Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62632 , 8 pages
10.12677/ACM.2023.133541

慢性心力衰竭患者血清SGK1水平的变化

樊纯祯1,杨立佳2,苑珊珊2,张金鑫3,戴红艳4*

1青岛大学附属青岛市市立医院,山东 青岛

2青岛市市立医院保健四科,山东 青岛

3大连医科大学研究生院,辽宁 大连

4青岛市市立医院心脏中心,山东 青岛

收稿日期:2023年2月15日;录用日期:2023年3月11日;发布日期:2023年3月17日

摘要

目的:探索慢性心力衰竭患者血清中SGK1水平的变化,分析其与心衰的关系。方法:收集103例慢性心衰患者作为慢性心力衰竭组(Chronic heart failure group, HF组),103例同期健康体检者作为非慢性心力衰竭组(Non-Chronic heart failure group, non-HF组),采用ELISA方法测定两组样本血清SGK1水平,同时收集相关临床资料进行统计学分析。结果:与non-HF组相比,HF组血清SGK1浓度显著升高,差异有统计学意义(P < 0.001)。采用Spearman相关分析发现血清SGK1水平与NT-ProBNP呈正相关(P < 0.05),与LVEF呈负相关(P < 0.05)。二分类Logistic回归分析发现SGK1 (OR = 12.012, 95% CI 1.726~83.592)是慢性心力衰竭的独立危险因素。联合SGK1和NT-proBNP两指标绘制ROC曲线,可提高CHF诊断的特异性及敏感度。结论:CHF患者血清SGK1水平明显升高。血清SGK1水平是CHF的独立危险因素,联合检测SGK1及NT-proBNP水平能提高CHF诊断的准确性。

关键词

糖皮质激素诱导蛋白激酶1 (SGK1),慢性心力衰竭,心脏肥大,心肌纤维化

Changes in Serum SGK1 Levels in Patients with Chronic Heart Failure

Chunzhen Fan1, Lijia Yang2, Shanshan Yuan2, Jinxin Zhang3, Hongyan Dai4*

1Department of The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao Shandong

2Department of Health Care IV, Qingdao Municipal Hospital, Qingdao Shandong

3Graduate School, Dalian Medical University, Dalian Liaoning

4Heart Center of Qingdao Municipal Hospital, Qingdao Shandong

Received: Feb. 15th, 2023; accepted: Mar. 11th, 2023; published: Mar. 17th, 2023

ABSTRACT

Objective: To explore the changes of SGK1 level in serum of chronic heart failure patients and analyze the relationship between it and heart failure. Methods: 103 patients with chronic heart failure were collected as chronic heart failure group (HF group) and 103 patients with non-chronic heart failure group (non-HF group) were collected from the same period. The serum SGK1 levels were measured by ELISA and the relevant clinical data were collected for statistical analysis. Results: Serum SGK1 concentrations were significantly higher in the HF group compared with the non-HF group, and the difference was statistically significant (P < 0.001). Spearman correlation analysis was used to find that serum SGK1 levels were positively correlated with NT-ProBNP (P < 0.05) and negatively correlated with LVEF (P < 0.05). Dichotomous logistic regression analysis found SGK1 (OR = 12.012, 95% CI 1.726~83.592) to be an independent risk factor for chronic heart failure. Combining both SGK1 and NT-proBNP indicators to draw ROC curves can improve the specificity and sensitivity of CHF diagnosis. Conclusion: Serum SGK1 levels were significantly elevated in CHF patients. Serum SGK1 level is an independent risk factor for CHF, and combined detection of SGK1 and NT-proBNP levels can improve the accuracy of CHF diagnosis.

Keywords:Glucocorticoid-Inducible Protein Kinase 1 (SGK1), Chronic Heart Failure, Cardiac Hypertrophy, Myocardial Fibrosis

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

心力衰竭(Heart Failure)是多种心血管疾病的终末阶段,尽管近些年心衰的药物治疗取得了一定进展,但其患病率及死亡率仍居高不下。欧洲心脏病学会(European Society of Cardiology)代表的51个国家中约有1500万心衰患者 [1] ,而在我国≥35岁的人群中,大约有1370万人患心力衰竭 [2] ,故探究心力衰竭的影响因素至关重要。糖皮质激素调节激酶1 [3] (SGK-1)在心肌中高度表达,是丝氨酸/苏氨酸激酶基因家族的成员,Ding [4] 等报道了在丝氨酸/苏氨酸蛋白激酶-3 (serine-threonine kinase, AKT3)激酶缺乏的巨噬细胞中,SGK1表达及活性代偿性增加,促进巨噬细胞肌动蛋白组装、细胞极化和胞饮作用从而促进泡沫细胞的生成。有研究表明 [5] SGK1在心肌细胞纤维化的病理过程中起重要作用,SGK-1刺激促纤维化因子转化生长因子、促炎性因子和肿瘤坏死因子的表达,从而参与纤维化的形成,进而可能影响心力衰竭的发生发展。本研究旨在探讨慢性心力衰竭患者血清中SGK1水平的变化,以期为临床上慢性心力衰竭的早期防治提供新思路。

2. 材料和方法

2.1. 研究对象

选取2021年8月至2022年8月就诊于青岛市市立医院符合《中国心力衰竭诊断和治疗指南2018》 [6] 的慢性心力衰竭患者103例作为HF组,其中男性64例,女性39例,平均年龄70.39 ± 10.66岁。其中合并冠心病(coronary heart disease, CHD) 86例(83.5%)、高血压病(hypertension, HTN) 83例(80.6%)、风湿性心瓣膜病( rheumatic valvular heart disease, RVHD) 3例(2.9%)。以同期103例无心力衰竭的健康体检者作为non-HF组,其中男性49例,女性54例,平均年龄68.17 ± 5.58岁。已排除急性冠脉综合征、心源性休克、阻塞性肺疾病、严重肝肾功能不全、恶性肿瘤、精神障碍及无法配合等患者。所有研究对象均签署知情同意书,本研究通过了青岛市市立医院伦理委员会批准。

2.2. 方法

2.2.1. 一般临床资料和各项生化指标

记录参与者的性别、年龄、体质指数(Body Mass Index, BMI)、收缩压、舒张压、既往病史(高血压、糖尿病、冠心病等)、应用药物(ARB/ACEI/ARNI、β受体阻滞剂、钙离子拮抗剂、利尿剂、硝酸酯类、达格列净、抗血小板类)。所有参与者均于次日清晨空腹8小时以上采集静脉血检测N末端B型利钠肽原(NT-proBNP)、空腹血糖、糖化血红蛋白、肝肾功能及血脂水平。记录超声心动图相关指标:左心室射血分数(left ventricular ejection fraction, LVEF)、室间隔厚度、左室后壁厚度、左心房内径、左室舒张末期内径(left ventricular end-diastolic diameter, LVEDD)、E/A值、E/e¢值。

2.2.2. 血清SGK1检测方法

所有参与者在隔夜禁食8小时后采集肘静脉血3 ml,在室温不加抗凝剂的干管中静置2小时后1000 X g离心20 min,取上清液,置于−80℃冰箱保存。严格按照试剂盒说明书操作,采用酶联免疫吸附法实验(ELISA法)测定血清SGK1水平。

2.3. 统计学方法

采用SPSS 26.0统计学软件进行数据分析,符合正态分布的计量资料用均数 ± 标准差( X ¯ ± S )表示,两组间比较用独立样本t检验,不符合正态分布资料用M (P25, P75)表示,组间比较采用Mann Whitney U检验。计数资料用例数(n)及百分率(%)表示,组间比较采用χ2检验。相关性采用Spearman相关分析。采用二分类logistics回归分析CHF的影响因素。采用受试者工作曲线(ROC曲线)评估SGK1对CHF患者的诊断价值。以上统计结果在P < 0.05时具有统计学意义。

3. 结果

3.1. HF组和non-HF组临床资料及各项生化指标比较

两组间年龄、性别、体质指数(BMI)、平均动脉压(MAP)、丙氨酸氨基转移酶(ALT)、尿素氮、E/A均无统计学差异。HF组的天门冬氨酸氨基转移酶(AST)、肌酐、空腹血糖、糖化血红蛋白(HbA1C)、N末端B型氨基端利钠肽原(NT-ProBNP)、室间隔厚度、左室后壁厚度、左房内径、左室舒张末期内径(LVEDD)、E/e¢均显著高于non-HF组,且高血压患病率、糖尿病患病率、冠心病患病率及口服达格列净、抗血小板类、他汀类、ACEI/ARB/ARNI、β受体阻滞剂、钙离子阻滞剂、利尿剂、硝酸酯类药物的比例也显著高于non-HF组,差异均有统计学意义(P < 0.001)。HF组血清SGK1水平明显高于non-HF组(P < 0.001) (表1)。

3.2. 血清SGK1水平与各因素的相关性

采用Spearman相关分析血清SGK1水平与各因素的相关性。SGK1水平与NT-ProBNP、HbA1c、CRP、E/e¢、右房左右径、左房内径、左室舒张末期内径正相关(P < 0.05),与EF、载脂蛋白A1水平负相关(P < 0.05) (表2)。

Table 1. Comparison of clinical data and biochemical indices between non-HF and HF groups

表1. Non-HF组和HF组临床资料及各项生化指标比较

注:BMI:体质指数;MAP:中心动脉压;HDL-C:高密度脂蛋白胆固醇;LDL-C:低密度脂蛋白胆固醇;NT-ProBNP:N末端B型氨基端利钠肽原;LVEDD:左室舒张末期内径;LVEF:左心室射血分数;ALT:丙氨酸氨基转移酶;AST:天门冬氨酸氨基转移酶;SGK1:糖皮质激素诱导蛋白激酶1。*为与non-HF组比较P < 0.001。

Table 2. Correlation between serum SGK1 level and each index

表2. 血清 SGK1水平与各指标的相关性

注:NT-ProBNP:N末端B型氨基端利钠肽原;LVEDD:左室舒张末期内径;LVEF:左心室射血分数。

3.3. 慢性心力衰竭影响因素的Logistic回归分析

采用二分类Logistic回归进行单因素分析,发现SGK1、NT-ProBNP、尿素氮、肌酐、空腹血糖、糖化血红蛋白、室间隔厚度、左室后壁厚度、左房内径、左室舒张末期内径是慢性心力衰竭的危险因素。总胆固醇、甘油三酯、HDL-C、LDL-C、载脂蛋白A1、载脂蛋白B、LVEF是慢性心力衰竭的保护因素。差异均有统计学意义(P < 0.05) (表3)。

Table 3. Single-factor dichotomous logistic regression analysis of factors influencing the occurrence of CHF

表3. 单因素二分类 Logistic 回归分析CHF发生的影响因素

注:HDL-C:高密度脂蛋白胆固醇;LDL-C:低密度脂蛋白胆固醇;NT-ProBNP:N末端B型氨基端利钠肽原;LVEDD:左室舒张末期内径;LVEF:左心室射血分数;SGK1:糖皮质激素诱导蛋白激酶1。

进一步行多因素分析,以CHF为因变量,以单因素分析中差异有统计学意义的因素(P < 0.05)作为自变量,纳入二分类Logistic回归分析模型,发现NT-ProBN (OR = 1.015, 95% CI 1.008~1.023)及SGK1 (OR = 12.012, 95% CI 1.726~83.592)是慢性心力衰竭的独立危险因素(表4)。

Table 4. Multifactorial dichotomous logistic regression analysis of risk factors for the occurrence of CHF

表4. 多因素二分类 Logistic 回归分析CHF发生的危险因素

注:N末端B型氨基端利钠肽原;SGK1:糖皮质激素诱导蛋白激酶1。

3.4. ROC曲线分析

ROC曲线显示,SGK1的曲线下面积为0.671,敏感度为57.3%,特异度为81.6%,约登指数为0.389,最佳截断值为0.3085 ng/mL。NT-proBNP的曲线下面积为0.957,敏感度为88.3%,特异度为99%,约登指数为0.874,最佳截断值为191 pg/mL。将SGK1和NT-proBNP两指标联合,绘制两指标的ROC曲线,计算出敏感性及特异性显示:两者联合后曲线下面积为0.962 (95%置信区间为:0.934~0.990,P < 0.01),敏感度为91.3%,特异度为98.1%,约登指数为0.893 (图1 )。

4. 讨论

人类血清糖皮质激素调节激酶(SGK)基因家族有SGK1、SGK2、SGK3三个亚型 [7] ,血清糖皮质激素调节激酶1 (SGK1)是丝氨酸/苏氨酸激酶基因家族成员,在心肌细胞中表达,SGK1受血清和糖皮质激素的转录调控,调节不同的酶、离子通道、转录因子的表达,参与多种代谢过程 [8] 。SGK1是醛固酮的下游调节因子,而盐皮质激素信号传导是心力衰竭和心律不齐发生的重要因素 [9] 。SGK1表达与高血压 [10] 、动脉粥样硬化 [11] 、冠心病 [12] 有关,它可通过纤维化、炎症和氧化途径参与复杂的细胞内信号传导,进而促进由醛固酮诱导的心肌肥厚和纤维化。研究表明,SGK1参与血压及心血管系统的生理病理过程,其通过影响醛固酮、胰岛素及胰岛素样生长因子等的活性调节多个离子通道的活性 [13] 。李海龙等学者 [14] 发现SGK1诱导高血压患者Th17细胞分化,从而促进高血压病的炎症过程,引起血压升高。既往有研究 [15] 认为SGK1可能参与巨噬细胞募集及M2巨噬细胞的活化,这些过程引起高血压患者释放过量的血管紧张素II进而导致心肌纤维化,使用特异性抑制剂EMD638683后可改善心肌纤维化病变。有研究显示 [16] ,超拉伸可刺激小鼠心肌成纤维细胞中SGK1表达,从而促进巨噬细胞的迁移,导致其分泌的促纤维化介质上调。SGK1表达增强可导致心脏重塑和纤维化,以及心力衰竭的发展。

Figure 1. ROC analysis of combined SGK1 and NT-ProBNP for the diagnosis of CHF

图1. 联合SGK1与NT-ProBNP诊断CHF的ROC分析

心脏肥大的发展与促炎细胞因子增加、血流动力学超负荷和心肌损伤有关,这会导致心脏缺氧和纤维化重塑 [17] 。胰岛素/PI3K/Akt轴在发生生理性心脏肥大和正常心脏生长中起至关重要的作用,短期Akt激活诱导生理性心脏肥大,但此途径激活可能会导致心功能不全,在这种状态下,心脏组织生长和血管生成被破坏,导致心肌缺氧 [18] 。Zhang S [19] 等学者的研究结果证明了HBT (一种SGK1抑制剂)可抑制小鼠心脏肥大,表明SGK1是心脏肥大进展的关键因素。本研究发现CHF患者血清SGK1浓度比非CHF者明显升高,且SGK1水平与右房左右径、左房内径、左室舒张末期内径正相关,表明SGK1可能通过诱导心脏扩大的发生促进心力衰竭的发生发展。进一步行Logistic回归分析结果显示SGK1和NT-proBNP是影响慢性心力衰竭发生的独立危险因素,提示可通过监测NT-proBNP、SGK1水平探究心衰的发生。联合传统金标准NT-proBNP [20] 和SGK1可更高敏地诊断心力衰竭,为心力衰竭的诊疗提供新思路。

另外,本研究也存在一些局限性:首先,本试验为单中心横截面研究,未来需扩大样本量进行前瞻性研究验证其与心力衰竭的因果关系。其次,本研究未对受试者进行随访,故无法探究SGK1能否影响疾病的预后,需随访评估其对心力衰竭患者的预后价值,使研究更有临床意义。

文章引用

樊纯祯,杨立佳,苑珊珊,张金鑫,戴红艳. 慢性心力衰竭患者血清SGK1水平的变化
Changes in Serum SGK1 Levels in Patients with Chronic Heart Failure[J]. 临床医学进展, 2023, 13(03): 3774-3781. https://doi.org/10.12677/ACM.2023.133541

参考文献

  1. 1. Dickstein, K., Cohen-Solal, A., Filippatos, G., et al. (2008) ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in Collaboration with the Heart Failure Association of the ESC (HFA) and Endorsed by the European Society of Intensive Care Medicine (ESICM). European Journal of Heart Failure, 10, 933-989. https://doi.org/10.1016/j.ejheart.2008.08.005

  2. 2. Hao, G., Wang, X., Chen, Z., et al. (2019) Preva-lence of Heart Failure and Left Ventricular Dysfunction in China: The China Hypertension Survey, 2012-2015. European Journal of Heart Failure, 21, 1329-1337. https://doi.org/10.1002/ejhf.1629

  3. 3. Aoyama, T., Matsui, T., Novikov, M., et al. (2005) Serum and Glucocorti-coid-Responsive Kinase-1 Regulates Cardiomyocyte Survival and Hypertrophic Response. Circulation, 111, 1652-1659. https://doi.org/10.1161/01.CIR.0000160352.58142.06

  4. 4. Ding, L., Zhang, L., Kim, M., et al. (2017) Akt3 Kinase Suppresses Pinocytosis of Low-Density Lipoprotein by Macrophages via a Novel WNK/SGK1/Cdc42 Protein Pathway. Journal of Biological Chemistry, 292, 9283-9293. https://doi.org/10.1074/jbc.M116.773739

  5. 5. Martín-Fernández, B., Valero Muñoz, M., de las Heras, N., Balles-teros, S. and Lahera, V. (2014) Relevance of SGK1 in Structural, Functional and Molecular Alterations Produced by Al-dosterone in Heart. Hormone Molecular Biology and Clinical Investigation, 18, 53-61. https://doi.org/10.1515/hmbci-2013-0052

  6. 6. 中华医学会心血管病学分会心力衰竭学组, 中国医师协会心力衰竭专业委员会, 中华心血管病杂志编辑委员会. 中国心力衰竭诊断和治疗指南2018[J]. 中华心血管病杂志, 2018, 46(10): 760-789.

  7. 7. González-Fernández, R., Ávila, J., Arteaga, M.F., Canessa, C.M. and Martín-Vasallo, P. (2015) The Neuronal-Specific SGK1.1 (SGK1_v2) Kinase as a Transcriptional Modulator of BAG4, Brox, and PPP1CB Genes Expression. International Journal of Molecular Sciences, 16, 7462-7477. https://doi.org/10.3390/ijms16047462

  8. 8. Voelkl, J., Luong, T.T., Tuffaha, R., et al. (2018) SGK1 Induces Vas-cular Smooth Muscle Cell Calcification through NF-κB Signaling. Journal of Clinical Investigation, 128, 3024-3040. https://doi.org/10.1172/JCI96477

  9. 9. Sztechman, D., Czarzasta, K., Cudnoch-Jedrzejewska, A., Szcze-panska-Sadowska, E. and Zera, T. (2018) Aldosterone and Mineralocorticoid Receptors in Regulation of the Cardiovas-cular System and Pathological Remodelling of the Heart and Arteries. Journal of Physiology and Pharmacology, 69, 829-845.

  10. 10. 陈伟芝, 张宁. 高血压病患者血清CXCL9和SGK1水平检测与心肌纤维化的相关性研究[J]. 现代检验医学杂志, 2020, 35(3): 47-50.

  11. 11. Borst, O., Schaub, M., Walker, B., et al. (2015) Pivotal Role of Serum- and Glucocorticoid-Inducible Kinase 1 in Vascular Inflammation and Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 547-557. https://doi.org/10.1161/ATVBAHA.114.304454

  12. 12. Zhou, X., Wang, Z., Qin, M. and Zhong, S. (2020) Mito-chondrial G12630A Variation Is Associated with Statin-Induced Myalgia in Chinese Patients with Coronary Artery Dis-ease. Journal of Southern Medical University, 40, 1747-1752. https://doi.org/10.3389/fgene.2021.630359

  13. 13. 杜雅楠, 许建忠, 张宝丽, 韩卫青, 高平进, 唐晓峰. 血清和糖皮质激素诱导的蛋白激酶1介导外膜成纤维细胞表型转化[J]. 中华老年心脑血管病杂志, 2018, 20(3): 294-297.

  14. 14. 李海龙, 吕雅丽, 鱼丽娟, 吴守振. SGK1调节Th17细胞分化在高血压中的作用[J]. 中国医药生物技术, 2016, 11(5): 426-431.

  15. 15. Gan, W., Ren, J., Li, T., et al. (2018) The SGK1 Inhibitor EMD638683, Prevents An-giotensin II-Induced Cardiac Inflammation and Fibrosis by Blocking NLRP3 Inflammasome Activation. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1864, 1-10. https://doi.org/10.1016/j.bbadis.2017.10.001

  16. 16. Gan, W., Li, T., Ren, J., et al. (2018) Serum-Glucocorticoid-Regulated Kinase 1 Contributes to Mechanical Stretch-Induced In-flammatory Responses in Cardiac Fibroblasts. Molecular and Cellular Biochemistry, 445, 67-78. https://doi.org/10.1007/s11010-017-3252-1

  17. 17. Shimizu, I., Minamino, T., Toko, H., et al. (2010) Excessive Car-diac Insulin Signaling Exacerbates Systolic Dysfunction Induced by Pressure Overload in Rodents. Journal of Clinical Investigation, 120, 1506-1514. https://doi.org/10.1172/JCI40096

  18. 18. Shiojima, I., Sato, K., Izumiya, Y., et al. (2005) Disruption of Coordinated Cardiac Hypertrophy and Angiogenesis Contributes to the Transition to Heart Failure. Journal of Clinical Investigation, 115, 2108-2118. https://doi.org/10.1172/JCI24682

  19. 19. Zhang, S., Wang, Y., Yu, M., et al. (2022) Discovery of Herbacetin as a Novel SGK1 Inhibitor to Alleviate Myocardial Hypertrophy. Advanced Science (Weinheim, Baden-Württemberg, Ger-many), 9, e2101485. https://doi.org/10.1002/advs.202101485

  20. 20. McKie, P.M. and Burnett, J.C. (2016) NT-proBNP: The Gold Stand-ard Biomarker in Heart Failure. Journal of the American College of Cardiology, 68, 2437-2439. https://doi.org/10.1016/j.jacc.2016.10.001

  21. NOTES

    *通讯作者。

期刊菜单