆菌是一种多鞭毛、S状革兰阴性微需氧菌,感染产生免疫炎性反应,可能与儿童厌食、贫血、肠道疾病、生长发育迟缓及微量营养素缺乏有关。该文基于近年研究成果,针对儿童幽门螺旋杆菌感染营养不良问题进行综述,为儿童营养不良的诊疗提供一定思路。

关键词

幽门螺旋杆菌,感染,营养不良

Relationship between Helicobacter pylori Infection and Malnutrition in Children

Yidong Ren1, Xiulan Ye2*

1Postgraduate School of Qinghai University, Xining Qinghai

2Department of Pediatrics, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: Apr. 17th, 2023; accepted: May 9th, 2023; published: May 22nd, 2023

ABSTRACT

Helicobacter pylori is a flagellum, sigmoid gram-negative aerobic bacterium, can produce immune inflammatory reaction, infection may be related to children anorexia, anemia, intestinal disease, growth retardation and micronutrient deficiencies. In this paper, based on the research results in recent years, the problem of malnutrition in children with Helicobacter pylori infection was reviewed, and some trains of thought for the diagnosis and treatment of malnutrition in children were provided.

Keywords:Helicobacter pylori, Infection, Malnutrition

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

幽门螺旋杆菌(Helicobacter pylori, Hp)是一种多鞭毛、S状革兰阴性微需氧菌,生存于胃十二指肠黏膜 [1] 。Hp是最常见感染源之一,人口感染近一半以上,主要发生在儿童期 [2] ,感染率约为33.3%,并每年呈下降趋势 [3] 。Hp感染(HpI)主要以“口–口、粪–口”传播,人是重要传染源,有明显家族聚集现象,无疑增加了儿童感染的风险 [4] 。Hp为I类致癌因子,产生毒力因子,使胃粘膜损失,更有甚者发生恶变 [5] 。Hp具有广泛致病性,儿童感染与慢性胃炎、慢性腹泻和口腔疾病等密切相关,亦与许多消化道外疾病,如生长发育迟缓、缺铁性贫血(Iron deficiency anemia, IDA)、免疫性血小板减少症(Immune thrombocytopenic, ITP)、过敏性紫癜(Henoch-Schonlein purpura, HSP)、维生素D缺乏症(Vitamin D deficiency)有关 [6] 。儿童正处于生长发育关键阶段,免疫力及营养吸收较弱,疾病易感性增加,易出现营养不良。本文基于最近研究成果,针对儿童营养问题,对Hp感染相关疾病作以论述。

2. Hp与慢性胃炎

儿童Hp感染消化道症状多无特异性,<3岁儿童可有挑食、食欲不振症状,大龄组临床表现为恶心、呕吐、反酸、口臭、腹痛等反应,胃部症状较轻,多表现为慢性浅表性胃炎(chronic superficial gastritis, CSG) [7] ,经证实,儿童慢性胃炎Hp感染率达60%以上,根除Hp可使上述症状明显减轻 [8] 。一项国内病例对照研究中 [9] ,慢性胃炎Hp阳性患儿血清CagA抗体、VacA抗体检测结果为52.32%、6.97%,总体感染率达59.30%,另一项回归分析表明,Hp感染是CSG的影响因素(P < 0.05),对病例组患儿分析发现,各营养指标均低于对照组,说明CSG影响患儿营养状况,不利于儿童生长发育 [10] ;国外一项基于社区的横断面研究发现 [11] ,在有消化不良和Hp感染的患儿中,甚有抑郁症倾向,学龄期儿童社会心理压力较大,常伴精神负性因素,出现胃肠激素分泌紊乱,增加CSG发病风险。研究证实,Hp I型感染易诱发胃粘膜萎缩,引起肠上皮化生及不典型增生 [12] ,CagA可介导Th1/Th2、Th17/Treg等免疫反应失衡,产生多种促炎因子,如白细胞介素-1β (interleukin-1β, IL-1β)、白细胞介素-17 (interleukin-17, IL-17)及缺氧诱导因子-1α (hypoxia inducible factor-1α, HIF-1α),与HP中性粒细胞活化蛋白(HP-NAP)协同促进单核细胞大量聚集,提高反应性氧化及蛋白水解 [13] ,Hp毒力因子削弱胃黏膜屏障,诱导腺体分泌功能衰退,微量营养素吸收障碍 [14] ;VacA通过H+-K+-三磷酸腺苷(Adenosine triphosphate, ATP)酶使泌酸功能紊乱,影响细胞增生,导致空泡变性,还能干扰生长因子调节过程 [15] 。

3. Hp与厌食

Hp感染起初症状不明显,随着病情加重出现胃肠功能失调,引起消化道症状。Hp感染可能与口腔疾病、功能性消化不良(Functional dyspepsia, FD) [16] 等存在潜在关联,Hp感染伴发牙周炎、口腔黏膜病可有口臭症状 [17] 。Hp为机会致病菌,当机体免疫力低下时可由上消化道蔓延,滋生其他致病菌,影响进食;FD患者胃泌素水平增高,胃酸分泌增加,可能导致反酸、食欲减退等症状,并发厌食症而引起消瘦风险 [18] ,Hp感染FD中嗜酸性细胞异常可破坏胃肠道屏障,影响胃肠神经功能,造成内脏敏感性升高与动力障碍 [19] ,还可能引起胃食管反流,加重炎症消耗,使食物热卡摄入不足,增加营养代谢,从而导致消瘦。

胃肠肌饿素(Ghrelin)属诱食肽类,对动物的采食作用与一些神经肽Y(NPY)如增食因子(Orexin)有关 [20] 。现已发现Ghrelin通过生长激素促释放激素受体(GHS-R),刺激下丘脑食欲中枢神经肽YNPY/AGRP [21] ,又正反馈生长激素(GH)促进胃肠动力,加快胃排空,亦直接调节胃肠功能促进食欲 [22] 。Hp感染可影响Ghrelin分泌,Martín-Núñez GM等 [24] 证实Hp感染者Ghrelin水平明显低于阴性者,Gennari L等 [25] 在CagA阳性HP感染中也观察到Ghrelin水平降低,而Ghrelin分泌取决于感染时长、炎症程度等因素。蒋丽蓉等 [25] 研究显示Hp感染厌食患儿Ghrelin-mRNA表达水平较低,抗Hp治疗后有所上升,食欲及体质量增长,同时,刘捷 [26] 在对171名Hp感染患儿的研究中得到了与上述学者一致的结果;一项国外回顾性分析发现 [27] ,Hp根除治疗后胃蛋白酶原I/II比率显着增加,组织学肠化生评分严重程度与总Ghrelin水平呈负相关,一项动物实验 [28] 发现HpVacA通过下丘脑尿皮质素1 (Hypothalamic Urocortin 1)在小鼠中引起厌食和焦虑,食欲和体质量均明显下降,提示Hp感染厌食中还存在功能性因素,可能机制包括:a Hp感染引起免疫反应,释放炎症因子,破坏Ghrelin细胞,导致分泌减少,通过外周性调节能量平衡 [29] ;b Hp毒力CagA、VacA抗体,尤其是s1/m1基因型,调节Hp脂多糖(lipopolys-acchardes, LPS)诱导的胃黏膜炎症反应,干扰下丘脑体质量稳态脑区,致神经肽失衡 [30] ,生长素量下降,瘦素(Leptin, LP)、酪酪肽(peptide yy, PYY)水平升高,引起食欲下降。

目前,关于Hp感染与厌食相关性报道鲜少,发病机制的阐述也较模糊,但儿童Hp感染营养问题日益严重,相关问题有待进一步研究。

4. Hp与发育迟缓

4.1. Hp感染与生长迟缓(Growth Retardation, GR)

儿童感染Hp以Th1、Treg为主的免疫反应表现水平较轻,却有利于Hp定植于胃上皮内层,形成长久的炎症刺激 [31] ,造成营养状态低下,进而影响患儿生长发育。Meta分析显示,Hp感染与线性生长(OR = 1.76, 95% CI: 1.15~2.69, P = 0.01)有显著负关联,Hp感染对年龄体长Z(HAZ)评分有不利影响(SMD = −0.41, 95% CI: −0.69, −0.13; P < 0.01),Hp感染在消化道外主要表现为生长参数异常 [32] 。Wei S等 [33] 观察发现,在Hp患病率 < 30%或30%~50%的研究中,儿童生长延迟率更高(OR = 1.51, 95% CI: 1.28, 1.78),尤其是线性生长(33.11%)。朱丹荣等 [34] 对14岁儿童Hp感染现状及生长发育分析,结果显示Hp阳性者身高、体质量及胸围更低;何昀等 [35] 对学龄期儿童Hp检测和生长发育研究表明,Hp感染儿童WHZ < −1、HAZ < −1发生率远高于阴性者;王冰君等 [36] 对90例患儿Hp感染分型及营养状况评价发现,生长发育迟缓率达27%,明显高于Hp阴性者。上述研究显示Hp感染与生长发育受限关系密切,可能原因为:

a) 炎性因子干扰下丘脑–生长激素–胰岛素样生长因子1 (GH-IGF-1)轴,影响生长发育。除下丘脑因素外,适当胃泌素-17 (gsatrin-17, G17)可能参与GH的分泌,G17和甲状腺激素轴(TSH-FT4/FT3)之间在生长和代谢过程中也存在联系,FT3对IGF-1产生允许作用,反之,GH在IGF-1介导的反应中,增强FT4到FT3单碘化最重要的激素之一是G17,它既通过下丘脑间接调节上述激素的释放,又通过体细胞直接刺激GH的分泌 [37] 。据推测,Hp感染会减少G17免疫阳性细胞的数量,抑制G-17mRNA的表达。研究证 [38] ,特发性身材矮小(ISS)伴Hp更瘦矮,乳糖吸收不良(LM)和胃肠道疾病(GIDs)发生率高,IGF-1峰值、体质指数(BMI)较低,可能与G17分泌量少有关,或与分子模拟现象中相同的神经肽发生交叉反应,使IGF-1浓度降低,根除Hp后G17、IGF-1浓度及生长速度得到改善。Hp感染可能导致G17分泌不足,并进一步调控GH-IGF-1和儿童生长速度 [39] 。

b) Hp感染导致FD,营养吸收不足,降低胃肠道黏膜屏障防御功能,黏膜损伤,胃酸分泌减少,渗透性增加,易导致腹泻 [40] ,营养素丢失过多,出现营养不良。Feng J等 [41] 发现Hp感染是引起小儿肠炎的常见因素之一,在Hp引起GIDs中发现了微核糖核酸(miRNAs)异常表达,可能通过上调IL-6、TNF-α水平,诱导相关蛋白Yap-1及miR-32-5p增加,使肠上皮活力下降,相反,基于Hp感染对炎症性肠病(IBD)的潜在保护作用 [42] ,对于腹泻型IBD,应谨慎Hp根治,特别是儿童。Hp可与肠道菌群共生,与一些机会致病菌、厌氧菌呈负相关,对于长期无症状者,根除Hp可能影响微生物群丰度,胃肠菌群失调,加之抗生素及质子泵抑制剂(PPI)作用,导致消化道黏膜反应,微生物代谢途径、胃酸变化,微环境破坏,出现抗生素相关性腹泻(PPD) [43] ,故对Hp的根除,应详尽评估,有必要加用益生菌 [44] 。

c) 社会经济卫生评分始终是微生物结构变化的最强预测因子,可能与肠道免疫环境变化有关,Hp感染成为儿童健康的独立决定因素,影响生长发育 [45] 。

d) Hp感染后代谢异常,加速能量消耗,机体出现病理生理改变。研究发现 [46] ,Hp阳性患儿粪便中戊酸、丙酸、异丁酸等均增高,代谢综合征(MS)检出率也高于阴性者,Hp I型尤为明显;Hp感染与低血清白蛋白(albumin, ALB)、高球蛋白(globulin, GLO)水平和低白球比(A/G)显着相关,是影响营养代谢的重要因素 [46] 。国内学者 [47] 基于HNMRD代谢组学方法来探索Hp感染对儿童营养的影响,发现能量、氨基酸、脂质和微生物群代谢紊乱可能发挥重要作用。研究表明 [48] ,Hp感染可增高氧化应激水平,减弱血清总抗氧化能力,可能是胰岛素抵抗指数(HOMA-IR)的独立预测因子。胰岛素抵抗(IR)是MS主要致病因素,Hp与IR之间可能存在关联 [49] 。Meta分析显示 [50] ,II型糖尿病(T2DM)患者Hp根除失败较高,Hp根除后糖化血红蛋白(HbA1c)得到改善(WMD = −0.33, 95% CI: −0.65, −0.02),Bazmamoun H [51] 研究指出,病程较长的I型糖尿病(T1DM)患儿,有感染Hp的风险,而Esmaeili Dooki MR等 [52] 研究发现,儿童Hp感染与I型糖尿病T1DM无显著相关性,合并和未感染Hp的TIDM血糖控制状况无差异,Bayrak NA [53] 也得出了类似结果。T1DM发病机制主要为胰岛素不足(ID),T2DM与IR相关,儿童在临床上有争议结果,建议进一步研究。

Hp感染可能是儿童发育迟缓的潜在危险因素,两者之间机制尚待进一步明确。血清IgG法之间没有异质性,更客观反应持续感染,通过IgG对儿童生长障碍进行最佳评估 [54] ,Gonciarz W等 [55] 发现应用衰减Total反射率傅里叶变换红外光谱法(FTIR)和人工神经网络可能有助于确认Hp导致的儿童生长异常,但相关指标并无特异性,加之环境因素、个体差异,有必要为生长迟缓建立一个统一标准定义。

4.2. Hp感染与肥胖

双重营养不良负担(double burden of malnutrition, DNM),即营养不足与超重肥胖并存 [56] ,肥胖作为营养不良问题,对儿童生长发育及社会经济有不利影响。肥胖与Hp感染之间的关系存在争议,肥胖可以改变先天性和适应性免疫,肥胖程度与免疫力下降之间存在关联。病态肥胖受试者单核细胞向巨噬细胞的成熟度较低,多形核杀菌能力降低。与同类别正常个体相比,严重肥胖患者NK细胞活性显着降低 [57] 。据推测 [58] ,氧化NDA损伤与Hp感染有关,在肥胖的脂肪细胞中,活性氧自由基(ROS)抑制胰岛素信号通路,激活内质网氧化应激及NF-KB信号通路,引发脂质过氧化、DNA损伤和蛋白质修饰。Hp感染BMI分位数与8-羟基脱氧鸟嘌呤(8-OHdG,氧化应激生物标志物)水平线性相关,肥胖个体(BMI ≥ 30 kg/m2) Hp患病率高于偏瘦者(BMI < 25 kg/m2) [59] ,一项国外Meta [60] 示Hp感染风险与肥胖发生正相关,Hp阳性者更容易肥胖,而Pundak OY等 [61] 在对292儿童研究发现,Hp阳性儿童中超重11.6%,肥胖7.5% (29/146, 23/146),Hp阴性儿童中超重10.3%,肥胖8.9% (23/146, 30/146),两组无差异,Hp与儿童超重/肥胖之间并无关联,Hp感染CagA抗体与BMI或血清Leptin水平无关;Moran-Lev H等 [62] 前瞻性研究发现,有症状儿童中Hp定植与超重/肥胖存在负相关,Hanh D等 [63] 在一项北美队列中表明Hp感染可降低儿童肥胖患病率。肥胖主要取决于遗传代谢、生活习性、个体差异,相对于成人,Hp对儿童肥胖的发生影响甚微,未来可探求相关性证据,完善儿童肥胖的发生机制。

5. Hp与IDA

5.1. 铁(Iron)的作用

铁为人体必需微量元素,可提高机体免疫力,增加中性粒细胞和吞噬细胞功能,亦能直接参与人体能量代谢。缺铁与贫血、厌食、神经功能障碍有关,影响儿童生长发育和认知活动 [64] 。

5.2. Hp感染与铁

近年来,大量证据表明Hp与铁缺乏(iron deficiency, ID)之间存在一定关系。不明原因缺铁性贫血(iron deficiency anemia, IDA)中50%以上是由Hp感染所致,根除Hp同时补充铁剂可改善铁状态标志物(铁蛋白SF、Hb、平均红细胞体积MCV、血清转铁受体水平sTfR) [65] ,Tanous等 [66] 在有非缺铁性贫血(NAID)或IDA的患儿中,比较成功根除Hp (无需补铁)之前和6~9个月后的Hb、SF和CRP水平,发现成功根除有助于改善难治性NAID或IDA,年龄较大是Hp根除后贫血消退相关的唯一危险因素。早至2015年相关共识 [67] 已将不明原因IDA列为Hp根除的指征。Elsaadany E等 [68] 探究儿童Hp感染与SF水平及治疗中发现,Hp患儿SF、Hb水平显著降低,组织病理学异常严重程度与SF、Hb水平负相关,但与sTfR浓度正相关,根除Hp后上述指标恢复正常。从霞等 [69] 对6~14岁儿童Hp感染营养状况分析发现,感染组血清铁(SI)、SF、Hb均明显低于非感染组(P < 0.05),Lupu A等 [70] 回顾性研究Hp与贫血的相关性,显示542例感染Hp患儿中,48例伴有小细胞低色素性贫血,其中7例(14.5%)伴缺铁,Hp感染与儿童ID及IDA显着相关。然而,有学者 [71] 在单变量和多元逻辑回归分析中未发现ID/IDA与Hp感染之间存在关联,无论Hp治疗状态如何,大多数受试者的IDA都得到治愈;Zhang Y等 [72] 发现Hp组ID/IDA发生率高于对照组(z = 9.112/9.112, P < 0.05),Hp组SI、SF、Hb低于对照组,总铁结合力(TIBC)水平高于对照组(t = 7.630, P < 0.05),而Hp组平均红细胞血红蛋白浓度(MCHC)、红细胞分布宽度(RDW)与对照组比较无统计学意义,逻辑回归显示Hp感染不是ID的综合危险因素,可能与纳入者对ID/IDA的易感性低,或依存性较差、Hp检出率有关。

5.3. IDA发生机制

Hp感染一定程度上影响铁代谢指标异常,干扰机体新陈代谢,引起IDA可能相关的因素为:

a) Hp可增强一氧化碳合成酶(iNOS)活性,降低Hb合成,减弱造血功能 [73] ,通过铁抑制外膜蛋白(IROMP),摄取宿主血红素 [74] ;Hp感染后杀菌素含量下降 [75] ,铁元素在贮存、转运等方面受到影响。

b) Hp感染引起胃十二指肠黏膜糜烂、溃疡,出现显隐性出血,导致IDA发生,加之上皮细胞渗透性增高,铁及SF迅速流失 [76] 。

c) Hp可降低胃酸及维生素C水平,阻碍铁元素游离化,pH升高又使坏血酸稳定性变化,生物利用度降低,减少二价铁吸收,同时高价铁通过Fenton反应产生自由基,损伤胃肠黏膜上皮 [77] ,铁吸收含量降低。

d) Hp可表达与一种大小19-kDaSF类似SF的铁结合蛋白(Pfr)、乳铁蛋白结合蛋白(HLf)、非血红素含铁蛋白 [78] ,通过竞争性抑制铁的结合,反而促进自身增殖,造成恶性循环。此外,Hp还表达亚铁高亲和力转运体、铁摄取调节因子(Fur) [79] ,致铁稳态失衡,干扰铁的利用度。

e) Hp感染释放IL-1β、IL-6,刺激肝脏生成铁调素(hepcidin) [80] ,负性调控铁代谢,还使巨噬细胞铁释放减少下调SI [81] 。

f) Hp具有铁调节基因多态性,包括CagA、vacA、fecA1、feoB、fdxA在内的几种宿主相互作用基因 [82] ,尤其与高表达的唾液酸结合粘附素(sabA)在IDA发生中起协同作用 [83] 。

6. Hp与维生素D

脂溶性维生素D主要有维生素D2和维生素D3两种形式,经肝转化为活性维生素D(VD),如骨化三醇1,25(OH)2D3,在钙稳态、免疫调节和细胞增殖中发挥重要作用 [84] 。经证实,VD与Hp感染具有关联,一项meta分析 [85] 表明,Hp感染会降低VD血清水平,根除Hp可逆转其不良反应,在一项纳入312例患者的横断面研究中发现Hp感染者VD水平较低,且与Hp根除率呈正相关 [86] ;Gao T等 [87] 对婴幼儿研究显示,Hp感染与VD缺乏症显着相关,此外,VD水平 < 10 ng/mL可能增加Hp感染风险 [88] 。维生素D受体(VDR)抑制转录因子下调IL-2和INF-γ水平,Hp感染时VDR表达上调,VDR可维持胃黏膜稳态和抑制Hp炎症反应 [89] 。最近研究发现,IL-1β和TLR (Toll样受体)激活时VD上调β-防御素 [90] ,VD/VDR复合物进一步与CAMP (导管素抗菌肽)启动子结合以增加其表达,同时VD3可激活PDIA3 (蛋白质二硫异构酶亚型A3)受体,促使Hp通过自噬溶酶体降解 [91] ;1,25D3通过VDR依赖性c-Raf/MEK/ERK途径保护胃粘膜上皮细胞免受Hp细胞凋亡 [92] 。因此,维生素D与Hp相互作用,VD可减少氧化应激并进一步清除Hp,未来可尝试联合VD对Hp进行根治,但需进一步评估验证。

7. Hp与锌

锌(znic, Zn)稳态主要依赖于肠道吸收,可维持膜屏障并调节免疫反应,粒细胞趋化、NK细胞活性和ROS的产生取决于Zn浓度,Zn水平不足会影响生长发育、神经感觉和内分泌活动。Zn可诱导Hp产生炎症,如CagA易位、NF-κB及IL-8表达 [93] ,Hp毒力因子钙卫蛋白(S100A8/A9异二聚体)、钙粒蛋白C (S100A12同二聚体)在内的宿主抗菌蛋白通过CadA、CrdB-CzcAB复合体和CznABC三种Zn转运系统获取锌元素 [94] 。一项基于RNA测序的Zn调节反应研究表明,高浓度的Zn与Hp核糖体亚基、分子伴侣和粘附素相关的基因上调有关,然而,鞭毛组装基因和一些IV型分泌系统基因被抑制,在应激条件下Zn具抗菌活性 [95] 。Bernegger S等 [96] 利用一种新型荧光共振能量转移(FRET)肽揭示了Zn和Cu结合可抑制Hp丝氨酸蛋白酶A(HtrA)高温需求,有助于抗Hp感染;Duzgun Ergun D等 [97] 发现,在Hp阳性慢性胃炎患者中血清Zn水平降低,Cu/Zn比值升高,Hp影响患者微量元素代谢;赵张颖的研究 [98] 也发现Hp感染与Zn缺乏有关,对Hp感染患儿必要时补Zn,以减少对生长发育的影响 [99] 。由于Zn在Hp和宿主免疫系统中作用复杂,需进一步研究Zn生物利用度与Hp炎症之间的关系。

8. 结语

Hp感染与儿童营养代谢之间关系密切,疾病谱也较广泛,而致病机制尚不明确。Hp分型对各指标影响较大,在临床方面的应用并不广泛,Hp多重耐药性不断增加,缺乏精准诊疗,加之呼吸道病原(如COVID-19、H1N1)影响,易忽视儿童Hp营养代谢问题,未来有必要进行营养不良干预性研究,研制疫苗及新型抗菌素,对Hp积极根治及营养支持,改善儿童身心健康。

文章引用

任屹东,冶秀兰. 幽门螺杆菌感染与儿童营养不良的关系
Relationship between Helicobacter pylori In-fection and Malnutrition in Children[J]. 临床医学进展, 2023, 13(05): 7974-7984. https://doi.org/10.12677/ACM.2023.1351117

参考文献

  1. 1. Capparelli, R. and Iannelli, D. (2022) Epigenetics and Helicobacter pylori. International Journal of Molecular Sciences, 23, Article No. 1759. https://doi.org/10.3390/ijms23031759

  2. 2. Ren, S., Cai, P., Liu, Y., et al. (2022) Prevalence of Helicobacter pylori Infection in China: A Systematic Review and Meta-Analysis. Journal of Gastroenterology and Hepatology, 37, 464-470. https://doi.org/10.1111/jgh.15751

  3. 3. Rowland, M. (2022) The Continuing Decline in the Prevalence of Helicobacter pylori Infection. The Lancet Child & Adolescent Health, 6, 139-140. https://doi.org/10.1016/S2352-4642(22)00026-8

  4. 4. Yuan, C., Adeloye, D., Luk, T.T., et al. (2022) The Global Prevalence of and Factors Associated with Helicobacter pylori Infection in Children: A Systematic Review and Me-ta-Analysis. The Lancet Child & Adolescent Health, 6, 185-194. https://doi.org/10.1016/S2352-4642(21)00400-4

  5. 5. Sharndama, H.C. and Mba, I.E. (2022) Helicobacter pylori: An Up-to-Date Overview on the Virulence and Pathogenesis Mechanisms. Brazilian Journal of Microbiology, 53, 33-50. https://doi.org/10.1007/s42770-021-00675-0

  6. 6. Robinson, K. and Atherton, J.C. (2021) The Spectrum of Heli-cobacter-Mediated Diseases. Annual Review of Pathology: Mechanisms of Disease, 16, 123-144. https://doi.org/10.1146/annurev-pathol-032520-024949

  7. 7. Hsieh, H., Yang, H.-B., Sheu, B.-S. and Yang, Y.-J. (2022) Atrophic Gastritis in Helicobacter pylori-Infected Children. Helicobacter, 27, e12885. https://doi.org/10.1111/hel.12885

  8. 8. Virkkula, A., Kivela, L., Hiltunen, P., Sotka, A., et al. (2022) Prevalence and Clinical Significance of Helicobacter pylori-Negative Chronic Gastritis in Children. Journal of Pediatric Gastroen-terology and Nutrition, 74, 949-955. https://doi.org/10.1097/MPG.0000000000003440

  9. 9. 刘萍, 刘捷, 张细元, 彭罕鸣, 唐锋, 余志. 有消化道症状儿童胃黏膜病理组织学特点及幽门螺杆菌感染情况[J]. 中华医院感染学杂志, 2022, 32(11): 1737-1741.

  10. 10. 李海花, 付海燕, 白革兰, 殷润开, 殷春兰, 石伟娜, 程丽娟, 张晓双, 赵瑞芹. 石家庄地区学龄期儿童慢性浅表性胃炎致病因素及其对营养状况的影响[J]. 西部医学, 2022, 34(5): 724-728.

  11. 11. Soboka, M., Gudina, E.K., Gashaw, M., et al. (2022) Depression among People with Dyspepsia and H. Pylori Infection: A Community Based Cross-Sectional Study in Ethiopia. PLOS ONE, 17, e0275424. https://doi.org/10.1371/journal.pone.0275424

  12. 12. Prashar, A., Capurro, M.I. and Jones, N.L. (2022) Under the Radar: Strategies Used by Helicobacter pylori to Evade Host Responses. Annual Review of Physiology, 84, 485-506. https://doi.org/10.1146/annurev-physiol-061121-035930

  13. 13. Codolo, G., Coletta, S., D’Elios, M.M. and de Ber-nard, M. (2022) HP-NAP of Helicobacter pylori: The Power of the Immunomodulation. Frontiers in Immunology, 13, Article 944139. https://doi.org/10.3389/fimmu.2022.944139

  14. 14. Nabavi-Rad, A., Azizi, M., Jamshidizadeh, S., et al. (2022) The Effects of Vitamins and Micronutrients on Helicobacter pylori Pathogenicity, Survival, and Eradication: A Crosstalk between Micronutrients and Immune System. Journal of Immunology Research, 2022, Article ID: 4713684. https://doi.org/10.1155/2022/4713684

  15. 15. He, C., Kong, F., Chai, X., Zou, C., Zhu, X. and Zhao, D. (2022) Effect of Probiotic-Assisted Eradication of cagA+/vacA s1m1 Helicobacter pylori on Intestinal Flora. BioMed Research Interna-tional, 2022, Article ID: 8607671. https://doi.org/10.1155/2022/8607671

  16. 16. Zhang, L., Chen, X., Ren, B., Zhou, X. and Cheng, L. (2022) Helico-bacter pylori in the Oral Cavity: Current Evidence and Potential Survival Strategies. International Journal of Molecular Sciences, 23, Article No. 13646. https://doi.org/10.3390/ijms232113646

  17. 17. Alkhaldi, N.K., Alghamdi, W.K., Alharbi, M.H., Almutairi, A.S. and Alghamdi, F.T. (2022) The Association between Oral Helicobacter pylori and Gastric Complications: A Comprehensive Review. Cureus, 14, e24703. https://doi.org/10.7759/cureus.24703

  18. 18. Sharma, P.K., Salaria, S., Manrai, M., Srivastava, S., Kumar, D. and Singh, A.R. (2022) Helicobacter pylori Infection in Non-Ulcer Dyspepsia: A Cross-Sectional Study. Medical Journal Armed Forces India, 78, 180-184. https://doi.org/10.1016/j.mjafi.2020.11.020

  19. 19. 路钰夏, 何永艳, 高若飞, 郭亚琼, 李小芹, 于静. Hp与CagA在儿童型FD发病中的作用及对胃肠激素的分泌与局部黏膜免疫反应的影响[J]. 齐齐哈尔医学院学报, 2022, 43(15): 1433-1436.

  20. 20. Young, E.R. and Jialal, I. (2022) Biochemistry, Ghrelin. In: StatPearls, StatPearls Publishing, Treasure Island.

  21. 21. van Loenen, M.R., Geenen, B., Arnoldussen, I.A.C. and Kiliaan, A.J. (2022) Ghrelin as a Promi-nent Endocrine Factor in Stress-Induced Obesity. Nutritional Neuroscience, 25, 1413-1424. https://doi.org/10.1080/1028415X.2020.1863740

  22. 22. Villarreal, D., Pradhan, G., Zhou, Y., Xue, B. and Sun, Y. (2022) Diverse and Complementary Effects of Ghrelin and Obestatin. Biomolecules, 12, Article No. 517. https://doi.org/10.3390/biom12040517

  23. 23. Martín-Núñez, G.M., Cornejo-Pareja, I., Clemente-Postigo, M., Ti-nahones, F.J. and Moreno-Indias, I. (2021) Helicobacter pylori Eradication Therapy Affect the Gut Microbiota and Ghrelin Levels. Frontiers in Medicine, 8, Article ID: 712908. https://doi.org/10.3389/fmed.2021.712908

  24. 24. Gennari, L., Merlotti, D., Figura, N., et al. (2021) Infection by CagA-Positive Helicobacter pylori Strains and Bone Fragility: A Prospective Cohort Study. Journal of Bone and Miner-al Research, 36, 80-89. https://doi.org/10.1002/jbmr.4162

  25. 25. 蒋丽蓉, 邓朝晖, 张斌, 储波, 徐亚珍. 幽门螺杆菌感染儿童厌食机制研究[J]. 临床儿科杂志, 2011, 29(10): 921-924.

  26. 26. 刘捷. 171例厌食学龄儿童幽门螺杆菌感染及影响因素调查[J]. 中国妇幼保健, 2019, 34(22): 5280-5282.

  27. 27. Mori, H., Suzuki, H., Matsuzaki, J., et al. (2022) Development of Plasma Ghrelin Level as a Novel Marker for Gastric Mucosal Atrophy after Helicobacter pylori Eradication. Annals of Medicine, 54, 170-180. https://doi.org/10.1080/07853890.2021.2024875

  28. 28. Suzuki, H., Ataka, K., Asakawa, A., et al. (2019) Helico-bacter pylori Vacuolating Cytotoxin A Causes Anorexia and Anxiety via Hypothalamic Urocortin 1 in Mice. Scientific Reports, 9, Article No. 6011. https://doi.org/10.1038/s41598-019-42163-4

  29. 29. Ma, Y., Zhang, H., Guo, W. and Yu, L. (2022) Potential Role of Ghrelin in the Regulation of Inflammation. The FASEB Journal, 36, e22508. https://doi.org/10.1096/fj.202200634R

  30. 30. Bahar, A., MirmohammadKhani, M., Dabiri, R., Semnani, V. and Pakdel, A. (2021) H. pylori Effects on Ghrelin Axis: Preliminary Change in Gastric Pathogenesis. Microbial Pathogene-sis, 161, Article ID: 105262. https://doi.org/10.1016/j.micpath.2021.105262

  31. 31. 郭丽丽, 田玉凤, 高星星. 陕西榆林地区学龄前儿童幽门螺旋杆菌感染及影响因素评估[J]. 公共卫生与预防医学, 2022, 33(2): 105-108.

  32. 32. Xu, C., Wu, Y. and Xu, S. (2022) Association between Helicobacter pylori Infection and Growth Outcomes in Children: A Meta-Analysis. Helico-bacter, 27, e12861. https://doi.org/10.1111/hel.12861

  33. 33. Wei, S., Dang, Y., Peng, L., Li, X., Tang, L. and Zhang, G. (2020) Association between Helicobacter pylori Infection and Delayed Growth in Children: A Meta-Analysis. Ex-perimental and Therapeutic Medicine, 19, 3814-3828. https://doi.org/10.3892/etm.2020.8654

  34. 34. 朱丹荣, 薛娟, 董娜, 徐伟, 钱娟, 孔婷, 潘紫云, 盛伟松. 江苏地区14岁以下儿童幽门螺杆菌感染现状及对生长发育的影响和相关因素分析[J]. 胃肠病学和肝病学杂志, 2021, 30(12): 1367-1371.

  35. 35. 何昀, 黄为民, 刘志刚, 罗威耀, 林青梅, 叶星光, 廖旺, 何小城. 佛山地区学龄期儿童Hp感染流行病学特征及与儿童生长发育关系的研究[J]. 中国中西医结合消化杂志, 2021, 29(5): 346-350.

  36. 36. 王冰君, 苏倩倩. 幽门螺杆菌感染影响患儿营养状况和代谢水平的临床横断面研究[J]. 罕少疾病杂志, 2022, 29(11): 72-74.

  37. 37. Silva, I.N., Marçal, L.V. and Queiroz, D.M.M. (2022) Helicobacter pylori Infection Is Associated with Thyroid Dysfunction in Children with Congenital Hypothyroidism. Frontiers in Pediatrics, 10, Article 875232. https://doi.org/10.3389/fped.2022.875232

  38. 38. Kolasa-Kicińska, M., Stawerska, R., Stawerski, P., Kałużyński, A., Czkwianianc, E. and Lewiński, A. (2022) Effects of Helicobacter pylori Infection on Ghrelin and Insulin-Like Growth Factor 1 Secretion in Children with Idiopathic Short Stature. Journal of Clinical Medicine, 11, Article No. 5868. https://doi.org/10.3390/jcm11195868

  39. 39. Erdemir, G., Ozkan, T.B., Ozgur, T., Altay, D., Cavun, S. and Goral, G. (2016) Helicobacter pylori Infection in Children: Nutritional Status and Associations with Serum Leptin, Ghrelin, and IGF-1 Levels. Helicobacter, 21, 317-324. https://doi.org/10.1111/hel.12288

  40. 40. 朱蝶, 王小蕾, 戴芸, 李思雨, 王蔚虹. 幽门螺杆菌感染和根除治疗对小肠细菌过度生长的影响[J]. 中华医学杂志, 2022, 102(42): 3382-3387.

  41. 41. Feng, J., Guo, J., Wang, J.-P. and Chai, B.-F. (2019) MiR-32-5p Aggravates Intestinal Epithelial Cell Injury in Pediatric Enteritis Induced by Helicobacter pylori. World Journal of Gastroenterology, 25, 6222-6237. https://doi.org/10.3748/wjg.v25.i41.6222

  42. 42. Wang, Z., Liu, Y., Peng, Y. and Peng, L. (2022) Helicobacterpylori Infection—A Risk Factor for Irritable Bowel Syndrome? An Updated Systematic Review and Meta-Analysis. Medicina, 58, Article No. 1035. https://doi.org/10.3390/medicina58081035

  43. 43. Sitkin, S., Lazebnik, L., Avalueva, E., Kononova, S. and Vakhitov, T. (2022) Gastrointestinal Microbiome and Helicobacter pylori: Eradicate, Leave It as It Is, or Take a Personalized Bene-fit-Risk Approach? World Journal of Gastroenterology, 28, 766-774. https://doi.org/10.3748/wjg.v28.i7.766

  44. 44. Mestre, A., Sathiya Narayanan, R., Rivas, D., et al. (2022) Role of Probiotics in the Management of Helicobacter pylori. Cureus, 14, e26463. https://doi.org/10.7759/cureus.26463

  45. 45. Lapidot, Y., Reshef, L., Cohen, D. and Muhsen, K. (2021) Helicobacter pylori and the Intestinal Microbiome among Healthy School-Age Children. Helicobacte, 26, e12854. https://doi.org/10.1111/hel.12854

  46. 46. Liu, H., Qin, Y., Yang, J., et al. (2022) Helicobacter pylori Infection as a Risk Factor for Abnormal Serum Protein Levels in General Population of China. Journal of Inflammation Research, 15, 2009-2017. https://doi.org/10.2147/JIR.S355446

  47. 47. Fang, L.-J., Lin, X.-C., Huang, D., et al. (2020) 1H NMR Based Metab-olomics Analyses in Children with Helicobacter pylori Infection and the Alteration of Serum Metabolites after Treatment. Microbial Pathogenesis, 147, Article ID: 104292. https://doi.org/10.1016/j.micpath.2020.104292

  48. 48. González-González, J.G., Violante-Cumpa, J.R., Zambra-no-Lucio, M., et al. (2022) HOMA-IR as a Predictor of Health Outcomes in Patients with Metabolic Risk Factors: A Systematic Review and Meta-Analysis. High Blood Pressure & Cardiovascular Prevention, 29, 547-564. https://doi.org/10.1007/s40292-022-00542-5

  49. 49. Azami, M., Baradaran, H.R., Dehghanbanadaki, H., et al. (2021) Association of Helicobacter pylori Infection with the Risk of Metabolic Syndrome and Insulin Resistance: An Updated Systematic Review and Meta-Analysis. Diabetology & Metabolic Syndrome, 13, Article No. 145. https://doi.org/10.1186/s13098-021-00765-x

  50. 50. Song, X., Cai, C., Jin, Q., Chen, X. and Yu, C. (2021) The Effi-cacy of Helicobacter pylori Eradication in Diabetics and Its Effect on Glycemic Control: A Systematic Review and Me-ta-Analysis. Helicobacter, 26, e12781. https://doi.org/10.1111/hel.12781

  51. 51. Bazmamoun, H., Rafeey, M., Nikpouri, M. and Ghergherehchi, R. (2016) Helicobacter pylori Infection in Children with Type 1 Diabetes Mellitus: A Case-Control Study. Journal of Research in Health Sciences, 16, 68-71.

  52. 52. Esmaeili Dooki, M.R., Alijanpour Aghamaleki, M., Noushiravani, N., et al. (2020) Helicobacter pylori Infection and Type 1 Diabetes Mellitus in Children. Journal of Diabetes & Metabolic Disorders, 19, 243-247. https://doi.org/10.1007/s40200-020-00497-1

  53. 53. Bayrak, N.A. and Volkan, B. (2021) Helicobacter pylori Infec-tion in Children with Concurrent Celiac Disease and Type 1 Diabetes Mellitus. Digestive Diseases, 39, 444-450. https://doi.org/10.1159/000514276

  54. 54. Abdelmalek, S., Hamed, W., Nagy, N., Shokry, K. and Abdelrahman, H. (2022) Evaluation of the Diagnostic Performance and the Utility of Helicobacter pylori Stool Antigen Lateral Immuno-chromatography Assay. Heliyon, 8, e09189. https://doi.org/10.1016/j.heliyon.2022.e09189

  55. 55. Gonciarz, W., Lechowicz, Ł., Urbaniak, M., Kaca, W. and Chmiela, M. (2020) Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (FTIR) and Artificial Neural Networks Applied to Investigate Quantitative Changes of Selected Soluble Biomarkers, Correlated with H. pylori Infec-tion in Children and Presumable Consequent Delayed Growth. Journal of Clinical Medicine, 9, Article No. 3852. https://doi.org/10.3390/jcm9123852

  56. 56. Steyn, N.P. and Nel, J.H. (2022) Prevalence and Determinants of the Double Burden of Malnutrition with a Focus on Concurrent Stunting and Overweight/Obesity in Children and Adoles-cents. Current Nutrition Reports, 11, 437-456. https://doi.org/10.1007/s13668-022-00417-0

  57. 57. Sarni, R.O.S., Kochi, C. and Suano-Souza, F.I. (2022) Child-hood Obesity: An Ecological Perspective. Jornal de Pediatria, 98, S38-S46. https://doi.org/10.1016/j.jped.2021.10.002

  58. 58. Nasif, W.A., Hasan Mukhtar, M., El-Moursy Ali, A.S., Nour Eldein, M.M., Almaimani, R.A. and Ashgar, S.S. (2022) Body Mass Index Is Associated with Helicobacter pylori In-fection and Increased Oxidative DNA Damage in an Obese Population. Journal of International Medical Research, 50, Article ID: 3000605221076975. https://doi.org/10.1177/03000605221076975

  59. 59. Xia, X., Zhang, L., Wu, H., et al. (2022) CagA+ Helicobacter pylori, Not CagA– Helicobacter pylori, Infection Impairs Endothelial Function through Exosomes-Mediated ROS For-mation. Frontiers in Cardiovascular Medicine, 9, Article ID: 881372. https://doi.org/10.3389/fcvm.2022.881372

  60. 60. Baradaran, A., Dehghanbanadaki, H., Naderpour, S., et al. (2021) The Association between Helicobacter pylori and Obesity: A Systematic Review and Meta-Analysis of Case-Control Studies. Clinical Diabetes and Endocrinology, 7, Article No. 15. https://doi.org/10.1186/s40842-021-00131-w

  61. 61. Pundak, O.Y., Topf Olivestone, C., Hofi, L. and Kori, M. (2020) Lack of Association between Helicobacter pylori Infection and Childhood Overweight/Obesity. Helicobacter, 25, e12728. https://doi.org/10.1111/hel.12728

  62. 62. Moran-Lev, H., Lubetzky, R., Mandel, D., Yerushalmy-Feler, A. and Cohen, S. (2017) Inverse Correlation between Helicobacter pylori Colonization and Pediatric Overweight: A Pre-liminary Study. Childhood Obesity, 13, 267-271. https://doi.org/10.1089/chi.2016.0275

  63. 63. Vo, H.D., Goli, S., Gill, R., et al. (2015) Inverse Correlation between Helicobacter pylori Colonization and Obesity in a Cohort of Inner City Children. Helicobacter, 20, 64-68. https://doi.org/10.1111/hel.12154

  64. 64. Samson, K.L.I., Fischer, J.A.J. and Roche, M.L. (2022) Iron Status, Ane-mia, and Iron Interventions and Their Associations with Cognitive and Academic Performance in Adolescents: A Sys-tematic Review. Nutrients, 14, Article No. 224. https://doi.org/10.3390/nu14010224

  65. 65. Mulayamkuzhiyil Saju, J., Mandal, N., Kham, N.I., et al. (2022) Is Heli-cobacter pylori a Reason for Unexplained Iron Deficiency Anemia: A Systematic Review. Cureus, 14, e29112. https://doi.org/10.7759/cureus.29112

  66. 66. Tanous, O., Levin, C., Suchdev, P.S., Luo, H. and Rinawi, F. (2022) Resolution of Iron Deficiency Following Successful Eradication of Helicobacter pylori in Children. Acta Paediatrica, 111, 1075-1082. https://doi.org/10.1111/apa.16255

  67. 67. 黄瑛. 儿童幽门螺杆菌感染诊治专家共识[J]. 中华儿科杂志, 2015, 53(7): 496-498.

  68. 68. Elsaadany, E., Amin, S., Abdel-Hafez, M., et al. (2022) Study of Serum Ferritin, Zinc, and Cop-per Levels in Children with Helicobacter pylori Gastritis and the Effect of the Treatment. Journal of Pediatric Gastroen-terology and Nutrition, 75, e88-e93. https://doi.org/10.1097/MPG.0000000000003585

  69. 69. 丛霞, 刘翠英, 赵琳琳, 董雪. 6~14岁儿童幽门螺杆菌感染的影响因素及营养状况分析[J]. 吉林医学, 2022, 43(1): 107-109.

  70. 70. Lupu, A., Miron, I.C., Cianga, A.L., et al. (2022) The Relationship between Anemia and Helicobacter pylori Infection in Children. Children, 9, Article No. 1324. https://doi.org/10.3390/children9091324

  71. 71. Tseng, D.S., Li, D., Cholleti, S.M., Wei, J.C., Jodesty, Y. and Pham, H.V. (2019) Effect of Helicobacter pylori Treatment on Unexplained Iron Deficiency Anemia. The Permanente Journal, 23, Article ID: 18-195. https://doi.org/10.7812/TPP/18-195

  72. 72. Zhang, Y., Bi, J., Wang, M., Deng, H. and Yang, W. (2022) Correlation between Helicobacter pylori Infection and Iron Deficiency in Children. Pakistan Journal of Medical Sciences, 38, 1188-1192. https://doi.org/10.12669/pjms.38.5.5175

  73. 73. Tiwari, S.K., Shaik, A.S., Shaik, A.P., et al. (2019) Gene Expression Patterns of COX-1, COX-2 and iNOS in H. Pylori Infected Histopathological Conditions. Microbial Pathogenesis, 135, Article ID: 103634. https://doi.org/10.1016/j.micpath.2019.103634

  74. 74. Lee, J.H., Choe, Y.H. and Choi, Y.O. (2009) The Expression of Iron-repressible Outer Membrane Proteins in Helicobacter pylori and Its Association with Iron Deficiency Anemia. Helicobacter, 14, 36-39. https://doi.org/10.1111/j.1523-5378.2009.00658.x

  75. 75. Ansari, S. and Yamaoka, Y. (2022) Helicobacter pylori Infection, Its Laboratory Diagnosis, and Antimicrobial Resistance: a Perspective of Clinical Relevance. Clinical Microbi-ology Reviews, 35, e0025821. https://doi.org/10.1128/cmr.00258-21

  76. 76. Aslan, A., Karapinar, H.S., Kilicel, F., et al. (2023) Trace Element Lev-els in Serum and Gastric Mucosa in Patients with Helicobacter pylori Positive and Negative Gastritis. Journal of Trace Elements in Medicine and Biology, 75, Article ID: 127108. https://doi.org/10.1016/j.jtemb.2022.127108

  77. 77. Stanbury, D.M. (2022) The Principle of Detailed Balancing, the Iron-Catalyzed Disproportionation of Hydrogen Peroxide, and the Fenton Reaction. Dalton Transactions, 51, 2135-2157. https://doi.org/10.1039/D1DT03645A

  78. 78. Hamedi Asl, D., Naserpour Farivar, T., Rahmani, B., et al. (2019) The Role of Transferrin Receptor in the Helicobacter pylori Pathogenesis; L-Ferritin as a Novel Marker for Intestinal Meta-plasia. Microbial Pathogenesis, 126, 157-164. https://doi.org/10.1016/j.micpath.2018.10.039

  79. 79. Fontenot, C.R. and Ding, H. (2022) Ferric Uptake Regulators (Fur) from Vibrio cholerae and Helicobacter pylori Bind a [2Fe-2S] Cluster in Response to Elevation of Intracellular Free Iron Content. Biometals, 35, 591-600. https://doi.org/10.1007/s10534-022-00390-9

  80. 80. Mendoza, E., Duque, X., Hernández Franco, J.I., et al. (2019) Association between Active H. pylori Infection and Iron Deficiency Assessed by Serum Hepcidin Levels in School-Age Children. Nutrients, 11, Article No. 2141. https://doi.org/10.3390/nu11092141

  81. 81. Ozkasap, S., Yarali, N., Isik, P., Bay, A., Kara, A. and Tunc, B. (2013) The Role of Prohepcidin in Anemia due to Helicobacter pylori Infection. Pediatric Hematology and Oncology, 30, 425-431. https://doi.org/10.3109/08880018.2013.783144

  82. 82. Stair, M.I., Winn, C.B., Burns, M.A., et al. (2023) Effects of Chronic Helicobacter pylori Strain PMSS1 Infection on Whole Brain and Gastric Iron Homeostasis in Male INS-GAS Mice. Microbes and Infection, 25, Article ID: 105045. https://doi.org/10.1016/j.micinf.2022.105045

  83. 83. Kato, S., Osaki, T., Kamiya, S., Zhang, X.-S. and Blaser, M.J. (2017) Helicobacter pylori sabA Gene Is Associated with Iron Deficiency Anemia in Childhood and Adolescence. PLOS ONE, 12, e018404. https://doi.org/10.1371/journal.pone.0184046

  84. 84. 罗会萍, 李成军, 毛伟君. 3~14岁儿童身高与血清25-羟维生素D和胰岛素样生长因子-1水平的相关性[J]. 中国妇幼保健, 2022, 37(24): 4608-4611.

  85. 85. Cai, X., Li, X., Jin, Y., et al. (2022) Vitamins and Helicobacter pylori: An Updated Comprehensive Meta-Analysis and Systematic Review. Frontiers in Nutrition, 8, Article 781333. https://doi.org/10.3389/fnut.2021.781333

  86. 86. 赵炳超. 血清维生素D水平与幽门螺杆菌根除率的关系研究[J]. 中国实用医药, 2022, 17(16): 53-55.

  87. 87. Gao, T., Zhao, M., Zhang, C., et al. (2020) Association of Helicobacter pylori Infection with Vitamin D Deficiency in Infants and Toddlers. The Amer-ican Journal of Tropical Medicine and Hygiene, 102, 541-546. https://doi.org/10.4269/ajtmh.19-0523

  88. 88. Han, C., Ni, Z., Yuan, T., et al. (2019) Influence of Serum Vitamin D Level on Helicobacter pylori Eradication: A Multi-Center, Observational, Prospective and Cohort Study. Journal of Di-gestive Diseases, 20, 421-426. https://doi.org/10.1111/1751-2980.12793

  89. 89. Zhang, Y., Wang, C., Zhang, L., Yu, J., Yuan, W. and Li, L. (2022) Vitamin D3 Eradicates Helicobacter pylori by Inducing VDR-CAMP Signaling. Frontiers in Microbiology, 13, Article ID: 1033201. https://doi.org/10.3389/fmicb.2022.1033201

  90. 90. Assaad, S., Costanian, C., Jaffal, L., Tannous, F., Stathopoulou, MG. and El Shamieh, S. (2019) Association of TLR4 Polymorphisms, Expression, and Vitamin D with Helicobacter pylori Infection. Journal of Personalized Medicine, 9, Article No. 2. https://doi.org/10.3390/jpm9010002

  91. 91. Zhou, A., Li, L., Zhao, G., Min, L., et al. (2020) Vitamin D3 Inhibits Helicobacter pylori Infection by Activating the VitD3/VDR-CAMP Pathway in Mice. Frontiers in Cellular and Infection Microbiology, 10, Article 566730. https://doi.org/10.3389/fcimb.2020.566730

  92. 92. Zhao, S., Wan, D., Zhong, Y. and Xu, X. (2022) 1α, 25-Dihydroxyvitamin D3 Protects Gastric Mucosa Epithelial Cells against Helicobacter pylori-Infected Apoptosis through a Vitamin D Receptor-Dependent C-Raf/MEK/ERK Pathway. Pharmaceutical Biology, 60, 801-809. https://doi.org/10.1080/13880209.2022.2058559

  93. 93. Gaddy, J.A., Radin, J.N., Loh, J.T., et al. (2014) The Host Protein Calprotectin Modulates the Helicobacter pylori cag Type IV Secretion System via Zinc Sequestration. PLOS Pathogens, 10, e1004450. https://doi.org/10.1371/journal.ppat.1004450

  94. 94. Haley, K.P. and Gaddy, J.A. (2015) Metalloregulation of Heli-cobacter pylori Physiology and Pathogenesis. Frontiers in Microbiology, 6, Article 911. https://doi.org/10.3389/fmicb.2015.00911

  95. 95. Fan, D., Gong, Y., Sun, L., Zhang, Y. and Zhang, J. (2022) Com-parative Transcriptome Analysis to Investigate the Mechanism of Anti-Helicobacter pylori Activity of Zinc. Microbial Pathogenesis, 168, Article ID: 105611. https://doi.org/10.1016/j.micpath.2022.105611

  96. 96. Bernegger, S., Brunner, C., Vizovišek, M., et al. (2020) A Novel FRET Peptide Assay Reveals Efficient Helicobacter pylori HtrA Inhibition through Zinc and Copper Binding. Scientific Reports, 10, Article No. 10563. https://doi.org/10.1038/s41598-020-67578-2

  97. 97. Duzgun Ergun, D., Doganer, F., Koc, G., Soyocak, A., Pastaci Ozsobaci, N. and Ergun, S. (2022) The Relationship of 50 bp Deletion in the Promoter Region of SOD1 Gene with Vis-cosity and Trace Elements in Chronic Gastritis with Helicobacter pylori: A Case Study. Journal of Trace Elements in Medicine and Biology, 73, Article ID: 127039. https://doi.org/10.1016/j.jtemb.2022.127039

  98. 98. 赵张颖. 儿童幽门螺杆菌感染对全血锌、铁、钙、铜变化及对缺铁性贫血发生关系探讨[D]: [硕士学位论文]. 延安: 延安大学, 2021.

  99. 99. 王建英, 王静. 锌制剂治疗幽门螺杆菌感染的相关研究进展[J]. 临床消化病杂志, 2022, 34(3): 216-218.

期刊菜单