Advances in Clinical Medicine
Vol. 13  No. 06 ( 2023 ), Article ID: 67422 , 8 pages
10.12677/ACM.2023.1361371

抑制IRE1α/NF-κB通路减轻蛛网膜下腔出血后炎症反应

朱超,代林志,赵冬*

石河子大学第一附属医院神经外科,新疆 石河子

收稿日期:2023年5月21日;录用日期:2023年6月14日;发布日期:2023年6月21日

摘要

目的:探讨肌醇激酶-1 (IRE1α)/核因子κB (NF-κB)通路与蛛网膜下腔出血(SAH)炎症反应的关系。方法:通过血管内穿刺法建立SAH模型。所有实验动物随机分为Sham组、SAH组、SAH + DMSO组、SAH + STF-083010 (IRE1α抑制剂)组、SAH + BAY11‐7082 (NF-κB抑制剂)组。使用改良加西亚评分评估神经功能。蛋白免疫印迹法(Western blot)检测IRE1α、葡萄糖调节蛋白78 (GRP78)、NF-κB的表达。采用酶联免疫吸附测定(ELISA)试剂盒检测炎症因子(TNF-α、IL-1β和IL-6)的浓度。结果:SAH后改良加西亚评分降低,IRE1α、GRP78、NF-κB蛋白表达和炎症因子(TNF-α, IL-1β, IL-6)表达均增加,抑制IRE1α/NF-κB通路后所有结果正好相反。皮尔森相关分析显示炎症因子表达与改良加西亚评分呈负相关。结论:抑制IRE1α/NF-κB通路可以减轻SAH后炎症,发挥神经保护作用。

关键词

蛛网膜下腔出血,炎症,肌醇激酶-1 (IRE1α),核因子κB (NF-κB)

Inhibition of IRE1α/NF-κB Pathway Alleviates Inflammatory Response after Subarachnoid Hemorrhage

Chao Zhu, Linzhi Dai, Dong Zhao*

Department of Neurosurgery, The First Affiliated Hospital to Shihezi University, Shihezi Xinjiang

Received: May 21st, 2023; accepted: Jun. 14th, 2023; published: Jun. 21st, 2023

ABSTRACT

Objective: To investigate the role of IRE1α/NF-κB pathway in promoting the inflammatory response of subarachnoid hemorrhage (SAH); To investigate the relationship between Inositol Requiring Enzyme1α (IRE1α)/nuclear factor-κB (NF-κB) pathway and inflammatory response in subarachnoid hemorrhage (SAH). Methods: The model of SAH was established by intravascular puncture. All the animals were randomly divided into Sham group, SAH group, SAH + DMSO group, SAH + STF-083010 (IRE1α inhibitor) group, and SAH + BAY11‐7082 (NF-κB inhibitor) group. Neurological function was assessed using the modified Garcia score. The expressions of IRE1α, GRP78 and NF-κB were detected by Western blot. The concentrations of inflammatory cytokines (TNF-α, IL-1β and IL-6) were determined by ELISA kit. Results: The modified Garcia score decreased, the expression of GRP78, IRE1α, NF-κB and inflammatory cytokines increased after SAH, whereas their results were reversed since the inhibition of IRE1α/NF-κB pathway. Correlation analysis showed that the expressions of inflammatory cytokines were negatively correlated with the modified Garcia score. Conclusion: Inhibition of IRE1α/NF-κB pathway can reduce inflammation and provide neuroprotection after SAH.

Keywords:Subarachnoid Hemorrhage, Inflammation, Inositol Requiring Enzyme1 (IRE1α), Nuclear Factor-κB (NF-κB)

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

蛛网膜下腔出血(SAH)是一种致死性高、预后差的出血性脑血管病,是较为常见的中风亚型,通常与动脉瘤破裂有关,平均发病年龄在55岁左右 [1] [2] 。目前,动脉瘤破裂后的潜在病理机制仍不十分清楚,这可能包括神经炎症、氧化应激、凋亡等 [3] 。动脉瘤破裂后,释放入脑脊液中的红细胞降解产物会激活炎症途径,促进免疫细胞如巨噬细胞等释放炎症因子进而损伤神经元及神经胶质细胞。这种炎症反应与SAH不良预后密切相关 [4] 。此外,损伤的神经元亦会向细胞外环境分泌高迁移率族蛋白B1 (HMGB1),其可以作为炎性调控因子,通过HMGB1/TLR4等通路进一步加重细胞损伤 [5] [6] 。因此,寻找新的炎症靶点至关重要。本研究通过建立SAH模型,探讨IRE1α/NF-κB通路在SAH后炎症反应中的作用,以期提供新的理论基础,为临床诊治提供新的治疗靶点。

2. 材料与方法

2.1. 动物与分组

本实验采用健康成年雄性SD大鼠(250~320 g) 74只,由新疆医科大学动物中心提供,饲养于石河子大学动物中心。所有实验流程均由石河子大学动物伦理委员会审批。所有动物随机分为以下组:Sham组、SAH组、SAH + Vehicle (10% DMSO)组、SAH + STF-083010 (IRE1α抑制剂)组、SAH + BAY11-7082 (NF-κB抑制剂)组。

2.2. 脑室药物注射及建模

用2%戊巴比妥(40 mg/kg体重)腹腔注射麻醉大鼠,俯卧位固定于立体定位仪上,备皮,消毒。行右侧侧脑室注射 [7] ,注射坐标为:Y:−0.80 mm;X:1.5 mm;Z:4.0 mm。注射完毕后骨蜡封闭。以血管内穿刺法建立SAH模型 [8] 。取仰卧位,备皮,消毒,正中那个切口,分离迷走神经及颈总、颈外、颈内动脉,以4-0锐化尼龙线自颈外动脉穿刺入颈内动脉,约22 mm后建模成功,撤离穿刺线,电凝烧灼颈外动脉破口,关闭切口并消毒。Sham组接受钻孔及穿刺但不刺破操作,SAH组接受钻孔及建模操作。其余各组均接受上述各项操作。

2.3. 改良加西亚评分

建模24小时后进行动物神经行为学观察。采用改良加西亚评分来评估SAH后大鼠的神经功能缺损 [9] ,该评分内容包括自主活动(0~3分),身体运动对称性(0~3分),前肢伸展能力(0~3分),攀爬能力(1~3分),身体反射(1~3分),胡须触碰反应(1~3分)六个方面。总分为3~18分,得分越高,神经功能越好。为避免主观因素带来的误差,该评分由两名对本实验不知情的研究人员完成。

2.4. Western blot技术检测相关蛋白表达

取右侧大脑半球,将部分脑组织置入含PMSF的RIPA蛋白裂解液中,冰上裂解,提取上清液,BCA法测定蛋白浓度,根据目标蛋白分子量配置合适浓度SDS-PAGE凝胶,上样,电泳,转膜,以5% BSA封闭2小时,使用以下一抗孵育4℃过夜:anti-RELA (货号:BM3994),anti-IRE1 (货号:A00683-1),anti-HSPA5 (货号:BA2042),以上所有一抗稀释浓度均为1:1000,内参为anti-β-Actin (货号:BM0627),稀释浓度为1:2000。TBST洗三次,以二抗孵育两小时:HRP-羊抗兔(货号:BA1054)、HRP-羊抗小鼠(货号:BA1050),稀释浓度为1:5000。以上所有抗体均购自武汉博士德公司。以目的蛋白与内参蛋白灰度值之比计算蛋白相对表达量。

2.5. ELISA技术检测炎症因子表达

如1.4所述提取蛋白,参照ELISA试剂盒说明书分别测量TNF-α (货号:EK382),IL-1β (货号:EK301B)和IL-6 (货号EK306)浓度。所有试剂盒均购自上海联科生物。

2.6. 统计学方法

所有数据均采用均数±标准差表示( X ¯ ± S)。采用GraphPad Prism 9.0软件进行数据处理,使用Bonferroni的多重比较检验,组间比较采用单因素方差分析,相关性采用皮尔森相关分析方法。所得结果P < 0.05被认为具有统计学差异。

3. 结果

3.1. 各组死亡率及改良加西亚评分结果

Table 1. SAH mortality statistics in each group

表1. 各组SAH死亡率统计

Sham组全部存活,SAH模型组死亡14只,总体死亡率为22.6% (14/62),具体结果如表1所示。SAH模型24小时后行改良加西亚评分评估神经功能,各组大鼠评分具体结果如图1(A)所示。如图所示,SAH组和SAH + DMSO组相比无统计学差异(P > 0.05)。SAH组和SAH + DMSO组与Sham组相比神经功能损害明显加重(P < 0.01)。SAH + DMSO组与SAH + STF、SAH + BAY组相比神经功能损害明显减轻(P < 0.01)。

(A) SAH 24 h后各组改良加西亚评分结果;(B) SAH 24 h后脑组织TNF-α浓度;(C) SAH 24 h后脑组织IL-1β浓度;(D) SAH 24 h后脑组织IL-6浓度;数据均以均数 ± 标准差来表示,n = 6,与Sham组比较**P < 0.01,与SAH + DMSO组比较## P < 0.01,# P < 0.05,ns,无统计学差异。

Figure 1. Modified Garcia score and expression of TNF-α, IL-1β and IL-6

图1. 改良加西亚评分及TNF-α、IL-1β和IL-6表达

3.2. IRE1α/NF-κB轴及相关蛋白表达

建模24小时后行Western blot测定IRE1α、GRP78、NF-κB表达,各组表达情况具体结果如图2(A)~(D)所示。Western blot结果显示,与Sham组比较,SAH组和SAH + DMSO组IRE1α、GRP78和NF-κB表达均明显提高(P < 0.01)。SAH组与SAH + DMSO组蛋白表达未见明显差异(P > 0.05)。与SAH + DMSO组相比,SAH + STF组中IRE1α、GRP78和NF-κB表达明显降低(P < 0.01)。与SAH + DMSO组比较,SAH + BAY组中NF-κB表达明显下降(P < 0.01)。

(A) SAH 24 h后各组脑组织IRE1α、GRP78和NF-κB蛋白表达;(B) 定量分析IRE1α、GRP78和NF-κB含量。数据均以均数 ± 标准差来表示,n = 6,与Sham组比较**P < 0.01,与SAH + DMSO组比较## P < 0.01,ns,无统计学差异。

Figure 2. The expressions of IRE1α, GRP78 and NF-κB were determined by Western blot

图2. Western blot测定IRE1α、GRP78和NF-κB表达

3.3. ELISA检测TNF-α、IL-1β和IL-6表达

建模24小时后行ELISA测定TNF-α、IL-1β和IL-6表达,各组表达情况具体结果如图1(B)~(D)所示。ELISA结果显示,与Sham组相比,SAH组和SAH + DMSO组TNF-α、IL-1β和IL-6表达均明显提高(P < 0.01)。SAH组与SAH + DMSO组炎症因子表达相比无统计学意义(P > 0.05)。与SAH + DMSO组相比,SAH + STF组和SAH + BAY组TNF-α、IL-1β和IL-6表达量明显减少(P < 0.01, P < 0.05)。

3.4. 炎症因子与神经功能评分相关性分析

炎症因子(TNF-α、IL-1β和IL-6)表达与改良加西亚功能评分行皮尔森相关性分析,结果如表2所示。呈负相关,相关性较强,有统计学意义(P < 0.05)。

Table 2. Correlation analysis between inflammatory cytokines and modified Garcia score

表2. 炎症因子与改良加西亚评分相关性分析

4. 讨论

SAH是一种死亡率高、预后差的出血性脑卒中,在非创伤性SAH中动脉瘤约占全部病因的85%。影响SAH预后的病理基础有很多,其中之一是炎症反应,而炎症可以加剧脑损伤,促进脑血管痉挛,加重SAH后临床症状,并导致不良预后。本研究发现SAH后ERS被激活,并通过IRE1α/NF-κB通路促进神经炎症,抑制该通路可以减轻神经炎症,保护神经功能。

我们的前期研究已经发现SAH后ERS被激活 [10] 。ERS包括三条信号通路,IRE1是其中之一。在静息状态下,IRE1与葡萄糖调节蛋白78 (GRP78)结合而处于失活状态 [11] ,长期持续的ERS可以激活IRE1使其与GRP78解离。NF-κB是重要的炎症调控因子,主要有p50,p52,c-Rel,RelA和RelB 5种亚基,他们以各种组合形式形成同源或异源二聚体。在中枢神经系统NF-κB主要由RelA和p50组成异源二聚体 [12] 。近年有研究发现IRE1α可以促进胞质NF-κB抑制剂IκB降解,加速NF-κB转位至细胞核,诱导多种炎症因子基因表达,促进血管内皮炎症和功能障碍 [13] 。在本实验中,我们观察到ERS标志蛋白GRP78升高,同时还发现IRE1α、NF-κB表达均升高,表明SAH后ERS被触发,并激活IRE1α/NF-κB通路。

已有相当多的研究发现ERS可以激活炎症反应 [14] [15] ,NF-κB作为IRE1α的下游信号,可促进多种炎症因子的释放,例如TNF-α、IL-1β和IL-6等 [16] 。释放的炎症因子进一步激活ERS,从而放大炎症反应 [17] ,这种炎症级联反应将严重影响SAH的预后 [18] 。有研究显示IRE1α/NF-κB可以诱导血管内皮炎症,促进炎症因子表达进而导致内皮功能障碍 [19] 。SAH作为一种脑血管疾病,血管内皮功能完整性对其具有重要意义。TNF-α、IL-1β和IL-6是与NF-κB密切相关的炎症因子,在SAH后均有高表达 [20] ,我们的结果与其他研究相一致。而应用IRE1α和NF-κB抑制剂后上述炎症因子表达均下降,表明TNF-α、IL-1β和IL-6的释放至少部分依赖于IRE1α/NF-κB通路,即SAH后IRE1α/NF-κB通路可以促进神经炎症反应。

神经炎症与SAH不良预后密切相关,这一点已被相当多的文献所证实。临床发现SAH后TNF-α、IL-1β和IL-6在血清及脑脊液中表达升高 [21] [22] [23] ,并与不良预后直接相关。相似的是,基础研究同样发现抑制炎症反应可以减少SAH后神经行为功能障碍 [24] 。这可能与炎症因子促进神经元凋亡及促进脑水肿等相关。已有研究发现高TNF-α可以促进凋亡“开关”:Bax与Bcl-2蛋白表达比值失衡,触发Caspase凋亡级联反应。此外,进一步研究发现抑制NF-κB后TNF-α、IL-1β和IL-6表达均减少,而改良加西亚评分同样下降 [25] 。本研究发现炎症因子与改良加西亚评分呈负相关,即炎症因子高表达可以损害SAH后神经功能,我们还发现抑制IRE1α/NF-κB通路后促炎因子表达下降,而改良加西亚评分同样下降,证明抑制炎症可能改善神经功能。

5. 结论

综上所述,本研究通过建立SAH模型,发现抑制IRE1α/NF-κB通路可以减轻蛛网膜下腔出血后炎症反应,保护神经功能,具体可能机制如图3所示。这为SAH治疗提供了理论依据和潜在靶点。但激活SAH后炎症机制复杂,仍需要进一步的研究。

Figure 3. Possible mechanism of IRE1α/NF-κB pathway after SAH

图3. SAH后IRE1α/NF-κB通路可能机制图

基金项目

2020年度石河子大学自主资助支持校级科研项目(ZZZC202064A)。

文章引用

朱 超,代林志,赵 冬. 抑制IRE1α/NF-κB通路减轻蛛网膜下腔出血后炎症反应
Inhibition of IRE1α/NF-κB Pathway Alleviates Inflammatory Response after Subarachnoid Hemorrhage[J]. 临床医学进展, 2023, 13(06): 9799-9806. https://doi.org/10.12677/ACM.2023.1361371

参考文献

  1. 1. 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组, 中华医学会神经病学分会神经血管介入协作组. 中国蛛网膜下腔出血诊治指南2019 [J]. 中华神经科杂志, 2019, 52(12): 1006-1021.

  2. 2. Claassen, J. and Park, S. (2022) Spontaneous Subarachnoid Haemorrhage. The Lancet, 400, 846-862. https://doi.org/10.1016/S0140-6736(22)00938-2

  3. 3. Tian, Q., Liu, S., Han, S.-M., et al. (2023) The Mechanism and Relevant Mediators Associated with Neuronal Apoptosis and Potential Therapeutic Targets in Subarachnoid Hemor-rhage. Neural Regeneration Research, 18, 244-252. https://doi.org/10.4103/1673-5374.346542

  4. 4. Wu, F., Liu, Z., Li, G., et al. (2021) Inflammation and Oxidative Stress: Potential Targets for Improving Prognosis after Subarachnoid Hemorrhage. Frontiers in Cellular Neuroscience, 15, Article ID: 739506. https://doi.org/10.3389/fncel.2021.739506

  5. 5. Chen, R., Kang, R. and Tang, D. (2022) The Mechanism of HMGB1 Secretion and Release. Experimental Molecular Medicine, 54, 91-102. https://doi.org/10.1038/s12276-022-00736-w

  6. 6. Guo, X., Shi, Y., Du, P., et al. (2019) HMGB1/TLR4 Promotes Apoptosis and Reduces Autophagy of Hippocampal Neurons in Diabetes Combined with OSA. Life Sciences, 239, Arti-cle ID: 117020. https://doi.org/10.1016/j.lfs.2019.117020

  7. 7. Xu, P., Tao, C., Zhu, Y., et al. (2021) TAK1 Mediates Neuronal Pyroptosis in Early Brain Injury after Subarachnoid Hemorrhage. Journal of Neuroinflammation, 18, Article No. 188. https://doi.org/10.1186/s12974-021-02226-8

  8. 8. Peng, J., Pang, J., Huang, L., et al. (2019) LRP1 Activation At-tenuates White Matter Injury by Modulating Microglial Polarization through Shc1/PI3K/Akt Pathway after Subarachnoid Hemorrhage in Rats. Redox Biology, 21, Article ID: 101121. https://doi.org/10.1016/j.redox.2019.101121

  9. 9. Hu, X., Yan, J., Huang, L., et al. (2021) INT-777 Attenuates NLRP3-ASC Inflammasome-Mediated Neuroinflammation via TGR5/cAMP/PKA Signaling Pathway after Subarachnoid Hemorrhage in Rats. Brain, Behavior, Immunity, 91, 587-600. https://doi.org/10.1016/j.bbi.2020.09.016

  10. 10. Zhang, H., He, X., Wang, Y., et al. (2017) Neuritin Attenuates Early Brain Injury in Rats after Experimental Subarachnoid Hemorrhage. The International Journal of Neuroscience, 127, 1087-1095. https://doi.org/10.1080/00207454.2017.1337013

  11. 11. Grootjans, J., Kaser, A., Kaufman, R.J., et al. (2016) The Unfolded Protein Response in Immunity and Inflammation. Nature Reviews Immunology, 16, 469-484. https://doi.org/10.1038/nri.2016.62

  12. 12. Dresselhaus, E.C. and Meffert, M.K. (2019) Cellular Specificity of NF-κB Function in the Nervous System. Frontiers in Immunology, 10, Article No. 1043. https://doi.org/10.3389/fimmu.2019.01043

  13. 13. Sun, S., Ji, Z., Fu, J., et al. (2020) Endosulfan Induces Endothelial Inflammation and Dysfunction via IRE1α/NF-κB Signaling Pathway. Environmental Science Pollution Research Interna-tional, 27, 26163-26171. https://doi.org/10.1007/s11356-020-09023-5

  14. 14. Cao, S.S., Luo, K.L. and Shi, L. (2016) Endoplasmic Reticulum Stress Interacts with Inflammation in Human Diseases. Journal of Cellular Physiology, 231, 288-294. https://doi.org/10.1002/jcp.25098

  15. 15. Sprenkle, N.T., Sims, S.G., Sánchez, C.L., et al. (2017) Endoplasmic Retic-ulum Stress and Inflammation in the Central Nervous System. Molecular Neurodegeneration, 12, Article No. 42. https://doi.org/10.1186/s13024-017-0183-y

  16. 16. Zhuang, Z., Sun, X.-J., Zhang, X., et al. (2013) Nuclear Fac-tor-κB/Bcl-XL Pathway Is Involved in the Protective Effect of Hydrogen-Rich Saline on the Brain Following Experi-mental Subarachnoid Hemorrhage in Rabbits. Journal of Neuroscience Research, 91, 1599-1608. https://doi.org/10.1002/jnr.23281

  17. 17. Shang, J. and Zhao, Z. (2017) Emerging Role of HuR in Inflammatory Re-sponse in Kidney Diseases. Acta Biochimica et Biophysica Sinica, 49, 753-763. https://doi.org/10.1093/abbs/gmx071

  18. 18. Manoel, A.L.O. and Macdonald, R.L. (2018) Neuroinflammation as a Target for Intervention in Subarachnoid Hemorrhage. Frontiers in Neurology, 9, Article No. 292. https://doi.org/10.3389/fneur.2018.00292

  19. 19. Chen, J., Zhang, M., Zhu, M., et al. (2018) Paeoniflorin Prevents Endoplasmic Reticulum Stress-Associated Inflammation in Lipopolysaccharide-Stimulated Human Umbilical Vein En-dothelial Cells via the IRE1α/NF-κB Signaling Pathway. Food & Function, 9, 2386-2397. https://doi.org/10.1039/C7FO01406F

  20. 20. Cao, Y., Li, Y., He, C., et al. (2021) Selective Ferroptosis Inhibitor Liproxstatin-1 Attenuates Neurological Deficits and Neuroinflammation after Subarachnoid Hemorrhage. Neuroscience Bulletin, 37, 535-549. https://doi.org/10.1007/s12264-020-00620-5

  21. 21. Ahn, S.-H., Burkett, A., Paz, A., et al. (2022) Systemic Inflam-matory Markers of Persistent Cerebral Edema after Aneurysmal Subarachnoid Hemorrhage. Journal of Neuroinflamma-tion, 19, Article No. 199. https://doi.org/10.1186/s12974-022-02564-1

  22. 22. Rahmanian, A., Gholijani, N., Salehi, M., et al. (2022) Evalua-tion of Serum Interleukin-1β (IL-1β) Levels in Patients with Intracranial Aneurysms Compared to a Control Group. Turkish Neurosurgery, 32, 773-778.

  23. 23. Wu, W., Guan, Y., Zhao, G., et al. (2016) Elevated IL-6 and TNF-α Levels in Cerebrospinal Fluid of Subarachnoid Hemorrhage Patients. Molecular Neurobiology, 53, 3277-3285. https://doi.org/10.1007/s12035-015-9268-1

  24. 24. Wu, L.-Y., Ye, Z.-N., Zhuang, Z., et al. (2018) Biochanin A Re-duces Inflammatory Injury and Neuronal Apoptosis Following Subarachnoid Hemorrhage via Suppression of the TLRs/TIRAP/MyD88/NF-κB Pathway. Behavioural Neurology, 2018, Article ID: 1960106. https://doi.org/10.1155/2018/1960106

  25. 25. Deng, H.-J., Deji, Q., Zhaba, W., et al. (2021) A20 Establishes Nega-tive Feedback with TRAF6/NF-κB and Attenuates Early Brain Injury after Experimental Subarachnoid Hemorrhage. Frontiers in Immunology, 12, Article ID: 623256. https://doi.org/10.3389/fimmu.2021.623256

  26. NOTES

    *通讯作者。

期刊菜单