Advances in Clinical Medicine
Vol. 13  No. 07 ( 2023 ), Article ID: 69109 , 5 pages
10.12677/ACM.2023.1371616

关于睾丸生殖细胞肿瘤中MiR-371a-3p的 研究进展

刘盼1,刘志波2

1青海大学研究生院,青海 西宁

2青海红十字医院肿瘤内科,青海 西宁

收稿日期:2023年6月21日;录用日期:2023年7月16日;发布日期:2023年7月21日

摘要

睾丸生殖细胞肿瘤(TGCTs)来源于未分化的胚胎生殖细胞,在模仿胚胎和胚外发育阶段的同时保留胚胎生殖细胞的生物学和生化特征。在TGCTs的临床实践中有3种常用的经典肿瘤标志物,分别为甲胎蛋白、β人绒毛膜促性腺激素和乳酸脱氢酶,虽然这些肿瘤标志物在临床中常用于诊断、风险评估和确定患者病情,但是目前使用的生物标志物敏感性和特异性低于60%,不利于TGCTs的临床治疗。有研究指出循环microRNAs在TGCTs中有特异性,并可能满足临床需求。本文就TGCTs中miR-371a-3p的研究进展作一综述。

关键词

睾丸生殖细胞肿瘤,肿瘤标志物,MiR-371a-3p

Research Progress on MiR-371a-3p in Testicular Germ Cell Tumors

Pan Liu1, Zhibo Liu2

1Graduate School of Qinghai University, Xining Qinghai

2Department of Oncology, Qinghai Red Cross Hospital, Xining Qinghai

Received: Jun. 21st, 2023; accepted: Jul. 16th, 2023; published: Jul. 21st, 2023

ABSTRACT

Testicular germ cell tumors (TGCTs) are derived from undifferentiated embryonic germ cells that mimic embryonic and extraembryonic developmental stages while preserving the biological and biochemical characteristics of embryonic germ cells. In the clinical practice of TGCTs, there are three commonly used classical tumor markers, namely alpha-fetoprotein, β human chorionic gonadotropin and lactate dehydrogenase, although these tumor markers are commonly used in clinical diagnosis, risk assessment and determination of patients’ conditions, but the sensitivity and specificity of biomarkers currently used are less than 60%, which is not conducive to the clinical treatment of TGCTs. Circulating microRNAs have been shown to be specific in TGCTs and may meet clinical needs. This article reviews the research progress of miR-371a-3p in TGCTs.

Keywords:Testicular Germ Cell Tumors, Tumor Markers, MiR-371a-3p

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. miR-371A-3p

睾丸生殖细胞肿瘤(testicular germ cell tumors, TGCTs)是最常见的睾丸恶性肿瘤,占所有泌尿生殖系统肿瘤的5%左右 [1] 。TGCTs分为两种主要组织学类型,即睾丸精原细胞瘤和睾丸非精原细胞瘤 [2] [3] 。近几十年来,其全球发病率呈逐渐上升的趋势,每年以1%~2%的速度增长,2020年全球估计有近74,500例新病例 [4] 。睾丸肿瘤单侧发病多见,仅有1%左右的患者双侧发病 [5] 。各大指南一致确定睾丸肿瘤发病的先天性危险因素是睾丸发育不全综合征(隐睾、少/弱精症、不孕)、Klinefelter综合征、睾丸女性化综合征、家族史、个人史(存在对侧肿瘤)等 [6] 。获得性因素通常被认为与损伤、感染、环境和(或)生活方式、营养因素以及孕期过度使用外源性雌激素有关。

在过去的十几年,以核酸为基础的标志物,特别是microRNAs在人类癌症中经常发生异常调节,其作为肿瘤分类和预测组织标志物已显示出良好的应用前景。因此亟需了解microRNAs在癌症发展中的作用 [7] 。关于循环microRNAs的水平,特别是miR-371a-3p有可能成为恶性生殖细胞肿瘤的血清生物标志物 [8] 。本文就以上相关问题进行综述。

2. miR-371a-3p

microRNAs是由大约22个核苷酸组成的非编码RNA小分子,是小分子非编码RNA(SncRNAs)中数量最多的一类。它们由转录的发夹环结构产生,并在转录和转录后水平调节基因表达。它们以序列特异性的方式与miRNA靶点的3-非翻译区结合,负向调节转录物的稳定性和翻译,并参与了几个生物学过程,包括周期、增殖、分化和凋亡。microRNAs由RNA聚合酶Ⅱ转录,并通过靶向来自人类基因组60%的转录物来发挥其功能,microRNAs在几种癌症中经常失调,可作为癌基因或抑癌基因发挥作用 [9] 。睾丸中的细胞表达大量的非编码RNA (ncRNA),主要为微小RNA(miRNA)、Piwi蛋白结合RNA(piRNA)和长链非编码RNA(lncRNA),它们均在基因表达调控中起作用。它们在精子发生过程中以细胞特异性的方式表达,在雄性生殖细胞分化的每个步骤中调节基因表达 [10] 。有研究显示miR-371-3 (miR-371A-3p、miR-372和miR-373-3p)簇的3个成员已经显示出与TGCTs密切相关 [11] ,并且它们的高表达表明其可能充当癌基因。在睾丸切除术后的I期患者中,每日对以上3种microRNAs水平分别进行测量,其中miR-371a-3p水平下降了95%,且在精原细胞瘤和非精原细胞瘤中高表达 [12] 。事实上,microRNAs被睾丸癌细胞释放到生物体液中,并且可以在受影响患者的血液和血清中检测到。一项研究表明TGCTs患者的睾丸静脉血液样本中的血清水平比外周血高65.4倍,提示生殖细胞肿瘤患者血清中miR-371a-3p水平升高的主要来源可能是睾丸肿瘤本身 [13] 。此外,miR-371a-3p的循环microRNAs对TGCTs具有特异性。Spiekermann等 [14] 分别测量了TGCTs患者、对照组和其他恶性肿瘤患者的血清miR371a-3p水平,发现miR-371a-3p不存在于其他恶性肿瘤中,因此其可被用于鉴别畸胎瘤、胚胎细胞癌以及卵巢内胚层窦瘤 [15] [16] 。

3. miR-371a-3p的临床研究

Dieckmann等 [17] 利用受试者工作特征曲线对miR-371a-3p、miR-372-3p、miR-373-3p和miR-367-3p这4种microRNAs的特异性和敏感性进行了研究,在治疗期间的不同时间点对TGCTs亚组和对照组的microRNAs水平进行了统计学交叉比较。结果显示,miR-371a-3p具有最高的敏感性和特异性,其受试者工作特性曲线下面积 > 0.90,灵敏度为89%~96% (95% CI: 82.5%~93.3%),特异性为93%~95% (95% CI: 86.9%~97.3%),对精原细胞瘤和非精原细胞瘤的特异性 > 90%,超过了经典的血清肿瘤标志物对生殖细胞肿瘤的特异性。在治疗结束后,miR-371a-3p水平可降至正常,这表明miR-371a-3p位点是参与TGCTs肿瘤发生的主要miRNA簇之一。Palmer等 [18] 证明了miR-371-3簇在所有恶性TGCTs(与正常对照组织和良性TGCTs相比)中高度过表达,与患者年龄、组织学亚型或肿瘤解剖部位无关。microRNAs持续升高可能预示着临床复发。总体而言,血清miR-371a-3p水平与疾病的实际状态和治疗反应充分相关。Spiekermann等 [14] 在一项包括25例TGCTs患者、6例睾丸上皮内瘤变患者、20例健康男性和24例非睾丸恶性肿瘤患者血清miR-371a-3p水平的研究中发现,TGCTs患者血清miR-371a-3p水平明显高于对照组和非睾丸恶性肿瘤患者。对照组、睾丸上皮内瘤变患者和非睾丸恶性肿瘤患者的血清miR-371a-3p水平无明显差异。Belge等 [19] 和Dieckmann等 [20] 指出睾丸切除术后miR-371a-3p水平显著下降,他们的研究结果提示miR-371a-3p或将有望成为TGCTs的特异性生物标志物。当然还要注意的是由于其他的恶性肿瘤,如前列腺癌、膀胱癌、肾细胞癌等也会释放大量的循环microRNAs,所以还需考虑假阳性结果可能 [21] [22] 。与正常健康男性和良性阴囊疾病患者睾丸组织相比 [23] ,TGCTs组织中miR-371a-3p和miR-302a-d簇中microRNAs的表达显著升高。聚合酶链反应和原位杂交技术证实了以上结果 [24] [25] 。

4. miR-371a-3p与TGCTs的预后

血清miR-371a-3p水平可以为TGCTs提供相关预后信息,化疗前miR-371a-3p水平升高患者的无进展生存率和总生存率均较低 [26] ,一项关于166例GCT患者的研究中有150例患者在睾丸切除术前获得了血清样本。为了监测化疗后miRNA水平的变化,该研究反复收集了18例临床2期(CS2)患者、9例CS3患者和10例复发患者的血清样本(每个周期一次),并对化疗期间的miR-371a-3p水平进行了测量,其中12例患者睾丸切除术后miR-371a-3p水平表达下降,大多数患者化疗第一个周期后miR-371a-3p表达降至正常范围,并在后期维持不变 [17] 。在包含151例CSI(临床I期)患者的研究中,循环miR-371a-3p的测量结果证实了其治疗效果,miR-371a-3p水平在睾丸切除后表达下降,复发时水平升高,挽救治疗后再次下降;其次,CSI原发病灶直径与miR-371a-3p水平呈正相关 [27] ,这表明miR-371a-3p的水平与肿瘤大小、治疗效果相关。miR-371a-3p有助于鉴别适合保留睾丸手术的TGCTs [27] ,且在有转移的患者中,miR-371a-3p表达随着化疗降低,在治疗完成后达到正常水平。值得注意的是,复发性疾病患者也表达该标志物,1例复发2年的临床I期患者术后miR-371a-3p表达异常,这表明持续的miRNA升高可能预示着临床复发 [17] 。因此,对miR-371a-3p水平进行监测有助于早期发现TGCTs患者肿瘤是否复发 [28] [29] 。此外,miR-371a-3p一系列的测量可作为化疗期间监测其疗效的重要标志,并为定制更个性化的治疗提供手段。

5. miR-371a-3p在睾丸肿瘤中的局限性

由于新标志物在局限性疾病和全身性疾病中的表达不同,导致选择结果的混杂,因此miR-371a-3p的临床适用性至今仍不确定。由于缺乏长期的观察数据,后续还需要在大规模的前瞻性研究中不断探索新的方法来补充和改进当前的癌症检查策略。

6. 总结

miR-371a-3p有特性优于经典的肿瘤标志物,分别为异常高的敏感性和特异性,以及短的半衰期。miR-371a-3p血清浓度的半衰期较短,为3.67~7.01 h [30] ,在目前使用的诊断TGCTs标志物中,β-hCG半衰期也较短,约为36 h [31] ,而AFP的半衰期较长,为5~7 d [32] 。因此,了解肿瘤中RNA分子的功能可以为TGCTs的诊断标志物或识别治疗靶点开辟新的途径。目前miR-371a-3p的研究尚处于初级阶段,能否在临床中正式应用仍需要在大规模临床研究中进一步探索。

文章引用

刘 盼,刘志波. 关于睾丸生殖细胞肿瘤中MiR-371a-3p的研究进展
Research Progress on MiR-371a-3p in Testicular Germ Cell Tumors[J]. 临床医学进展, 2023, 13(07): 11555-11559. https://doi.org/10.12677/ACM.2023.1371616

参考文献

  1. 1. 彭华红, 肖龙飞, 王林, 等. ARL4C在睾丸生殖细胞肿瘤中的表达及临床意义[J]. 天津医科大学学报, 2020, 26(3): 238-243.

  2. 2. Katabathina, V.S., Vargas-Zapata, D., Monge, R.A., et al. (2021) Testicular Germ Cell Tumors: Classification, Pathologic Features, Imaging Findings, and Management. RadioGraphics, 41, 1698-1716. https://doi.org/10.1148/rg.2021210024

  3. 3. Znaor, A., Skakkebaek, N.E., Rajpert-De Meyts, E., et al. (2020) Tes-ticular Cancer Incidence Predictions in Europe 2010-2035: A Rising Burden despite Population Ageing. International Journal of Cancer, 147, 820-828. https://doi.org/10.1002/ijc.32810

  4. 4. Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  5. 5. 李路, 李家贵. 原发性睾丸肿瘤研究新进展[J]. 现代泌尿生殖肿瘤杂志, 2009, 1(6): 321-324.

  6. 6. Nettersheim, D. and Albers, P. (2022) Special Issue on Testis Cancer. World Journal of Urology, 40, 305-306. https://doi.org/10.1007/s00345-022-03957-w

  7. 7. Harries, L.W. (2019) RNA Biology Provides New Therapeutic Targets for Human Disease. Frontiers in Genetics, 10, Article No. 205. https://doi.org/10.3389/fgene.2019.00205

  8. 8. Cortez, M.A., Bueso-Ramos, C., Ferdin, J., et al. (2011) Mi-croRNAs in Body Fluids—The Mix of Hormones and Biomarkers. Nature Reviews Clinical Oncology, 8, 467-477. https://doi.org/10.1038/nrclinonc.2011.76

  9. 9. Zamore, P.D. and Haley, B. (2005) Ribo-Gnome: The Big World of Small RNAs. Science, 309, 1519-1524. https://doi.org/10.1126/science.1111444

  10. 10. Hong, S.H., Kwon, J.T., Kim, J., et al. (2018) Profiling of Tes-tis-Specific Long Noncoding RNAs in Mice. BMC Genomics, 19, Article No. 539. https://doi.org/10.1186/s12864-018-4931-3

  11. 11. Eini, R., Dorssers, L.C. and Looijenga, L.H. (2013) Role of Stem Cell Proteins and microRNAs in Embryogenesis and Germ Cell Cancer. The International Journal of Developmental Bi-ology, 57, 319-332. https://doi.org/10.1387/ijdb.130020re

  12. 12. Syring, I., Bartels, J., Holdenrieder, S., et al. (2015) Circulating Serum miRNA (miR-367-3p, miR-371a-3p, miR- 372-3p and miR-373-3p) as Biomarkers in Patients with Testicular Germ Cell Cancer. Journal of Urology, 193, 331-337. https://doi.org/10.1016/j.juro.2014.07.010

  13. 13. Belge, G., Hennig, F., Dumlupinar, C., et al. (2020) Graded Ex-pression of microRNA-371a-3p in Tumor Tissues, Contralateral Testes, and in Serum of Patients with Testicular Germ Cell Tumor. Oncotarget, 11, 1462-1473. https://doi.org/10.18632/oncotarget.27565

  14. 14. Spiekermann, M., Belge, G., Winter, N., et al. (2015) MicroRNA miR-371a-3p in Serum of Patients with Germ Cell Tumours: Evaluations for Establishing a Serum Biomarker. Andrology, 3, 78-84. https://doi.org/10.1111/j.2047-2927.2014.00269.x

  15. 15. Vilela-Salgueiro, B., Barros-Silva, D., Lobo, J., et al. (2018) Germ Cell Tumour Subtypes Display Differential Expression of microRNA371a-3p. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, Article ID: 20170338. https://doi.org/10.1098/rstb.2017.0338

  16. 16. Salvatori, D.C.F., Dorssers, L.C.J., Gillis, A.J.M., et al. (2018) The microRNA-371 Family as Plasma Biomarkers for Monitoring Undifferentiated and Potentially Malignant Human Plu-ripotent Stem Cells in Teratoma Assays. Stem Cell Reports, 11, 1493-1505. https://doi.org/10.1016/j.stemcr.2018.11.002

  17. 17. Dieckmann, K.P., Radtke, A., Spiekermann, M., et al. (2017) Serum Levels of MicroRNA miR-371a-3p: A Sensitive and Specific New Biomarker for Germ Cell Tumours. European Urology, 71, 213-220. https://doi.org/10.1016/j.eururo.2016.07.029

  18. 18. Palmer, R.D., Murray, M.J., Saini, H.K., et al. (2010) Malignant Germ Cell Tumors Display Common microRNA Profiles Resulting in Global Changes in Expression of Messenger RNA Targets. Cancer Research, 70, 2911-2923. https://doi.org/10.1158/0008-5472.CAN-09-3301

  19. 19. Belge, G., Dieckmann, K.P., Spiekermann, M., et al. (2012) Serum Levels of microRNAs miR-371-3: A Novel Class of Serum Biomarkers for Testicular Germ Cell Tumors? Euro-pean Urology, 61, 1068-1069. https://doi.org/10.1016/j.eururo.2012.02.037

  20. 20. Dieckmann, K.P., Spiekermann, M., Balks, T., et al. (2012) Mi-croRNAs miR-371-3 in Serum as Diagnostic Tools in the Management of Testicular Germ Cell Tumours. British Journal of Cancer, 107, 1754-1760. https://doi.org/10.1038/bjc.2012.469

  21. 21. Bezan, A., Gerger, A. and Pichler, M. (2014) MicroRNAs in Testicular Cancer: Implications for Pathogenesis, Diagnosis, Prognosis and Therapy. AntiCancer Research, 34, 2709-2713.

  22. 22. Sanders, I., Holdenrieder, S., Walgenbach-Brünagel, G., et al. (2012) Evaluation of Reference Genes for the Analysis of Serum miRNA in Patients with Prostate Cancer, Bladder Cancer and Renal Cell Carcinoma. Interna-tional Journal of Urology, 19, 1017-1025. https://doi.org/10.1111/j.1442-2042.2012.03082.x

  23. 23. Gillis, A.J., Stoop, H.J., Hersmus, R., et al. (2007) High-Throughput microRNAome Analysis in Human Germ Cell Tumours. The Journal of Pathology, 213, 319-328. https://doi.org/10.1002/path.2230

  24. 24. Bing, Z., Master, S.R., Tobias, J.W., et al. (2012) MicroRNA Expression Profiles of Seminoma from Paraffin-Embedded Formalin-Fixed Tissue. Virchows Ar-chiv, 461, 663-668. https://doi.org/10.1007/s00428-012-1325-9

  25. 25. Lobo, J., Gillis, A.J.M., Jerónimo, C., et al. (2019) Human Germ Cell Tumors Are Developmental Cancers: Impact of Epigenetics on Pathobiology and Clinic. In-ternational Journal of Molecular Sciences, 20, Article No. 258. https://doi.org/10.3390/ijms20020258

  26. 26. Mego, M., van Agthoven, T., Gronesova, P., et al. (2019) Clinical Util-ity of Plasma miR-371a-3p in Germ Cell Tumors. Journal of Cellular and Molecular Medicine, 23, 1128-1136. https://doi.org/10.1111/jcmm.14013

  27. 27. Badia, R.R., Abe, D., Wong, D., et al. (2021) Real-World Application of Pre-Orchiectomy miR-371a-3p Test in Testicular Germ Cell Tumor Management. Journal of Urology, 205, 137-144. https://doi.org/10.1097/JU.0000000000001337

  28. 28. Bagrodia, A., Savelyeva, A., Lafin, J.T., et al. (2021) Impact of Circulating microRNA Test (miRNA-371a-3p) on Appropriateness of Treatment and Cost Outcomes in Patients with Stage I Non-Seminomatous Germ Cell Tumours. BJU International, 128, 57-64. https://doi.org/10.1111/bju.15288

  29. 29. Charytonowicz, D., Aubrey, H., Bell, C., et al. (2019) Cost Analysis of Noninvasive Blood-Based microRNA Testing versus CT Scans for Follow-Up in Patients with Testicular Germ-Cell Tumors. Clinical Genitourinary Cancer, 17, e733-e744. https://doi.org/10.1016/j.clgc.2019.03.015

  30. 30. van Ag-thoven, T., Eijkenboom, W.M.H. and Looijenga, L.H.J. (2017) microRNA-371a-3p as Informative Biomarker for the Follow-Up of Testicular Germ Cell Cancer Patients. Cellular Oncology (Dordr), 40, 379-388. https://doi.org/10.1007/s13402-017-0333-9

  31. 31. Gilligan, T.D., Seidenfeld, J., Basch, E.M., et al. (2010) American Society of Clinical Oncology Clinical Practice Guideline on Uses of Serum Tumor Markers in Adult Males with Germ Cell Tumors. Journal of Clinical Oncology, 28, 3388-3404. https://doi.org/10.1200/JCO.2009.26.4481

  32. 32. Ehrlich, Y., Beck, S.D., Foster, R.S., et al. (2013) Serum Tumor Markers in Testicular Cancer. Urologic Oncology, 31, 17-23. https://doi.org/10.1016/j.urolonc.2010.04.007

期刊菜单