Advances in Clinical Medicine
Vol. 12  No. 12 ( 2022 ), Article ID: 59663 , 8 pages
10.12677/ACM.2022.12121706

安罗替尼在非小细胞肺癌的治疗进展及 不良反应管理

卢鑫1,姜军2*

1青海大学研究生院,青海 西宁

2青海大学附属医院肿瘤内科三病区,青海 西宁

收稿日期:2022年11月23日;录用日期:2022年12月16日;发布日期:2022年12月28日

摘要

肺癌是全球发病率、死亡率最高的恶性肿瘤,严重危害人类的健康。肺癌分为小细胞肺癌和非小细胞肺癌,其中后者占肺癌的80%~85%。近年来随着靶向治疗的兴起,使非小细胞肺癌的治疗取得了巨大进展,安罗替尼是一种新型的小分子多靶点酪氨酸激酶抑制剂,通过抗血管生成作用抑制肿瘤的生长及转移,具有多靶点、安全性好等优点,在多种恶性肿瘤中被广泛研究。本文就安罗替尼在非小细胞肺癌的治疗进展及不良反应的管理进行综述。

关键词

安罗替尼,肿瘤,不良反应

Advances in the Treatment of Non-Small Cell Lung Cancer with Anlotinib and Adverse Reaction Management

Xin Lu1, Jun Jiang2*

1Graduate School of Qinghai University, Xining Qinghai

2Third Ward, Department of Medical Oncology, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: Nov. 23rd, 2022; accepted: Dec. 16th, 2022; published: Dec. 28th, 2022

ABSTRACT

Lung cancer is a malignant tumor with the highest morbidity and mortality in the world, which seriously endangers human health. Lung cancer is divided into small cell lung cancer and non-small cell lung cancer, the latter of which accounts for 80%~85% of lung cancer. In recent years, with the rise of targeted therapy, great progress has been made in the treatment of non-small cell lung cancer. Anlotinib is a novel small molecule multitarget tyrosine kinase inhibitor, which can inhibit tumor growth and metastasis through anti-angiogenesis effect. It has the advantages of multi-target and good safety, and has been widely studied in a variety of malignant tumors. This article reviews the progress of antirotinib in the treatment of non-small cell lung cancer and the management of adverse reactions.

Keywords:Anlotinib, Tumor, Adverse Reactions

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

随着人口老龄化的发展,恶性肿瘤发病率逐年升高,严重危害人类的健康。据2022年全球癌症统计数据报道,肺癌是全球发病率、死亡率最高的恶性肿瘤,每天约有350万人死于肺癌,是癌症死亡的主要原因 [1]。肺癌是指原发于气管、支气管和肺的恶性肿瘤,主要包括鳞状细胞癌、腺癌、小细胞癌和大细胞癌几种主要的病理类型 [2]。根据肺癌的分化程度、形态特征和生物学特点,目前将肺癌分为两大类,即小细胞肺癌(small cell lung cancer, SCLC)和非小细胞肺癌(non-small cell lung cancer, NSCLC),其后者包括鳞状细胞癌、腺癌、大细胞癌等,占肺癌的80%~85% [2]。在过去20年里,对于晚期的NSCLC患者,治疗方法主要为化疗,然而其疗效处于平台期,不良反应也较严重,年老体弱患者无法耐受,极大限制了临床的应用 [2]。近年来随着靶向治疗的兴起,使非小细胞肺癌的治疗取得了巨大进展,不仅可显著延长患者的生存期且不良反应较化疗轻,患者耐受程度高。

安罗替尼(AL3818)是一种靶向参与肿瘤进展的多种受体酪氨酸激酶的抑制剂,主要抑制血管内皮生长因子受体2型和3型(vascular endothelial growth factor receptor, VEGFR2)和(vascular endothelial growth factor receptor, VEGFR3)血小板衍生生长因子β (platelet derived growth factor receptor, PDGFRβ)和干细胞生长因子受体(c-Kit)等来发挥抗肿瘤作用 [3] [4]。与其他酪氨酸激酶抑制剂相比,如索拉非尼、舒尼替尼等,它具有更多的靶点 [4]。

目前安罗替尼在中国已被批准用于治疗晚期NSCLC、SCLC、甲状腺髓样癌及软组织肉瘤 [5] [6] [7] [8]。在肝细胞癌、肾癌及消化道肿瘤中也被广泛研究 [9] [10] [11] [12]。本文就安罗替尼在NSCLC临床中的治疗进展及不良反应进行综述,旨在为安罗替尼在NSCLC治疗中的临床应用提供参考。

2. 安罗替尼的作用机制

血管生成或血管异常化是肿瘤发生与发展的标志,恶性肿瘤在生长的过程中新生血管是运输氧气、营养物质及肿瘤增殖发展所必需的 [13]。20世纪70年代初,美国国家科学院院士犹大·福克曼教授提出“恶性实体瘤的生长始终伴随新生血管生成”这一概念,即从肿瘤组织中可分离出一个诱导血管生成的因子,即血管表皮生长因子(vascular endothelial growth factor, VEGF) [14]。因此研究者们认为阻断VEGF的合成可能会使肿瘤饿死,从而阻止肿瘤的进展。随后的研究也揭示,直径为1~2 mm的微小肿瘤在没有新生血管供血的情况下,往往处于“休眠”状态,不会发生增殖与转移。当肿瘤直径超过2~3 mm时,肿瘤细胞可以通过产生多种细胞因子,诱导新生血管生成,为肿瘤提供氧和营养物质,进而导致肿瘤的增殖和转移 [15]。

安罗替尼是一种多靶点抗血管生成药物,通过抑制血管新生相关的VEGFR、PDGFR及FGFR以及所介导的下游信号通路,从而干预内皮细胞的增殖、迁移及形成管腔的能力,全面阻断肿瘤血管新生 [3]。c-kit所介导的信号通路在多种恶性肿瘤的发生、发展以及复发的过程中扮演着重要角色,也是目前众多在研靶向药物的主要靶点 [16]。通过分子动力学模拟发现,安罗替尼主要结合在VEGFR2和c-kit激酶的ATP结合域,能够深入进入ATP结合位点的催化口袋,其结构中的吲哚环恰好位于天冬氨酸–苯丙氨酸–甘氨酸模段(DFG-motif)附近,而DFG motif对于激酶活性具有重要的调控作用,安罗替尼可能通过和DFG motif发生相互作用而显示出极强的激酶抑制活性 [16]。因此,具有抗肿瘤血管生成和抑制肿瘤生长的双重作用。

3. 安罗替尼非小细胞肺癌的治疗进展

3.1. 安罗替尼单药治疗NSCLC

一项安罗替尼单药三线治疗晚期NSCLC的2期临床试验(ALTER0302)结果表明 [17],安罗替尼单药组对比安慰剂组中位PFS为(4.8个月vs 1.2个月),中位OS为(9.3个月vs 6.3个月),总体不良反应发生率为(91.67% vs 70.68%),最常见的不良反应主要为高血压(55.00%),促甲状腺激素升高(36.67%),手足综合征(28.33%),甲状腺球蛋白升高(26.67%),总胆固醇升高(25.00%)和腹泻(23.33%)等。3级或4级不良反应的发生率为(21.67% vs 5.26%),主要为高血压(10.00%)、甲状腺球蛋白升高(5.00%)和手足综合征(3.33%)。虽然安罗替尼组不良反应的发生率更多,但通过剂量调整、停药或对症治疗后均得到有效控制,未记录到与治疗相关的死亡事件。安罗替尼治疗晚期NSCLC的3期临床研究进一步对患者的OS进行了评估[7],其结果也表明安罗替尼较安慰剂可明显改善患者的生存期。此外,研究者在对3期亚组进行分析,结果表明,安罗替尼可显著改善EGFR突变患者的PFS (0.68个月)和OS (0.27个月),并有提高鳞癌患者OS (10.7个月VS 6.5个月)的趋势 [18]。同时,对3期临床试验的事后分析也表明安罗替尼可显著延长基线伴有脑转移患者的生存时间(HR, 0.18; 95% CI, 0.04~0.79; p = 0.02) [19]。

3.2. 安罗替尼联合化疗治疗NSCLC

一项前瞻性三臂研究(NCT03268521)探索安罗替尼一线联合用药治疗晚期NSCLC的疗效及安全性 [20],A组为表皮生长因子受体驱动基因阳性的患者,给予盐酸安罗替尼联合厄洛替尼治疗,B组为驱动基因阴性的患者,给予盐酸安罗替尼联合化学治疗,C组给予安罗替尼联合信迪利单抗治疗;结果显示A组ORR为92.6%,DCR为100.0%;B组ORR为60.0%,DCR为96.7%;C组ORR为72.7%,DCR为100.0%,联合用药疗效较安罗替尼单药疗效好,且安全性可控。一项II期临床探究安罗替尼联合替吉奥用于晚期NSCLC的三线或后期治疗的疗效 [21],结果表明,中位随访时间为11.1个月,有11例(37.9%)观察到客观反应,达到了30% ORR的目标主要终点,中位总生存期和无进展生存期分别为16.7个月和5.8个月。表明安罗替尼联合替吉奥在NSCLC患者中显示出有希望的抗肿瘤活性。

3.3. 安罗替尼联合抗血管生成抑制剂治疗NSCLC

“A + T”模式是近年来的一种新型模式,一项探索安罗替尼联合埃克替尼一线治疗EGFR突变阳性晚期NSCLC的临床研究表明 [22],安罗替尼联合埃克替尼的ORR为70%,DCR为97%,不良反应发生率为97%,未记录到死亡事件。最常见的3级不良事件是高血压(17%),高甘油三酯血症(6%),腹泻(3%),高尿酸血症(3%),手足皮肤反应(3%)等。安罗替尼联合埃克替尼对既往未经治疗的EGFR突变晚期NSCLC患者的疗效尚可,且安全性可控。

3.4. 安罗替尼联合免疫检查点抑制剂治疗NSCLC

免疫治疗是近年来兴起的新型疗法,广义的免疫治疗包括主动免疫和被动免疫,目前NSCLC的免疫治疗是狭义的免疫治疗,即免疫检查点抑制剂。抗血管生成药物联合免疫治疗是当前比较热门的联合治疗模式,通过调节肿瘤微环境,以达到治疗肿瘤的目的。一项1b期临床试验探究信迪利单抗联合安罗替尼治疗晚期NSCLC患者一线治疗的疗效及安全性 [20],22例患者中16例获得缓解,客观缓解率为72.7%,疾病控制率为100%。中位无进展生存期为15个月,12个月无进展生存率为71.4%。3级及以上治疗相关不良事件发生率为54.5%,未观察到4级治疗相关的不良事件。Shi等人开展的一项回顾性研究显示 [23],免疫检查点抑制剂联合安罗替尼组患者的中位PFS远长于免疫检查点抑制剂单药治疗组(6.37 vs. 3.90个月)。且有更高的DCR、ORR,虽然在治疗期间发生严重药物不良反应的可能性较对照组大,但不良反应可控,总体来说安全性良好。在另一项回顾性研究中 [24],安罗替尼联合免疫检查点抑制剂也取得较好的结果,安罗替尼组的中位PFS分别为4.07个月,PD-1单抗组为5.13个月,安罗替尼联合免疫组为7.13个月。安罗替尼、PD-1单抗和联合组的中位OS分别为6.23个月、8.79个月和14.01个月。联合治疗组的PFS和OS明显优于其他两个治疗组。

4. 不良反应的管理

Sun等人通过对安罗替尼进行的I期临床试验中,对安全性进行了评估 [25]。结果显示,安罗替尼在治疗实体瘤中最常见的不良事件发生率超过30%主要包括蛋白尿、甘油三酯升高、总胆固醇升高、甲状腺功能减退、手足综合征、丙氨酸转氨酶(alanine transaminase, ALT)升高、天冬氨酸转氨酶(aspartate transaminase, AST)升高、血清淀粉酶、总胆红素升高、心肌酶异常、高血压、白细胞减少和中性粒细胞减少。3~4级不良反应主要包括高血压、甘油三酯升高、手足综合征和脂肪酶升高。目前临床试验结果也证实安罗替尼的不良反应上诉类似,那么我们在临床应用时如何对这些常见不良反应进行预防和管理呢?

高血压:血管生成抑制剂最常见的相关不良反应通常认为是高血压,尤其是VEGFR-TKIs [26]。目前安罗替尼引起高血压的机制尚不明确,除了与患者心理、精神压力增加有关,其他的可能因素是:内皮细胞损伤、血管僵硬及密度异常、内皮细胞NO分泌减少、血小板PGI2分泌减少等 [27]。对血压正常或患有高血压的患者应首先进行评估,并且在开始治疗前应控制血压 [28] [29]。对于血压升高患者,应根据国家癌症研究所不良事件通用术语标准4.0版进行一般高血压管理,说明书中明确规定,当发生3/4级高血压,应暂停用药;如恢复用药后再次出现3/4级高血压,应下调一个剂量继续用药;如3/4级高血压持续,建议停药;出现高血压危象的患者应立即停药,并接受心血管专科治疗。在降压药物的选择上,目前还没有共识或具体的指南。血管紧张素转换酶抑制剂、血管紧张素II受体阻滞剂、利尿剂及钙通道阻滞剂都是在治疗期间发生高血压的患者的合适选择 [28] [29],应根据患者个人情况对药物进行选择。但需注意的是,安罗替尼由CYP3A4代谢,在使用钙通道阻滞剂时,应避免使用二氢吡啶类药物,如维拉帕米和地尔硫卓,避免发生药物的潜在作用 [28] [29]。此外,据报道,硝苯地平可增加VEGF的分泌;因此也应避免使用 [30]。

乏力:乏力经常发生在晚期肿瘤患者中,目前还不清楚疲劳是药物所致还是疾病进展的结果。疲劳可能是由其他与TKI相关的不良事件引起的营养不良的结果,包括腹泻、恶心、呕吐及甲状腺功能减低等 [29] [31] [32]。其他导致疲劳的潜在因素,如抑郁、焦虑、失眠、疼痛和内分泌障碍等,应根据需要进行评估和治疗 [28] [29] [33]。在使用安罗替尼过程中出现乏力,首先应当先对乏力进行鉴别,排除非药物或其他化疗药物导致乏力的情况;患者也可适当进行一些有氧运动,按摩保健等,必要时可进行社会心理咨询 [34] [35]。还应确保病人得到充分的休息和充足的营养。对于1~2级乏力的患者,一般不给予特殊处理,3~4级乏力患者,根据患者实际情况对药物剂量进行调整或对症处理。

手足综合征:也被称为掌–足底红细胞感觉障碍,可由某些化疗或靶向治疗引起,最常发生在手脚的压力和弯曲点 [28] [36]。TKI致手足皮肤反应机制尚不明确,可能与抗受体作用直接相关 [37]。为避免发生手足综合征,首先做好患者教育,在安罗替尼治疗前,手脚应经常使用润肤剂,保持皮肤水合,穿戴厚手套棉袜及舒适鞋子保护手脚 [28]。在安罗替尼治疗过程中,患者应避免手脚冷热交替、压力和皮肤摩擦,注意保暖及保湿 [28] [38]。当出现手足综合征时,对于1级和2级手足皮肤反应患者应采取对症治疗处理,包括加强皮肤护理,保持皮肤清洁,避免按压和摩擦;局部使用含有尿素和皮质类固醇成分的乳液或润滑剂;如出现≥3级手足皮肤反应,应考虑停用安罗替尼直到恢复至≤1级,并且减少剂量,如手足皮肤反应仍持续,应永久停药 [28]。

腹泻:腹泻也是安罗替尼治疗中最常见的副作用之一,其潜在的机制尚未阐明。VEGF和VEGFRs肠内皮细胞中高表达,VEGF抑制剂可引起肠黏膜的改变 [39]。因此,有人认为VEGFR和c-Kit抑制可能导致腹泻 [40] [41]。在安罗替尼治疗期间,患者应避免摄入咖啡因、酒精和促进胃肠动力的食物和药物 [28]。如腹泻较严重,可服用一些药物,如洛派丁胺,用于减缓肠道运输,从而降低腹泻的风险 [42]。

厌食:厌食可能与药物或心情相关。在安罗替尼治疗中,应监测食欲和体重,食用营养和高热量的食物,如鸡蛋、肉类、鱼类和牛奶等 [29]。如厌食症状持续不缓解,可口服食欲兴奋剂,如地那大麻酚或醋酸甲司酯进行治疗 [29]。

蛋白尿:蛋白尿的发生机制目前仍不清楚,可能包括:使用抗血管生成药物使肾脏血流动力学发生改变,抑制VEGF会导致足细胞的丢失,内皮蛋白肾素的转录减少,过滤屏障受损,使肾小球内皮细胞快速脱离和肥大,从而导致蛋白尿 [28] [43] [44]。在治疗前对接受抗血管生成药物治疗的患者进行常规尿检,来筛查蛋白尿 [45]。根据FDA (Food and Drug Administration,美国食品药品管理局)指南,蛋白尿 ≥ 2.0 g/L的患者应暂停使用抗血管生成药物,直到尿蛋白水平恢复到基线水平 [43]。在治疗方面通常使用ACE抑制剂或血管紧张素受体阻滞剂 [43]。

5. 讨论

安罗替尼是一种公认的新型口服小分子酪氨酸激酶抑制剂,具有抑制肿瘤生长和肿瘤血管生成的双重作用。既往临床试验表明,安罗替尼单药及其联合治疗在非小细胞肺癌的治疗中取得了令人满意的结果。目前,安罗替尼在我国上市时间不足5年,仍在新药监测期内。因此临床医师及药师应加强对药物不良反应的认识,做好患者的用药教育,针对患者的个人情况进行个体化给药,确保用药安全。相信安罗替尼将为更多肿瘤患者带来希望。

文章引用

卢 鑫,姜 军. 安罗替尼在非小细胞肺癌的治疗进展及不良反应管理
Advances in the Treatment of Non-Small Cell Lung Cancer with Anlotinib and Adverse Re-action Management[J]. 临床医学进展, 2022, 12(12): 11844-11851. https://doi.org/10.12677/ACM.2022.12121706

参考文献

  1. 1. Jemal, A., Thomas, A., Murray, T., et al. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 52, 23-47. https://doi.org/10.3322/canjclin.52.1.23

  2. 2. Zhi, X.Y., Zou, X.N., Hu, M., et al. (2015) Increased Lung Cancer Mortality Rates in the Chinese Population from 1973-1975 to 2004-2005: An Adverse Health Effect from Exposure to Smoking. Cancer, 121, 3107-3112. https://doi.org/10.1002/cncr.29603

  3. 3. Bl, A., Xs, B., Dy, A., et al. (2018) Anlotinib Inhibits Angiogenesis via Suppressing the Activation of VEGFR2, PDGFRβ and FGFR1. Gene, 654, 77-86. https://doi.org/10.1016/j.gene.2018.02.026

  4. 4. Shen, G., Zheng, F., Ren, D., et al. (2018) Anlotinib: A Novel Multi-Targeting Tyrosine Kinase Inhibitor in Clinical Development. Journal of Hematology & Oncology, 11, Article No. 120. https://doi.org/10.1186/s13045-018-0664-7

  5. 5. Han, B., Li, K., Wang, Q., et al. (2018) Effect of Anlotinib as a Third-Line Orfurther Treatment on Overall Survival of Patients with Advanced Nonsmall Cell Lung Cancer: The ALTER 0303 Phase 3 Randomized Clinical Trial. JAMA Oncology, 4, 1569-1575. https://doi.org/10.1001/jamaoncol.2018.3039

  6. 6. Cheng, Y., Wang, Q., Li, K., et al. (2021) Anlotinib vs Placebo as Third- or Further-Line Treatment for Patients with Small Cell Lung Cancer: A Randomised, Double-Blind, Place-bo-Controlled Phase 2 Study. British Journal of Cancer, 125, 366-371. https://doi.org/10.1038/s41416-021-01356-3

  7. 7. Li, D., Chi, Y., Chen, X., et al. (2021) Anlotinib in Locally Ad-vanced or Meta-Static Medullary Thyroid Carcinoma: A Randomized, Double-Blind Phase ⅡB Trial. Clinical Cancer Research, 27, 3567-3575. https://doi.org/10.1158/1078-0432.CCR-20-2950

  8. 8. Chi, Y., Fang, Z., Hong, X., et al. (2018) Safety and Effi-cacy of Anlotinib, a Multikinase Angiogenesis Inhibitor, in Patients with Refractory Metastatic Soft-Tissue Sarcoma. Clinical Cancer Research, 24, 5233-5238. https://doi.org/10.1158/1078-0432.CCR-17-3766

  9. 9. Sun, Y., Zhou, A., Zhang, W., et al. (2021) Anlotinib in the Treatment of Advanced Hepatocellular Carcinoma: An Open-Label Phase II Study (ALTER-0802 Study). Hepatology International, 15, 621-629. https://doi.org/10.1007/s12072-021-10171-0

  10. 10. Ma, J., Song, Y., Shou, J., et al. (2020) Anlotinib for Patients with Metastatic Renal Cell Carcinoma Previously Treated with One Vascular Endothelial Growth Factor Recep-tor-Tyrosine Kinase Inhibitor: A Phase 2 Trial. Frontiers in Oncology, 10, 664. https://doi.org/10.3389/fonc.2020.00664

  11. 11. Huang, J., Xiao, J., Fang, W., et al. (2021) Anlotinib for Previously Treated Advanced or Metastatic Esophageal Squamous Cell Carcinoma: A Double-Blind Randomized Phase 2 Trial. Cancer Medicine, 10, 1681-1689. https://doi.org/10.1002/cam4.3771

  12. 12. Chi, Y., Shu, Y., Ba, Y., et al. (2021) Anlotinib Monotherapy for Refrac-tory Metastatic Colorectal Cancer: A Double-Blinded, Placebo Controlled, Randomized Phase III Trial (ALTER0703). The Oncologist, 26, e1693-e1703. https://doi.org/10.1002/onco.13857

  13. 13. Majidpoor, J. and Mortezaee, K. (2021) Angiogenesis as a Hallmark of Solid Tumors. Clinical Perspectives Cellular Oncology, 44, 715-737. https://doi.org/10.1007/s13402-021-00602-3

  14. 14. Folkman, J. (1995) Angiogenesis in Cancer, Vascular, Rheuma-toid and Other Disease. Nature Medicine, 1, 27-31. https://doi.org/10.1038/nm0195-27

  15. 15. Nishida, N., Yano, H., Nishida, T., Kamura, T. and Kojiro, M. (2006) An-giogenesis in Cancer. Vascular Health and Risk Management, 2, 213-219. https://doi.org/10.2147/vhrm.2006.2.3.213

  16. 16. Cardoso, H.J., Figueira, M.I., Correia, S., et al. (2014) The SCF/c-KIT System in the Male: Survival Strategies in Fertility and Cancer. Molecular Reproduction and Development, 81, 1064-1079. https://doi.org/10.1002/mrd.22430

  17. 17. Han, B., Li, K., Zhao, Y., et al. (2018) Anlotinib as a Third-Line Therapy in Patients with Refractory Advanced Non-Small-Cell Lung Cancer: A Multicentre, Randomised Phase II Trial (ALTER0302). British Journal of Cancer, 118, 654-661. https://doi.org/10.1038/bjc.2017.478

  18. 18. Cheng, Y., Han, B., Li, K., et al. (2020) Effect of Anlotinib as a Third or Further-Line Therapy in Advanced Non-Small Cell Lung Cancer Patients with Different Histologic Types: Subgroup Analysis in the ALTER0303 Trial. Cancer Medicine, 9, 2621-2630. https://doi.org/10.1002/cam4.2913

  19. 19. Liang, W., Zhao, Y., Zhang, Y., et al. (2018) The Impact of Anlotinib on Brain Metastases of NSCLC: Post-Hoc Analysis of a Phase III Randomized Control Trial (ALTER0303). Journal of Thoracic Oncology, 13, S665. https://doi.org/10.1016/j.jtho.2018.08.1055

  20. 20. Chu, T., Zhang, W., Zhang, B., et al. (2022) Efficacy and Safety of First-Line Anlotinib-Based Combinations for Advanced Non-Small Cell Lung Cancer: A Three-Armed Prospective Study. Translational Lung Cancer Research, 11, 1394. https://doi.org/10.21037/tlcr-22-438

  21. 21. Yang, X., et al. (2019) Anlotinib Combined with S-1 in the Third-Line Treatment of Stage IV Non-Small Cell Lung Cancer: Study Pro-tocol for Phase II Clinical Trial. Asian Pacific Journal of Cancer Prevention: APJCP, 20, 3849-3853. https://doi.org/10.31557/APJCP.2019.20.12.3849

  22. 22. Huang, D., Zhong, D., Zhang, C., et al. (2020) Study of Anlotinib Combined with Icotinib as the First-Line Treatment in Non-Small Cell Lung Cancer (NSCLC) Patients Har-boring Activating EGFR Mutations (ALTER-L004). Journal of Clinical Oncology, 38, 9573. https://doi.org/10.1200/JCO.2020.38.15_suppl.9573

  23. 23. Shi, Y., Ji, M., Jiang, Y., et al. (2022) A Cohort Study of the Efficacy and Safety of Immune Checkpoint Inhibitors plus Anlotinib versus Immune Checkpoint Inhibitors Alone as the Treatment of Advanced Non-Small Cell Lung Cancer in the Real World. Translational Lung Cancer Research, 11, 1051-1068. https://doi.org/10.21037/tlcr-22-350

  24. 24. Xiang, Y., Lu, X.J., Sun, Y.H., et al. (2022) Precise Thera-peutic Benefits and Underlying Mechanisms of Anlotinib Combined with Checkpoint Immunotherapy in Advanced Non-Small-Cell Lung Cancer. World Journal of Oncology, 13, 320-324. https://doi.org/10.14740/wjon1494

  25. 25. Sun, Y., Niu, W., Du, F., et al. (2016) Safety, Pharmacokinetics, and An-titumor Properties of Anlotinib, an Oral Multi-Target Tyrosine Kinase Inhibitor, in Patients with Advanced Refractory Solid Tumors. Journal of Hematology & Oncology, 9, 105. https://doi.org/10.1186/s13045-016-0332-8

  26. 26. Dobbin, S., Cameron, A.C., Petrie, M.C., et al. (2018) Toxicity of Cancer Therapy: What the Cardiologist Needs to Know about Angiogenesis Inhibitors. Heart (British Cardiac Society), 104, 1995-2002. https://doi.org/10.1136/heartjnl-2018-313726

  27. 27. Touyz, R.M., Lang, N.N., Herrmann, J., et al. (2017) Recent Advances in Hypertension and Cardiovascular Toxicities with Vascular Endothelial Growth Factor Inhibition. Hyperten-sion, 70, 220-226. https://doi.org/10.1161/HYPERTENSIONAHA.117.08856

  28. 28. Si, X., Zhang, L., Wang, H., et al. (2019) Man-agement of Anlotinib-Related Adverse Events in Patients with Advanced Non-Small Cell Lung Cancer: Experiences in ALTER-0303: Adverse Event Management of Anlotinib. Thoracic Cancer, 10, 551-556. https://doi.org/10.1111/1759-7714.12977

  29. 29. Lr, A., Rd, B., Tp, A., et al. (2019) Management of Adverse Events Associated with Tyrosine Kinase Inhibitors: Improvingoutcomes for Patients with Hepatocellular Carcinoma. Cancer Treatment Reviews, 77, 20-28. https://doi.org/10.1016/j.ctrv.2019.05.004

  30. 30. Miura, S.I., Fujino, M., Matsuo, Y., et al. (2005) Nifedi-pine-Induced Vascular Endothelial Growth Factor Secretion from Coronary Smooth Muscle Cells Promotes Endothelial Tube Formation via the Kinase Insert Domain-Containing Receptor/Fetal Liver Kinase-1/NO Pathway. Hypertension Re-search, 28, 147-153. https://doi.org/10.1291/hypres.28.147

  31. 31. Sastre, J., Argilés, G., Benavides, M., et al. (2014) Clinical Manage-ment of Regorafenib in the Treatment of Patients with Advanced Colorectal Cancer. Clinical & Translational Oncology, 16, 942-953. https://doi.org/10.1007/s12094-014-1212-8

  32. 32. Mitchell, J., Khoukaz, T., Mcneal, D., et al. (2014) Adverse Event Management Strategies: Optimizing Treatment with Regorafenib in Patients with Metastatic Colorectal Cancer. Clinical Journal of Oncology Nursing, 18, E19-E25. https://doi.org/10.1188/14.CJON.E19-E25

  33. 33. Srinivas, S., Stein, D., Teltsch, D.Y., et al. (2017) Real-World Chart Review Study of Adverse Events Management in Patients Taking Tyrosine Kinase Inhibitors to Treat Metastatic Renal Cell Carcinoma. Journal of Oncology Pharmacy Practice, 24, 574-583. https://doi.org/10.1177/1078155217719583

  34. 34. Berger, A.M., Mooney, K., Alvarez-Perez, A., et al. (2015) Can-cer-Related Fatigue, Version 2. Journal of the National Comprehensive Cancer Network, 13, 1012-1039. https://doi.org/10.6004/jnccn.2015.0122

  35. 35. Bower, J.E., Ba, K.K., Berger, A., et al. (2014) Screening, Assess-ment, and Management of Fatigue in Adult Survivors of Cancer: An American Society of Clinical Oncology Clinical Practice Guideline Adaptation. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncol-ogy, 32, 1840-1850. https://doi.org/10.1200/JCO.2013.53.4495

  36. 36. Kim, S.Y., Kim, S.M., Chang, H., et al. (2019) Safety of Tyrosine Kinase Inhibitors in Patients with Differentiated Thyroid Cancer: Real-World Use of Lenvatinib and Sorafenib in Korea. Frontiers in Endocrinology, 10, 384. https://doi.org/10.3389/fendo.2019.00384

  37. 37. Ding, F.X., et al. (2019) Risk of Hand-Foot Skin Reaction Associ-ated with VEGFR-TKIs: A Meta-Analysis of 57 Randomized Controlled Trials Involving 24,956 Patients. Journal of the American Academy of Dermatology, 83, 788-796. https://doi.org/10.1016/j.jaad.2019.04.021

  38. 38. Li, J. and Gu, J. (2017) Hand-Foot Skin Reaction with Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors in Can-cer Patients: A Systematic Review and Meta-Analysis. Critical Reviews in Oncology/Hematology, 119, 50-58. https://doi.org/10.1016/j.critrevonc.2017.09.016

  39. 39. Schmidinger, M. (2013) Understanding and Managing Toxic-ities of Vascular Endothelial Growth Factor (VEGF) Inhibitors. EJC Supplements, 11, 172-191. https://doi.org/10.1016/j.ejcsup.2013.07.016

  40. 40. Wang, D., Lehman, R.E., Donner, D.B., et al. (2002) Expression and Endocytosis of VEGF and Its Receptors in Human Colonic Vascular Endothelial Cells. American Journal of Physi-ology Gastrointestinal & Liver Physiology, 282, G1088. https://doi.org/10.1152/ajpgi.00250.2001

  41. 41. Fan, L. and Iseki, S. (1998) Immunohistochemical Localization of Vascular Endothelial Growth Factor in the Endocrine Glands of the Rat. Archives of Histology & Cytology, 61, 17. https://doi.org/10.1679/aohc.61.17

  42. 42. Placidi, E., Marciani, L., Hoad, C.L., et al. (2012) The Effects of Loperamide, or Loperamide plus Simethicone, on the Distribution of Gut Water as Assessed by MRI in a Mannitol Model of Secretory Diarrhoea. Alimentary Pharmacology & Therapeutics, 36, 64-73. https://doi.org/10.1111/j.1365-2036.2012.05127.x

  43. 43. Abbas, A., Mirza, M.M., Ganti, A.K., et al. (2015) Renal Toxicities of Targeted Therapies. Targeted Oncology, 10, 487-499. https://doi.org/10.1007/s11523-015-0368-7

  44. 44. Estrada, C.C., Maldonado, A. and Mallipattu, S.K. (2019) Thera-peutic Inhibition of VEGF Signaling and Associated Nephrotoxicities. Journal of the American Society of Nephrology, 30, 187-200. https://doi.org/10.1681/ASN.2018080853

  45. 45. Shao, F., Zhang, H., Yang, X., et al. (2020) Adverse Events and Management of Apatinib in Patients with Advanced or Metastatic Cancers: A Review. Neoplasma, 67, 715-723. https://doi.org/10.4149/neo_2020_190801N701

  46. NOTES

    *通讯作者。

期刊菜单