Advances in Clinical Medicine
Vol. 13  No. 02 ( 2023 ), Article ID: 61453 , 6 pages
10.12677/ACM.2023.132299

光动力疗法联合PD-1抑制剂治疗支气管肿瘤 1例并文献复习

王靖宇1,曹艺巍2,韩伟忠2,林存智2*

1青岛大学,山东 青岛

2青岛大学附属医院,山东 青岛

收稿日期:2023年1月14日;录用日期:2023年2月10日;发布日期:2023年2月17日

摘要

最近的实验研究发现,光动力疗法(PDT)联合程序性死亡受体1 (PD-1)/程序性细胞死亡配体1 (PD-L1)抑制剂可以有效抑制原位肿瘤生长,防止肿瘤复发和转移,已成为一种新的治疗方案。然而,临床数据仍然有限。在此,我们介绍了一例晚期肺癌患者在PDT联合PD-1抑制剂治疗后获得完全缓解(CR),并在14个月的随访中没有复发和转移的病例报告。通过这种方式,我们回顾了PDT联合PD-1/PD-L1抑制剂的文献,并对实验和临床数据以及可能的分子机制进行了概述。

关键词

光动力疗法,程序性死亡受体1,支气管肿瘤,基于纳米技术的光动力免疫疗法,免疫检查点抑制剂

A Case of Elderly Refractory Giant Stone Bile Duct Stent Combined with Pharmacological Treatment and Review of Literature

Jingyu Wang1, Yiwei Cao2, Weizhong Han2, Cunzhi Lin2*

1Qingdao University, Qingdao Shandong

2Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Jan. 14th, 2023; accepted: Feb. 10th, 2023; published: Feb. 17th, 2023

ABSTRACT

Recent experimental studies have found that photodynamic therapy (PDT) combined with programmed death receptor 1 (PD-1)/programmed cell death-Ligand 1 (PD-L1) inhibitors can effectively inhibit in situ tumor growth and prevent tumor recurrence and metastasis, and has emerged as a new therapeutic option. However, clinical data is still limited. Here, we present a case report of a patient with advanced lung cancer who achieved complete remission (CR) after PDT combined with a PD-1 inhibitor and was free of recurrence and metastasis during 14 months of follow-up. In this way, we review the literature on PDT in combination with PD-1/PD-L1 inhibitors and provide an overview of the experimental and clinical data and possible molecular mechanisms.

Keywords:Photodynamic Therapy, Programmed Death Receptor 1, Bronchial Tumor, Nanotechnology-Based Photodynamic Immunotherapy, Immune Checkpoint Inhibitors

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

转移和复发是癌症治疗中两个不可避免的棘手问题。光动力疗法(Photodynamic Therapy, PDT)被认为是治疗小于10毫米且无软骨外扩散的寡转移性复发性气管内恶性肿瘤的一线疗法 [1] 。而免疫疗法也在发挥着越来越重要的作用,但两者都有其自身的局限性。最近的研究表明,PDT联合程序性死亡受体1 (programmed death receptor 1, PD-1)/程序性细胞死亡配体1(programmed cell death-Ligand 1, PD-L1)抑制剂的治疗效果比单一治疗方式要好 [2] - [7] 。这些研究仍处于实验室阶段,临床数据仍然有限。在此,我们报告了一例晚期支气管肿瘤患者,在PDT联合PD-1抑制剂治疗后获得完全缓解(complete remission, CR),并在14个月的随访期间没有复发和转移。

2. 案例报道

2021年2月23日,一名69岁的男性患者因咳嗽、咳痰5个月来我院就诊。既往有10年的高血压和40年的吸烟史。胸部增强CT显示右肺上叶有纵隔旁占位(图1(A1),图1(A2)),考虑肺癌和纵膈淋巴结转移的可能性大。支气管镜检查发现右肺上叶开口处有新生物[图2(A)],活检样本的病理检查证实为鳞状细胞癌。免疫组化的结果如下。CK5/6(+),p40(+),ALK-D5F3(−),ALK-D5F3-N(−),PD-L1-22C3(TPS:−)。使用ARMS-PCR进行基因检测,发现EGFR、ALK、ROS1、KRAS或HER2没有突变。超声、骨成像及颅内磁共振成像显示没有远处转移。患者被诊断为右肺鳞状细胞癌(cT4N2M0,IIIB期)。2021年3月15日进行了支气管镜下的病损切除术(图3(A),图3(B)),并于2021年3月17日进行了第一周期的TC方案化疗。然而,由于转氨酶水平升高,第二周期的化疗被迫暂停。在获得患者同意并排除禁忌症后,于2021年4月14日进行了第一次PDT (图3(C))。在激光照射前48小时,静脉注射血卟啉注射液(重庆华鼎现代生物制药有限公司),剂量为2 mg/kg。通过支气管镜引入3厘米长的扩散段柱状纤维(OPTIGUIDE;Pinnacle Biologics;波长 = 630纳米),用150 J/cm2的能量密度(250 mW × 1200 s)照射右上叶开口前段的粘膜浸润处;第二天重复上述操作。术后四周严格执行避光措施,没有并发症发生。PDT后一个月进行了一周期的术后辅助化疗。PDT后2个月的胸部CT检查提示CR (图1(B1),图1(B2))。然而,患者在接受术后第二、三周期化疗后反复出现骨髓抑制,综合考虑并征得患者同意后,我们为患者使用信迪利单抗维持治疗。在14个月的随访期间内,未发现肿瘤复发和转移(图1(C1),图1(C2)和图2(C))。目前该患者继续信迪利单抗维持治疗中。

Figure 1. (A1) & (A2), Contrast Computed Tomography images of paramediastinal occupancy in the upper lobe of the right lung. (B1) & (B2), CT images 2 months after PDT. (C1) & (C2), CT images after 14 months after PDT.

图1. (A1) & (A2)右肺上叶纵隔旁占位的增强CT图像;(B1) & (B2) PDT后2个月的CT图像;(C1) & (C2) PDT后14个月的CT图像

Figure 2. (A) Tracheoscopic view of mass at right upper lobar bronchus. (B) Tracheoscopic view of the right upper lobe bronchus 4 months after PDT. (C) Tracheoscopic view of the right upper lobe bronchus 14 months after PDT

图2. (A) 右上叶支气管镜下的新生物视图;(B) PDT后4个月的右上叶支气管镜视图;(C) PDT后14个月的右上叶支气管镜视图

Figure 3. (A) Tracheoscopic view of right upper lobar bronchus before debridement. (B) Tracheoscopic view of right upper lobar bronchus after debridement. (C) Tracheoscopic view of right upper lobar bronchus during PDT at the proximal right upper lobar bronchus

图3. (A) 病损切除术前的右上叶支气管镜视图;(B) 病损切除术后的右上叶支气管镜视图;(C) 在右上叶支气管近端进行PDT时的右上叶支气管镜视图

3. 讨论

PDT已成为无法手术的支气管肿瘤的重要替代治疗方式,大量数据表明,与其他替代治疗方式相比,PDT在局部治疗支气管肿瘤的疗效和副作用方面具有优势 [8] [9] [10] [11] 。另一方面,免疫疗法在癌症治疗中也有重要的临床应用。然而,这两种疗法都有各自的局限性:PDT的细胞毒作用受到光活化过程的空间限制,这限制了PDT对治疗领域的直接作用,而免疫疗法的效果往往由于肿瘤组织缺乏免疫原性而失败。因此单一疗法不能满足目前癌症治疗的需要。研究表明,PDT可以调节抗肿瘤免疫反应,激活抗原呈递细胞,并对肿瘤微环境进行重新编程,使其更容易针对免疫检查点 [12] 。因此,免疫检查点抑制剂(Immune Checkpoint Inhibitors, ICI)与PDT的结合已被开发为一种新的治疗方案,有助于增强抗肿瘤免疫反应,提高预防肿瘤转移和肿瘤复发的疗效。

PD-1/PD-L1作为一个重要的免疫检查点,已被证明在PDT期间被上调了 [2] [13] 。然而,其潜在的机制仍然是未知的。由PDT诱导的组织损伤产生的辅助性IL6可以通过STAT3增强PD-1的表达 [14] 以及通过JAK1增强PD-L1的表达和稳定性 [15] 。PDT也通过增加T细胞浸润和干扰素(infiltration and interferon, IFN)-γ的表达诱导PD-L1的产生 [2] [16] ;此外,PDT可能在肿瘤微环境中引起短暂的缺氧,这反过来又可能通过依赖于HIF-1α信号的PD-L1的上调而改变肿瘤和免疫细胞的表型 [13] [17] [18] [19] 。

最近,一些体内实验研究表明,PDT联合PD-1/PD-L1检查点阻断对肿瘤的治疗比单药治疗更有效。Bao等人在体内实验中观察到,PDT靶向肿瘤血管可抑制皮下4T1肿瘤的生长,并抑制其肺部转移,PDT治疗后肿瘤PD-L1水平也明显升高。与抗PD-1/PD-L1阻断剂联合使用,进一步增强了肿瘤抑制效果 [2] 。纳米颗粒的高渗透长滞留效应(enhanced permeability and retention, EPR)使光敏剂在肿瘤组织中的积累更具选择性,使用纳米颗粒平台装载的第三代光敏剂与免疫检查点阻断相结合也在研究中。Duan等人将光敏剂与焦磷酸锌(ZnP@pyro)纳米颗粒相结合,在670 nm光激活后,明显抑制了4T1肿瘤的原位生长。当与PD-L1阻断剂结合时,ZnP@pyrolipPDT还可以防止自发的肺部转移 [3] 。与通过静脉注射抗PD-1/PD-L1抗体联合PDT的传统治疗策略相比,Liu等人将抗PD-L1抗体和光敏剂组装成纳米颗粒(BDP-I-N-抗PD-L1)。免疫检查点抗体的主动靶向和纳米颗粒的EPR效应进一步实现了肿瘤组织的有效积累,并通过PDT和ICB的协同作用消除了MC38小鼠结肠肿瘤,产生了免疫记忆,防止肿瘤复发,具有良好的生物安全性 [5] 。作为一种新型的PD-L1抑制剂,Zhou等人制备了RGDyK修饰的纳米颗粒(ZnPP@MSN-RGDyK)。ZnPP@MSN-RGDyK纳米颗粒精确靶向β3-int抑制PD-L1,在NSCLC-脊髓转移的小鼠模型中显示了良好的光动力治疗效率和免疫治疗效果 [7] 。Chen等人合成了一种负载光敏剂和干扰RNA (siRNA)的纳米粒子,将光动力治疗能力和介导的PD-L1基因沉默结合起来,取得了卓越的抗肿瘤效果 [4] 。Wang等人通过整合酸激活的阳离子胶束、光敏剂和小的siRNA合理地设计了一种多功能胶束。单独使用671 nm激光进行PDT或siRNA介导的PD-L1基因沉默,可明显抑制60%以上的B16-F10黑色素瘤的生长,并且两者结合可完全抑制肿瘤生长 [6] 。

PDT联合PD-1/PD-L1检查点阻断疗法的临床数据很少 [20] 。Wang等人报道了一位晚期食道癌患者,在当地医院接受了两个周期的化疗,但是失败了。在这个病例中,在金属支架植入后,患者接受了PDT联合信迪利单抗的治疗,效果显著且成功。该患者的预后非常好,不仅原发病灶被治愈,而且转移性淋巴结也明显减少,在最后一次内镜复查中没有肿瘤复发 [21] 。Maller等报道了一位鳞状肺癌(T2aN0M0)患者在右上肺叶切除后表现出复发。经过多次PDT治疗后,作者发现在气管脊和左主干支气管近端仍可发现病灶,PET-CT显示有骨转移。此外,活检标本的免疫组织化学分析表明,PD-1高度表达。因此,作者用静脉注射帕博利珠单抗(每三周200毫克)治疗患者。三个月后,气管镜检查显示CR,PET-CT显示所有以前的高代谢区域都是CR,并且在1年的随访期间没有发现复发。此前的病例报告和我们的患者表明,PDT后联合PD-1抑制剂可能是一种潜在的治疗策略,可以增加晚期肺癌患者的生存获益 [22] 。

2021年4月,罗斯威尔公园癌症研究所启动了一项I期临床试验,以评估PDT在胸膜疾病的非小细胞肺癌患者中增强免疫疗法反应的能力(NCT编号:NCT04836429)。预计将有16名患者入选。这项试验评估了术中光动力疗法的副作用,以增强ICI药物反应。严重不良事件的发生率是通过记录研究后相关免疫治疗的前28天内SAE的发生情况来确定。此外,对患者进行为期两年的随访,以了解无进展生存期、总生存期、外周血CD8 + T细胞的免疫分型变化以及血小板-淋巴细胞比率的变化。该研究预计将于2023年12月完成 [20] 。

尽管许多临床前研究表明,基于纳米技术的光动力免疫疗法(Nanotechnology-based Photodynamic Immunotherapy, PDIT)可以增强对原发性和转移性肿瘤的免疫力。然而,这种基于纳米技术的PDIT的有效性还没有得到临床验证。纳米材料的安全性是未来纳米光动力免疫疗法的一个主要挑战。然而,目前主要进行的是细胞实验和动物实验,人体实验数据很少。在临床应用之前,还必须进行大量的人体毒性实验。

4. 结论

总之,PDT联合PD-1/PD-L1检查点阻断不仅可以根除原发肿瘤,还可以控制转移性肿瘤。然而,目前还缺乏足够的临床数据,仍需进行大样本研究。PDIT有可能作为下一代癌症治疗技术向前发展。然而,在临床应用之前,需要进行人体毒性试验来验证疗效和安全性。

文章引用

王靖宇,曹艺巍,韩伟忠,林存智. 光动力疗法联合PD-1抑制剂治疗支气管肿瘤1例并文献复习
A Case of Elderly Refractory Giant Stone Bile Duct Stent Combined with Pharmacological Treatment and Review of Literature[J]. 临床医学进展, 2023, 13(02): 2136-2141. https://doi.org/10.12677/ACM.2023.132299

参考文献

  1. 1. Singh, H., Benn, B.S., Jani, C., Abdalla, M. and Kurman, J.S. (2022) Photodynamic Therapy for Treatment of Recurrent Adenocarcinoma of the Lung with Tracheal Oligometastasis. Respiratory Medicine Case Reports, 37, Article ID: 101620. https://doi.org/10.1016/j.rmcr.2022.101620

  2. 2. Bao, R., Wang, Y., Lai, J., Zhu, H., Zhao, Y., et al. (2019) En-hancing Anti-PD-1/PD-L1 Immune Checkpoint Inhibitory Cancer Therapy by CD276-Targeted Photodynamic Ablation of Tumor Cells and Tumor Vasculature. Molecular Pharmaceutics, 16, 339-348. https://doi.org/10.1021/acs.molpharmaceut.8b00997

  3. 3. Duan, X., Chan, C., Guo, N., Han, W., Weichselbaum, R.R., et al. (2016) Photodynamic Therapy Mediated by Nontoxic Core-Shell Nanoparticles Synergizes with Immune Checkpoint Blockade to Elicit Antitumor Immunity and Antimetastatic Effect on Breast Cancer. Journal of the American Chemical Society, 138, 16686-16695. https://doi.org/10.1021/jacs.6b09538

  4. 4. Hao, K., Lin, L., Sun, P., Hu, Y., Atsushi, M., et al. (2021) Cationic Flexible Organic Framework for Combination of Photodynamic Therapy and Genetic Immunotherapy against Tumors. Small, 17, e2008125. https://doi.org/10.1002/smll.202008125

  5. 5. Liu, Q., Tian, J., Tian, Y., Sun, Q., Sun, D., et al. (2021) Near-Infrared-II Nanoparticles for Cancer Imaging of Immune Checkpoint Programmed Death-Ligand 1 and Photody-namic/Immune Therapy. ACS Nano, 15, 515-525. https://doi.org/10.1021/acsnano.0c05317

  6. 6. Wang, D., Wang, T., Liu, J., Yu, H., Jiao, S., et al. (2016) Ac-id-Activatable Versatile Micelleplexes for PD-L1 Blockade-Enhanced Cancer Photodynamic Immunotherapy. Nano Let-ters, 16, 5503-5513. https://doi.org/10.1021/acs.nanolett.6b01994

  7. 7. Zhou, L., Liang, H., Ge, Y., Ding, W., Chen, Q., et al. (2022) Precisely Targeted Nano-Controller of PD-L1 Level for Non-Small Cell Lung Cancer Spinal Metastasis Immunotherapy. Advanced Healthcare Materials, 11, e2200938. https://doi.org/10.1002/adhm.202200938

  8. 8. Chhatre, S., Murgu, S., Vachani, A. and Jayadevappa, R. (2022) Photodynamic Therapy for Stage I and II Non-Small Cell Lung Cancer: A SEER-Medicare Analysis 2000-2016. Medi-cine, 101, e29053. https://doi.org/10.1097/MD.0000000000029053

  9. 9. Chhatre, S., Vachani, A., Allison, R.R. and Jayadevappa, R. (2021) Survival Outcomes with Photodynamic Therapy, Chemotherapy and Radiation in Patients with Stage III or Stage IV Non-Small Cell Lung Cancer. Cancers, 13, Article No. 803. https://doi.org/10.3390/cancers13040803

  10. 10. Yi, E., Chang, J.E., Leem, C., Kim, S. and Jheon, S. (2016) Clinical Results of Photodynamic Therapy in Tracheobronchial Malignancy. Journal of Photochemistry and Photobiology B: Biology, 156, 56-60. https://doi.org/10.1016/j.jphotobiol.2015.10.009

  11. 11. Zhang, Q., Zheng, K., Gu, X., Gao, Y., Zhao, S., et al. (2022) Photodynamic Therapy for Primary Tracheobronchial Malignancy in Northwestern China. Photodiagnosis and Photody-namic Therapy, 37, Article ID: 102701. https://doi.org/10.1016/j.pdpdt.2021.102701

  12. 12. Cramer, G.M., Moon, E.K., Cengel, K.A. and Busch, T.M. (2020) Photodynamic Therapy and Immune Checkpoint Blockade†. Photochemistry and Photobiology, 96, 954-961. https://doi.org/10.1111/php.13300

  13. 13. Yuan, Z., Fan, G., Wu, H., Liu, C., Zhan, Y., et al. (2021) Photodynamic Therapy Synergizes with PD-L1 Checkpoint Blockade for Immunotherapy of CRC by Multifunctional Nanoparticles. Molecular Therapy, 29, 2931-2948. https://doi.org/10.1016/j.ymthe.2021.05.017

  14. 14. Austin, J.W., Lu, P., Majumder, P., Ahmed, R. and Boss, J.M. (2014) STAT3, STAT4, NFATc1, and CTCF Regulate PD-1 through Multiple Novel Regulatory Regions in Murine T Cells. The Journal of Immunology, 192, 4876-4886. https://doi.org/10.4049/jimmunol.1302750

  15. 15. Chan, L.-C., Li, C.-W., Xia, W., Hsu, J.-M., Lee, H.-H., et al. (2019) IL-6/JAK1 Pathway Drives PD-L1 Y112 Phosphorylation to Promote Cancer Immune Evasion. Journal of Clin-ical Investigation, 129, 3324-3338. https://doi.org/10.1172/JCI126022

  16. 16. Xiong, W., Qi, L., Jiang, N., Zhao, Q., Chen, L., et al. (2021) Metformin Liposome-Mediated PD-L1 Downregulation for Amplifying the Photodynamic Immunotherapy Efficacy. ACS Applied Materials & Interfaces, 13, 8026-8041. https://doi.org/10.1021/acsami.0c21743

  17. 17. Barsoum, I.B., Smallwood, C.A., Siemens, D.R. and Graham, C.H. (20144) A Mechanism of Hypoxia-Mediated Escape from Adaptive Immunity in Cancer Cells. Cancer Research, 74, 665-674. https://doi.org/10.1158/0008-5472.CAN-13-0992

  18. 18. Corzo, C.A., Condamine, T., Lu, L., Cotter, M.J., Youn, J.I., et al. (2010) HIF-1α Regulates Function and Differentiation of Myeloid-Derived Suppressor Cells in the Tumor Mi-croenvironment. Journal of Experimental Medicine, 207, 2439-2453. https://doi.org/10.1084/jem.20100587

  19. 19. Noman, M.Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., et al. (2014) PD-L1 Is a Novel Direct Target of HIF-1α, and Its Blockade under Hypoxia Enhanced MDSC-Mediated T Cell Activation. Journal of Experimental Medicine, 211, 781-790. https://doi.org/10.1084/jem.20131916

  20. 20. Zhao, Y., Liu, X., Liu, X., Yu, J., Bai, X., et al. (2022) Combination of Phototherapy with Immune Checkpoint Blockade: Theory and Practice in Cancer. Frontiers in Immunology, 13, Article ID: 955920. https://doi.org/10.3389/fimmu.2022.955920

  21. 21. Wang, X.-Y., Maswikiti, E.P., Zhu, J.-Y., Ma, Y.-L., Zheng, P., et al. (2022) Photodynamic Therapy Combined with Immunotherapy for an Advanced Esophageal Cancer with an Ob-struction Post Metal Stent Implantation: A Case Report and Literature Review. Photodiagnosis and Photodynamic Ther-apy, 37, Article ID: 102671. https://doi.org/10.1016/j.pdpdt.2021.102671

  22. 22. Maller, B., Kaszuba, F. and Tanvetyanon, T. (2019) Complete Tumor Response of Tracheal Squamous Cell Carcinoma after Treatment with Pembrolizumab. The Annals of Thoracic Surgery, 107, e273-e274. https://doi.org/10.1016/j.athoracsur.2018.08.067

  23. NOTES

    *通讯作者Email: GraceWhale1997@163.com

期刊菜单