Pure Mathematics
Vol. 12  No. 07 ( 2022 ), Article ID: 54221 , 8 pages
10.12677/PM.2022.127134

带乘性噪声的时滞随机Kuramoto-Sivashinsky方程吸引子的存在

徐智恒1,刁玉存2

1伊犁师范大学应用数学研究所,新疆 伊犁

2伊犁师范大学数学与统计学院,新疆 伊犁

收稿日期:2022年6月18日;录用日期:2022年7月20日;发布日期:2022年7月27日

摘要

本文研究了带有乘性噪声的非自治随机时滞Kuramoto-Sivashinsky方程解的长时间行为。通过对解的一致估计,结合随机吸引子的存在性定理,证明了由该方程 C ( [ ρ , 0 ] , L 2 ( I ) ) 所生成的随机动力系统吸引子的存在性。

关键词

时滞随机Kuramoto-Sivashinsky方程,随机吸引子,渐近紧性,乘性噪声

Pullback Attractors for Delay Non-Autonomous Stochastic Kuramoto-Sivashinsky Equation with Multiplicative Noise

Zhiheng Xu1, Yucun Diao2

1Institute of Applied Mathematics, Yili Normal University, Yili Xinjiang

2School of Mathematics and Statistics, Yili Normal University, Yili Xinjiang

Received: Jun. 18th, 2022; accepted: Jul. 20th, 2022; published: Jul. 27th, 2022

ABSTRACT

In this paper, we study the long time behavior of delay non-autonomous stochastic Kuramoto-Sivashinsky equation with multiplicative noise. We prove the existence of pullback attractors in the space C ( [ ρ , 0 ] , L 2 ( I ) ) for the dynamical system generated by the equation above, by some uniform estimation, together with the existence theorem of pullback attractors.

Keywords:Delay Non-Autonomous Stochastic Kuramoto-Sivashinsky Equation, Pullback Attractors, Asymptotic Compactness, Multiplicative Noise

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

D-拉回随机吸引子最早是由 [1] [2] 提出。其中 [1] 探讨了时滞随机抛物方程的拉回吸引子的存在性及其上半连续性,并为拉回吸引子的存在性提供了充分条件。 [2] 提供了充要条件。本文则是在文献 [3] [4] [5] 的基础上,讨论了带乘法噪声的时滞非自治随机Kuramoto-Sivanshinsky方程的拉回吸引子。

考虑如下带有时滞的非自治随机Kuramoto-Sivashinsky方程(1)的初边值问题:

d u + ( α D 4 u + D 2 u + u D u ) d t = ( f ( t , x ) + g ( u ( t ρ ) , x ) ) d t + u d W , t > τ , x I u ( τ + σ , x ) = u τ ( σ , x ) = φ ( σ , x ) D i u ( t , l 2 ) = D i u ( t , l 2 ) , i = 0 , 1 , 2 , 3 I u ( t , x ) d x = 0 , t R

其中f是非线性项,g是时滞项,W是定义在概率空间 ( Ω , F , P ) 上的双边实值Wiener过程。ρ > 0是系统的时滞,常数α满足

α > l 2 4 π 2

2. 连续随机动力系统

本节讨论了由方程(1)时滞随机Kuramoto-Sivanshinsky方程所生成的连续随机动力系统。

首先做一些书写符号上的约定。用 ( , ) 分别表示 L 2 ( I ) 空间上的范数和内积, H ρ 表示空间 H ρ 上的范数。

对外力项f与时滞项g做如下假设:

H1. τ e β ( r τ ) | f ( r ) | d r , β > 0 , τ R

H2. g ( 0 , x ) = 0 , x I ; | g ( s 1 , x ) g ( s 2 , x ) | L g | s 1 s 2 | , x I

v ( t , τ , ω , ϕ ) = e z ( θ t ω ) u ( t , τ , ω , φ )

u ( t , τ , ω , ϕ ) = e z ( θ t ω ) v ( t , τ , ω , φ )

其中 z ( θ t ω ) = 0 e r θ t ω ( r ) d r

由于 1 2 u 2 d t + u d W = u W ,这里“ ”表示Strotnnovitch积分,则代入可得(2)

v t + α D 4 v + D 2 v + e z ( θ t ω ) v D v = e z ( θ t ω ) f ( t , x ) + e z ( θ t ω ) g ( e z ( θ t ρ ω ) v ( t ρ ) , x ) + z ( θ t ω ) v v ( τ + σ , x ) = ϕ ( σ , x ) , σ [ ρ , 0 ] D i v ( t , l 2 ) = D i v ( t , l 2 ) , i = 0 , 1 , 2 , 3 I v ( t , x ) d x = 0 , t R

由Galerkin逼近法(见参考文献 [6]),通过假设H1,H2可得对任意 τ R , ω Ω , ϕ C ( [ ρ , 0 ] , L 2 ( I ) ) ,方程(2)存在唯一解 v ( · , τ , ω , ϕ ) 。因此可以定义一连续随机动力系统 [1]。

Φ ( t , τ , ω , ϕ ) ( ) = u t + τ ( , τ , θ τ ω , ϕ )

且存在正常数 η 使得

α D 2 v 2 D v 2 η ( D 2 v 2 + v 2 ) , v H p e r 2 ( I )

定义随机变量

γ ( ω ) = η 2 | z ( ω ) | e 1 2 η ρ L g ( e 2 z ( ω ) + e 2 z ( ω ) ) γ * ( ω ) = η 2 E ( | z | ) e 1 2 η ρ L g [ E ( e 2 z ) + E ( e 2 z ) ]

则由遍历定理可得

lim t 1 t 0 t γ ( θ r ω ) = E ( r ) = γ *

存在Ω的不变子集使得

lim t z ( θ t ω ) t = lim t 1 t 0 t z ( θ r ω ) = 0 lim t 1 t 0 t | z ( θ r ω ) | d r = E ( | z | ) = 1 π

若集合D满足

lim t + e r t sup s τ D ( s t , θ τ ω ) 2 = 0 , r , τ R , ω Ω

则称D为后项缓增集。

3. 一致估计

为得到随机动力系统拉回吸收集的存在性,首先在空间 C ( [ ρ , 0 ] , L 2 ( I ) ) 上进行估计。有如下引理

引理1 若假设H1,H2成立,则存在 T = T ( τ , ω , D ) > 0 ,使得当t > T时,有

v ( τ + σ , τ t , θ τ ω , ϕ ) 2 R ( τ , ω ) + c 0 e 0 r r ( θ l ω ) d l e 2 z ( θ r ω ) f ( r + τ ) 2 d r τ ρ 2 τ D 2 v ( r ) 2 d r C ( ω ) ( R ( τ , ω ) + M ( τ ) )

其中 R ( τ , ω ) M ( τ ) 由如下(3)式定义

R ( τ , ω ) = 0 e 0 r r ( θ l ω ) d l e 2 z ( θ r ω ) f ( r + τ ) 2 d r M ( τ ) = τ e η ( r τ ) f ( r ) 2 d r

证明:将(2)与 v ( r , τ t , θ τ ω , ϕ ) 在空间 L 2 ( I ) 上做内积,并注意到 ( v D v , v ) = 0 ,得

1 2 d d r v ( r ) 2 + α D 2 v ( r ) 2 D v ( r ) 2 = e z ( θ r τ ω ) ( f ( r ) , v ) + e z ( θ r τ ω ) ( g ( e z ( θ r ρ τ ω ) v ( r ρ ) ) , v ) + z ( θ r τ ω ) v ( r ) 2

由Young不等式

e z ( θ r τ ω ) ( f ( r ) , v ) η 2 v ( r ) 2 + c e 2 z ( θ r τ ω ) f ( r ) 2

代入并整理,得

d d r v ( r ) 2 + 2 η D 2 v ( r ) 2 + η v ( r ) 2 2 e z ( θ r τ ω ) ( g ( e z ( θ r ρ τ ω ) v ( r ρ ) ) , v ) + 2 z ( θ r τ ω ) v ( r ) 2 + c e 2 z ( θ r τ ω ) f ( r ) 2

不等式左右两端同乘 e τ t r r ( θ l τ ω ) d l > 0 ,可得

d d r e τ t r r ( θ l τ ω ) d l v ( r ) 2 2 e τ t r r ( θ l τ ω ) d l e z ( θ r τ ω ) ( g ( e z ( θ r ρ τ ω ) v ( r ρ ) ) , v ) + ( 2 z ( θ r τ ω ) v ( r ) 2 + c e 2 z ( θ r τ ω ) f ( r ) 2 ) e τ t r r ( θ l τ ω ) d l

在区间 [ τ t , τ + σ ] , σ [ 2 ρ 2 , 0 ] 上积分,可得

e τ t τ + σ r ( θ l τ ω ) d l v ( τ + σ ) 2 2 τ t τ + σ e τ t r r ( θ l τ ω ) d l e z ( θ r τ ω ) ( g ( e z ( θ r ρ τ ω ) v ( r ρ ) ) , v ) d r + τ t τ + σ ( 2 z ( θ r τ ω ) v ( r ) 2 d r + c τ t τ + σ e 2 z ( θ r τ ω ) f ( r ) 2 ) + e τ t r r ( θ l τ ω ) d l d r + ϕ H ρ 2

其中

2 τ t τ + σ e τ t r r ( θ l τ ω ) d l e z ( θ r τ ω ) ( g ( v ( r ρ ) e z ( θ r τ ρ ω ) ) , v ) d r e η 2 ρ L g τ t τ + σ e τ t r r ( θ l τ ω ) d l e z ( θ r τ ω ) v ( r ) 2 d r + e η 2 ρ 1 L g τ t τ + σ e τ t r r ( θ l τ ω ) d l g ( v ( r ρ ) ) e z ( θ r τ ρ ω ) 2 d r e η 2 ρ L g τ t τ + σ e τ t r r ( θ l τ ω ) d l e z ( θ r τ ω ) v ( r ) 2 d r + L g e η 2 ρ τ t τ + σ e τ t r ρ r ( θ l τ ω ) d l e r ρ r r ( θ l τ ω ) d l e 2 z ( θ r ρ τ ω ) v ( r ρ ) 2 d r

e η 2 ρ L g τ t τ + σ e τ t r r ( θ l τ ω ) d l e z ( θ r τ ω ) v ( r ) 2 d r + L g e n 2 ρ τ t ρ τ + σ e τ t r r ( θ l τ ω ) d l e 2 z ( θ r ρ ω ) v ( r ρ ) 2 d r e η 2 ρ L g τ t τ + σ e τ t r r ( θ l τ ω ) d l e z ( θ r τ ω ) v ( r ) 2 d r + L g e n 2 ρ τ t ρ τ + σ e τ t r r ( θ l τ ω ) d l e 2 z ( θ r ρ ω ) ϕ H ρ 2 d r

γ ( ω ) 的定义,可知

2 z ( θ r τ ω ) η + r ( θ l τ ω ) + L g e n 2 ρ ( e 2 z ( θ r τ ω ) + e 2 z ( θ r τ ω ) ) 0

上述不等式左右两端同时除以 e τ t τ + σ r ( θ l τ ω ) d l > 0 ,可得

v ( τ + σ , τ t , θ τ ω , ϕ ) 2 c ( τ t ρ τ t e τ + σ r r ( θ l τ ω ) d l e 2 z ( θ r τ ω ) d r + e τ t τ + σ r ( θ l τ ω ) d l ) ϕ H ρ 2 + c τ t τ + σ e τ + σ r r ( θ l τ ω ) d l e 2 z ( θ r τ ω ) f ( r ) 2 d r

= c ( τ t ρ τ t e σ r τ r ( θ l ω ) d l e 2 z ( θ r τ ω ) d r + e t σ r ( θ l ω ) d l ) ϕ H ρ 2 + c τ t τ + σ e σ r τ r ( θ l ω ) d l e 2 z ( θ r τ ω ) f ( r ) 2 d r c ( t ρ t e 0 r r ( θ l ω ) d l e 2 z ( θ r τ ω ) d r + e t 0 r ( θ l ω ) d l ) ϕ H ρ 2 + c 0 e 0 r r ( θ l ω ) d l e 2 z ( θ r ω ) f ( r + τ ) 2 d r

t

c ( τ t ρ τ t e τ + σ r r ( θ l τ ω ) d l e 2 z ( θ r τ ω ) d r + e τ t τ + σ r ( θ l τ ω ) d l ) ϕ H ρ 2 0

故存在T > 0,使得当t > T时,成立

c ( τ t ρ τ t e τ + σ r r ( θ l τ ω ) d l e 2 z ( θ r τ ω ) d r + e τ t τ + σ r ( θ l τ ω ) d l ) ϕ H ρ 2 R ( τ , ω )

从而

sup σ [ 2 ρ 2 , 0 ] v ( τ + σ , τ t , θ τ ω , ϕ ) 2 R ( τ , ω )

又由

τ ρ 2 τ D 2 v ( r ) 2 d r c ( ω ) τ ρ 2 τ ( g ( v ( r ρ ) e z ( θ r τ ρ ω ) ) , v ) d r + c ( ω ) τ ρ 2 τ f ( r ) 2 d r + c ( ω ) τ ρ 2 τ v ( r ) 2 d r + v ( τ ρ 2 ) 2

对不等式右端第一项进行放缩

c ( ω ) τ ρ 2 τ ( g ( v ( r ρ ) e z ( θ r τ ρ ω ) ) , v ) d r 1 2 τ ρ 2 τ L g 2 e 2 z ( θ r τ ρ ω ) v ( r ρ ) 2 d r + 1 2 τ ρ r τ v ( r ) 2 d r c ( ω ) sup σ [ 2 ρ 2 , 0 ] v ( τ + σ ) 2 ( ρ + 2 ) + 1 2 ( ρ + 2 ) sup σ [ ρ 2 , 0 ] v ( r ) 2 c R ( τ , ω )

对不等式右端第二项进行放缩

c ( ω ) τ ρ 2 τ f ( r ) 2 d r e η ( ρ + 2 ) τ ρ 2 τ e η ( r τ ) f ( r ) 2 d r e η ( ρ + 2 ) τ f ( r ) 2 d r = e η ( ρ + 2 ) M ( τ )

同理对不等式右端第二项进行放缩

τ ρ 2 τ v ( r ) 2 d r + v ( τ ρ 2 ) 2 ( ρ + 2 ) sup σ [ ρ 2 , 0 ] v ( τ + σ ) 2 + v ( τ ρ 2 ) 2 c R ( τ , ω )

于是

τ ρ 2 τ D 2 v ( r ) 2 d r c ( ω ) ( R ( τ , ω ) + M ( τ ) )

此即为所证。

下将在空间 H 0 1 ( I ) 进行估计,再由 H 0 1 ( I ) 紧嵌入 L 2 ( I ) ,得到随机动力系统在空间 L 2 ( I ) 上的渐近紧性(见参考文献 [7])。

引理2 若假设H1,H2成立,则存在T > 0,使得当t > T时,有

τ ρ 1 τ D 2 v ( r ) 2 d r C ( ω ) ( 1 + R ( τ , ω ) ) ( R ( τ , ω ) + M ( τ ) )

其中 R ( τ , ω ) M ( τ ) 由(3)定义。

证明:

1 2 d d r D 2 v ( r ) 2 + α D 4 v ( r ) 2 + ( D 2 v , D 4 ) + e z ( θ r τ ω ) ( v D v , D 4 v ) = e z ( θ r τ ω ) ( f ( r ) , D 4 v ) + e z ( θ r τ ω ) ( g ( v ( r ρ ) e z ( θ r ρ τ ω ) ) , D 4 v ) + z ( θ r τ ω ) D 2 v ( r ) 2

由Young不等式,可得

( D 2 v , D 4 ) + e z ( θ r τ ω ) ( f ( r ) , D 4 v ) α 6 D 4 v ( r ) 2 + c D 2 v ( r ) 2 + c e 2 z ( θ r τ ω ) f ( r ) 2

由Agmon不等式,可得

e z ( θ r τ ω ) ( v D v , D 4 v ) α 6 D 4 v ( r ) 2 + c e 2 z ( θ r τ ω ) v 2 D 2 v ( r ) 2

由假设H2可得

e z ( θ r τ ω ) ( g ( v ( r ρ ) e z ( θ r ρ τ ω ) ) , D 4 v ) α 6 D 4 v ( r ) 2 + c e 2 z ( θ r τ ω ) e 2 z ( θ r τ ρ ω ) v ( r ρ ) 2

所以

d d r D 2 v ( r ) 2 + γ D 2 v ( r ) 2 c D 2 v ( r ) 2 + c e 2 z ( θ r τ ω ) v 2 D 2 v 2 + c e 2 z ( θ r τ ω ) f ( r ) 2 + c e 2 z ( θ r τ ω ) c e 2 z ( θ r τ ρ ω ) v ( r ρ ) 2 + c z ( θ r τ ω ) D 2 v ( r ) 2

将上式在 r [ s , τ + σ ] , σ [ ρ 1 , 0 ] , s [ τ + σ 1 , τ + σ ] 上积分,

再在 s [ τ + σ 1 , τ + σ ] 上积分,可得

D 2 v ( τ + σ ) 2 c ( ω ) τ ρ 2 τ ( D 2 v ( r ) 2 + v ( r ) 2 D 2 v ( r ) 2 + f ( r ) 2 + v ( r ρ ) 2 ) d r

注意到上述不等式右端第二项

τ ρ 2 τ v ( r ) 2 D 2 v ( r ) 2 d r sup σ [ ρ 2 , 0 ] v ( σ ) 2 τ ρ 2 τ D 2 v ( r ) 2 d r

于是

sup σ [ ρ 1 , 0 ] D 2 ( τ + σ ) 2 C ( ω ) ( 1 + R ( τ , ω ) ) ( R ( τ , ω ) + M ( τ ) )

[ τ ρ 1 , τ ] 上积分,可得

τ ρ 1 τ D 4 v ( r ) 2 d r D 2 ( τ ρ 1 ) 2 + c ( ω ) τ ρ 1 τ ( D 2 v ( r ) 2 + v ( r ) 2 D 2 v ( r ) 2 + f ( r ) 2 + v ( r ρ ) 2 ) d r C ( ω ) ( 1 + R ( τ , ω ) ) ( R ( τ , ω ) + M ( τ ) )

证毕。

引理3 若假设H1,H2成立,则有

τ ρ τ v r 2 d r C ( ω ) τ ρ τ ( D 4 v ( r ) 2 + D 2 v ( r ) 2 + f ( r ) 2 + c v ( r ) 2 + v 2 D v 2 + v ( r ρ ) 2 ) d r c ( ω ) ( 1 + R ( τ , ω ) ) ( R ( τ , ω ) + M ( τ ) )

其中 R ( τ , ω ) M ( τ ) 由(3)定义。

证明:将(2)式与 r v ( r , τ t , θ τ ω , ϕ ) 在空间 L 2 ( I ) 上作内积,有

v r 2 + α ( D 4 v , v r ) + ( D 2 v , v r ) + e z ( θ r τ ω ) ( v D v , v r ) = e z ( θ t ω ) ( f ( r ) , v r ) + e z ( θ t ω ) ( g ( e z ( θ t ρ ω ) v ( t ρ ) ) , v r ) + z ( θ t ω ) ( v , v r )

由Young不等式

γ ( D 4 v , v r ) ( D 2 v , v r ) + e z ( θ r τ ω ) ( f ( r ) , v r ) + z ( θ t ω ) ( v , v r ) 1 6 v r 2 + c D 4 v ( r ) 2 + c D 2 v ( r ) 2 + c e 2 z ( θ r τ ω ) f ( r ) 2 + c z ( θ r τ ω ) v ( r ) 2

由Agmon不等式

e z ( θ r τ ω ) ( v D v , v r ) 1 6 v r 2 + c e 2 z ( θ r τ ω ) v 2 D 2 v 2

由假设H2

e z ( θ t ω ) ( g ( e z ( θ t ρ ω ) v ( t ρ ) ) , v r ) 1 6 v r 2 + c e 2 z ( θ r τ ω ) g ( e z ( θ r τ ρ ω ) v ( r ρ ) ) 2 1 6 v r 2 + c e 2 z ( θ r τ ω ) e 2 z ( θ r ρ τ ω ) v ( r ρ ) 2

从而

v r 2 c ( D 4 v ( r ) 2 + D 2 v ( r ) 2 + e 2 z ( θ r τ ω ) f ( r ) 2 + c z ( θ r τ ω ) v ( r ) 2 + c e 2 z ( θ r τ ω ) v 2 D v 2 + c e 2 z ( θ r τ ω ) e 2 z ( θ r ρ τ ω ) v ( r ρ ) 2 )

积分

τ ρ τ v r 2 d r C ( ω ) τ ρ τ ( D 4 v ( r ) 2 + D 2 v ( r ) 2 + f ( r ) 2 + c v ( r ) 2 + v 2 D v 2 + v ( r ρ ) 2 ) d r C ( ω ) ( 1 + R ( τ , ω ) ) ( R ( τ , ω ) + M ( τ ) )

证毕。

4. 随机吸引子

定理1 假设H1,H2成立,则由(1)所生成的连续非自治随机动力系统Φ在空间 C ( [ ρ , 0 ] , L 2 ( I ) ) 上存

在拉回吸引子。

证明由引理(1),引理(2) (3)分别得出了在空间 C ( [ ρ , 0 ] , L 2 ( I ) ) 上拉回吸收集的存在性,以及该随机动力系统的拉回渐近紧性,故该随机动力系统存在空间 C ( [ ρ , 0 ] , L 2 ( I ) ) 上的拉回吸引子( [1],引理(2))。

文章引用

徐智恒,刁玉存. 带乘性噪声的时滞随机Kuramoto-Sivashinsky方程吸引子的存在
Pullback Attractors for Delay Non-Autonomous Stochastic Kuramoto-Sivashinsky Equation with Multiplicative Noise[J]. 理论数学, 2022, 12(07): 1223-1230. https://doi.org/10.12677/PM.2022.127134

参考文献

  1. 1. Wang, X.H., Lu, K.N. and Wang, B.X. (2015) Random Attractors for Delay Parabolic Equations with Additive Noise and Deterministic Non-Autonomous Forcing. SIAM Journal on Applied Dynamical Systems, 14, 1018-1047. https://doi.org/10.1137/140991819

  2. 2. Wang, B.X. (2012) Sufficient and Necessary Criteria for Existence of Pullback Attractors for Non-Compact Random Dynamical Systems. Journal of Differential Equations, 253, 1544-1583. https://doi.org/10.1016/j.jde.2012.05.015

  3. 3. Tan, J. and Li, Y.R. (2011) Random Attractors of Kuramoto-Sivanshinsky with Multiplicative White Noise. Journal of Southwest University: Natural Science Edition, 33, 121-125.

  4. 4. 范红瑞, 王仁海, 李扬荣, 佘连兵. 非自治的的Kuramoto-Sivashinsky方程的拉回吸引子的后项紧性[J]. 西南大学学报(自然科学版), 2018, 40(3): 95-100.

  5. 5. 吴柯楠, 王凤玲, 李扬荣. 非自治随机Kuramoto-Sivashinsky方程的Wong-Zakai逼近[J]. 西南大学学报(自然科学版), 2018, 35(4): 27-32.

  6. 6. Temam, R. (1997) Infinite-Dimensional Dynamical System in Mechanics and Physics. Springer-Verlag, New York. https://doi.org/10.1007/978-1-4612-0645-3

  7. 7. Simon, J. (1986) Compact Sets in the Space L p (0,T;B). Annali di Matematica Pura ed Applicata, 146, 65-96. https://doi.org/10.1007/BF01762360

期刊菜单