Advances in Clinical Medicine
Vol. 10  No. 11 ( 2020 ), Article ID: 38601 , 9 pages
10.12677/ACM.2020.1011380

血流重建术与血管性认知障碍的研究进展

李梦园*,王涛#,任蓉蓉,安文娜

延安大学附属医院,陕西 延安

收稿日期:2020年10月21日;录用日期:2020年11月9日;发布日期:2020年11月16日

摘要

颈动脉狭窄或大脑中动脉狭窄会导致颅内血流下降,进而导致认知功能障碍,血流重建术是恢复颅内血流的重要方法。血流重建术可降低卒中发病率,提高颅内灌注压,改善脑代谢,从而改善认知功能,但术后高灌注、微栓塞又是引起认知功能下降的另一危险因素,不可忽视的是年龄,基础疾病导致的认知功能下降。目前血流重建术是否可以改善认知功能,仍存较大争议,无症状性颅内血管重度狭窄是否需要进行血流重建术,临床尚无定论。目前将血流重建术与血管性认知障碍研究进展进行综述。

关键词

血流重建术,血管性认知障碍,综述,颈内动脉狭窄

Advances in the Study of Blood Flow Reconstruction and Vascular Cognitive Impairment

Mengyuan Li*, Tao Wang#, Rongrong Ren, Wenna An

Affiliated Hospital of Yan’an University, Yan’an Shaanxi

Received: Oct. 21st, 2020; accepted: Nov. 9th, 2020; published: Nov. 16th, 2020

ABSTRACT

Carotid artery stenosis or middle cerebral artery stenosis will lead to intracranial blood flow decline, leading to cognitive dysfunction. Blood flow reconstruction is an important method to restore intracranial blood flow. Blood flow reconstruction can reduce the incidence of stroke, improve intracranial perfusion pressure, improve cerebral metabolism, and thus improve cognitive function. However, postoperative high perfusion and microembolism are another risk factor for cognitive decline, which cannot be ignored is the decline in cognitive function caused by age and underlying diseases. At present, there is still a great debate on whether reconstructive surgery can improve cognitive function. Whether reconstructive surgery is necessary for asymptomatic severe intracranial vascular stenosis has not been concluded clinically. The research progress of blood flow reconstruction and vascular cognitive impairment is reviewed.

Keywords:Reconstruction of Blood Flow, Vascular Cognitive Impairment, Review, Carotid Stenosis

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

随着社会老年人口的增长,越来越多的人会存在认知能力下降,无论是轻度认知障碍还是老年痴呆。认知功能下降会降低生活质量,给照料者和医疗保健系统造成负担。然而,越来越多的研究表明,脑血流受损会影响认知功能,血流重建术可改善认知功能。

2. 血流重建术与血管性认知障碍关系

血管性认知障碍(vascular cognitive impairment VCI)是指各种脑血管疾病和相关危险因素导致的从轻度认知障碍到痴呆的一类综合征,涵盖了血管源性认知损害从轻到重的整个发病过程 [1]。其常影响高级大脑功能,特别是执行和记忆功能 [2]。尽管VCI的定义及诊断标准仍有争议,可以将VCI依临床特征分类,分为轻度血管认知障碍,血管性痴呆和混合性痴呆,其危险因素包括年龄、高血压、高脂血症、高尿酸血症,糖尿病,心脏病,中风,颈动脉斑块,吸烟,和低教育水平 [3] [4]。血管狭窄是导致血流减少,认知功能下降的常见原因。

对颈动脉狭窄患者研究发现,绝大多数(78%)报告有认知障碍 [5]。M. Ishikawa等人使用认知功能量表和单光子发射计算机断层扫描(Single-Photon Emission Computed Tomography SPECT)研究发现,患有严重狭窄性颅内动脉疾病的患者,认知障碍最有可能与广泛的、非选择性的双侧脑血流量(cerebral blood flow, CBF)减少有关 [6]。有严重的颅内动脉狭窄性疾病的患者通常表现为认知障碍,而无局灶性神经功能缺损,在磁共振成像(Magnetic Resonance Imaging, MRI)上也没有发现任何病因性病变 [7]。

3. 病理生理

血管狭窄会导致脑血流减少,进而使颅内灌注压下降,引起脑代谢异常,影响认知功能。TABASCO研究证实炎症介质与淀粉样蛋白沉积在卒中后VCI的发生发展中起重要作用 [8]。Back等人的研究发现,脑血管闭塞通过阻碍淋巴回流而导致淀粉样蛋白清除障碍,并随着神经炎症因子生成而逐步发展为VCI [9]。由于远端白质完整性受到长期影响,认知功能下降平均在2年后出现 [10]。Moretti等人发现认知障碍患者的H-alpha/L-alpha与正常人相比出现异常激活,提示这些脑区发生了相应改变 [11]。

大脑网络结构的广泛破坏是导致认知功能下降的又一重要原因 [6]。脑血流量与脑代谢密切相关,其调节是由复杂的血管网络介导的。Ishikawa等报道认知功能与脑灌注密切相关 [12]。颈动脉严重狭窄时,侧支血流通过Willis环等大血管和表面的小血管,以及脑内的小血管防止血流受限。当脑灌注压(cerebral perfusion pressure, CPP)降低时,则触发血管扩张以维持CBF。如果灌注压持续不足,自动调节功能受损,组织的血流量降低。为了避免血流量减少,氧提取分数(oxygen extraction fraction, OEF)增加以维持脑代谢 [13]。然而,随着灌注压的持续降低,会引起缺血 [14],并对脑组织造成不可逆的损害 [15]。OEF增加和脑血流储备(cerebro vascular reserve, CVR)受损与认知障碍 [16] [17] 和痴呆有关 [14] [18]。Marshall等研究表明,在有症状的颈动脉疾病患者中,单侧脑灌注不足、大脑半球血流动力学衰竭、OEF升高与认知障碍有关。与正电子发射计算机断层扫描(Positron Emission Tomography, PET)没有改变的患者相比,有症状的颈动脉闭塞患者中,经PET测量的同侧OEF增加(≥1.13)与认知功能障碍有关。这种关系也适用于仅有短暂性脑缺血发作(transient ischemic attack, TIA)的患者 [17]。

脑血流减少40%~50%可导致细胞损伤 [19],最终导致神经退行性病变和认知功能障碍 [22]。事实上,慢性脑灌注不足与神经元死亡和反应性星形胶质细胞增生有关 [15]。Ruitenberg等认为CBF受损是导致杏仁核和海马结构萎缩的危险因素。在6.5年的随访期间,与CBF减少的受试者相比,脑血管反应性(CVR)更强的个体拥有更大的杏仁核和海马体积,认知能力下降的可能性较小 [20]。Haratz等人进行了测试CVR和认知分数。98例CVR受损患者狭窄同侧血流动力学障碍的整体认知评分和执行功能呈负相关 [19]。提高CVR,发现重复、构造能力、记忆、计算和相似性功能改善 [6]。认知障碍组的CVR与认知正常组有显著性差异,而两组CBF无显著性差异 [6]。所以脑血流储备与认知障碍密切相关。

4. 血流重建对认知功能的影响

Antonopoulos等人对16项研究进行了meta分析,评估了颈内动脉支架置入术(carotid artery stenosis, CAS)前后认知表现,发现支架置入后的整体认知、注意力/精神运动速度和记忆方面的较术前有所改善 [21]。Fearn等使用超声对159例有症状的颈内动脉内膜切除术(carotid endarterectomy, CEA)患者的CVR进行测量,在术后2个月,CEA患者的记忆力、注意力和准确性均有改善,其中CVR受损患者改善最大 [22]。Chen等人比较了34例无症状颈内动脉狭窄(asyptomatic carotid stenosis, ACS)患者,这些患者在治疗前和治疗后3个月进行CT灌注扫描,测量脑血容量(cerebral blood volume, CBV)、CBF和认知功能,研究的结果证明了脑血流改善与CAS后认知改善有关 [23]。Baracchini等人的研究发现,有症状患者CEA术后的认知能力明显改善,无症状患者的认知功能无明显变化 [24]。血流再通可改善认知功能支持了低灌注介导的认知障碍可能是可逆的这一观点 [25]。

此外,有些研究显示,血流重建并不能改善患者认知功能。Bossema等人比较了56例计划行CEA的严重ACS患者、46例健康对照者和23例计划行股浅动脉内膜切除术(REA)的患者,与健康对照组相比,CEA和REA患者的基线认知评估显示,他们在注意力、语言和视觉记忆、运动行为规划和精神运动技能以及执行功能方面的表现有所下降。两组患者在3个月和12个月时再次接受评估。CEA和REA患者在语言记忆、执行功能和计划速度方面都有显著的改善,但在治疗过程中没有显著的差异。由于REA不涉及大脑灌注的改变,所以两组患者的认知能力的提高可能由于手术使心理压力得到了缓解 [26]。Lunn等人回顾了28项研究,发现57%的人报告CEA后认知能力改善,而其余43%的人报告认知能力下降或没有改变 [27]。Feliziani等人研究发现无论手术方式如何,颈动脉血流重建,均不会会改善患者认知功能 [28]。

综上所述,血流重建能否改善认知功能仍不能确定,目前正在进行的主要针对无症状性颈动脉狭窄血管再通术及认知功能的多中心、随机对照临床试验(CREST-H)有望发现血管狭窄与认知障碍之间的关系,可惜目前试验仍在进行中 [29]。

5. 评估

VCI的诊断依赖于广泛的临床评估,包括病理、神经心理测试和多模式神经影像测量 [30]。当缺乏合适的大脑样本用于病理诊断时,Skrobot等人建议使用神经心理学和影像学评估来诊断VCI [31]。然而,目前还没有针对VCI患者的专门神经心理学测试。

神经心理学测试在临床中容易实施,MMSE量表,MoCA量表,Mattis痴呆评定量表,长谷川痴呆量表,神经行为认知状态检查,阿尔茨海默病评价量表,剑桥认知功能检查,韦氏成人智力量表等都可用来评估认知功能,MMSE与MoCA量表应用最为广泛。Xu等对102例皮质下缺血性脑血管病认知功能评估示,MoCA筛查轻度认知功能障碍敏感度和特异度为76.7%和81.4%,MMSE为58.1%和71.2%,认为MoCA较MMSE更敏感 [32]。Dong等研究发现,MoCA较MMSE敏感,易发现视空间/执行功能,延迟回忆和注意力损害的患者 [33]。

大脑的结构变化与VCI密切相关,可以通过结构磁共振成像(sMRI)检测到VCI [29]。Raja等人利用动态增强MRI发现VCI的新机制为血脑屏障功能障碍 [34]。Suri等人使用3.0 TMRI确定了颅内血管狭窄和认知功能障碍与白质高信号和血管改变的相关性 [35]。此外,高分辨率MRI的应用可以发现脑血管周围间隙的改变 [36]。弥散张量成像(Diffusion Tensor Imaging, DTI),提示白质结构损伤可成为VCI的生物标志物 [27]。Williams等使用图像分割技术预测白质微观结构损伤,可作为VCI的替代标记 [37]。脑血流动力学灌注,如SPECT和PET,可评价脑代谢水平和血灌流,反映脑功能并提供VCI证据 [38]。虽然已证实轻度认知障碍与脑葡萄糖代谢过低密切相关,但脑代谢与VCI的相关性尚不清楚 [11]。

功能磁共振成像(functional MRI)为一种基于血氧水平依赖造影增强原理评估神经功能的有效方法,它测量大脑不同区域中与血流动力学变化引起相关的神经元的活动 [39]。在网络层面,Lei等人通过分析背外侧前额叶皮层和后扣带皮层的低频波动幅值,发现默认模式网络和执行控制网络可以影响VCI患者的执行功能 [40]。氧-15正电子发射断层扫描(PET O15)测量脑血流、脑代谢水平,发现颈动脉疾病中认知障碍和胼胝体萎缩有关 [41]。

脑电图,反映脑部电生理和脑网络功能,是一种利用非线性动态分析和时频分析,表达信息传送准确性的及时处理力 [42]。随着认知功能障碍的进展,脑电图异常程度也加重,特别是事件相关电位,提示脑电图可作为评价认知功能障碍严重程度的可靠客观指标 [43]。

功能近红外光谱(functional near-infrared spectroscopy, fNIRS)是一种反映认知水平的新型监测方法。它在认知评价中具有从特殊任务中反映自然情况下的神经功能的优势 [44]。Beishon 等人利用近红外光谱法评估脑血流动力学和氧代谢,早期预测认知能力下降 [45]。

脑磁图(magnetoencephalography, MEG)是另一种检测更深入的脑动力学方法,其传导效应更小,时间分辨率更高 [46]。利用脑磁图,Baillet总结了脑区域间的功能连通性和脑系统中网络通讯模式的出现的机制 [47]。

6. 治疗及进展

治疗认知功能障碍的药物,多奈哌齐和加兰他敏,已被普遍用于治疗VCI [48]。这些药物对血管性认知障碍可能有改善作用,但疗效尚不清楚。常见不良反应有腹泻、肌肉痉挛、乏力、恶心等。

根据VCI的发病机制,推测血流重建可增加脑血流量可以改善认知功能 [49]。颈动脉支架植入是一种可以提高脑灌注的方法,通过功能磁共振成像,发现在一定程度上可改善全脑认知和记忆,原因在于增加了左额回的和右额上回与后扣带皮层的连接处的脑血流灌注 [50]。Lattanzi等人的试验表明,随着颈动脉内膜切除术后脑血管血流的恢复,患者认知能力改善 [51]。Mami Ishikawa等人对脑内大血管狭窄患者行颞浅动脉与大脑中动脉吻合术后,认知能力的改善,提示CVR与认知功能相关 [12]。Noshiro等人通过神经成像,证实烟雾病搭桥术后可改善脑的网络结构,提高认知功能 [52]。颈动脉狭窄血流重建术可改善患者的认知障碍和CVR水平 [7]。

虽然神经保护和神经康复已成为治疗VCI的重要方法,但神经康复暂无全面可靠的方法以提高患者的认知功能。Perng等人的meta分析发现,症状性认知训练是一种改善认知的有效方法 [53]。Ahn等人研究长期的踏车运动可通过替换缺血海马的多个受损结构来恢复记忆功能,并提示在缺血神经元死亡后开始长期运动可以作为一种慢性神经恢复策略是有效的 [54]。

经颅磁刺激(transcranial magnetic stimulation, TMS)可增强脑皮层兴奋性和突触可塑性,提示其可能恢复受损神经的可塑性,并进一步了解神经传递途径在VCI发病机制中的作用 [55]。

7. 血流重建术后影响认知障碍的原因

众多因素会影响认知功能,例如年龄,基础疾病,术后并发症等。Wasser等人 [56] 研究了CEA和CAS在症状和无症状患者中的认知功能,CEA和CAS 在小于 68岁的患者发现认知功能改善;这在老年患者上并不成立。在CEA患者中,年龄和糖尿病增加了认知能力下降的风险 [57]。Ortega等人研究发现,年轻患者的认知功能改善优于老年患者 [58]。Borroni等人对78例颈动脉严重狭窄患者行CEA后行认知评估后发现,40%的患者认知功能无改善,原因可能是本研究纳入了心力衰竭和心律失常的患者,这些均会影响认知功能 [59]。

为了确定术后的高灌注是否与认知功能障碍有关,Ogasawara等人 [60] 研究发现有围手术期并发症(如高灌注或脑缺血)的患者中存在认知功能障碍。回归分析发现,围手术期高灌注可预测术后认知障碍。脑高灌注可出现在CEA或CAS后,继发于自身调节反应的改变,最终导致认知能力下降、毛细血管损伤、坏死和脑出血 [61]。

手术相关微栓塞是影响术后认知功能的另一重要原因,术后微栓塞会导致脑微出血,会导致认知功能下降 [62]。

8. 研究展望

大部分研究证实了血流重建术可改善患者认知功能。这一结论与运动研究发现老年人运动会使CBF的增加、改善认知能力 [63] 的结果一致。我们期待(CREST-H)发现血管狭窄与认知障碍之间的关系,以助筛选出适合血流重建的人群,提高患者生活质量。

文章引用

李梦园,王 涛,任蓉蓉,安文娜. 血流重建术与血管性认知障碍的研究进展
Advances in the Study of Blood Flow Reconstruction and Vascular Cognitive Impairment[J]. 临床医学进展, 2020, 10(11): 2515-2523. https://doi.org/10.12677/ACM.2020.1011380

参考文献

  1. 1. Dichgans, M. and Leys, D. (2017) Vascular Cognitive Impairment. Circulation Research, 120, 573-591. https://doi.org/10.1161/CIRCRESAHA.116.308426

  2. 2. Smith, E.E. (2017) Clinical Presentations and Epidemiology of Vascular Dementia. Clinical Science (London), 131, 1059-1068. https://doi.org/10.1042/CS20160607

  3. 3. Gorelick, P.B., Scuteri, A., Black, S.E., Decarli, C., Greenberg, S.M., Iadecola, C., Launer, L.J., Laurent, S., Lopez, O.L., Nyenhuis, D., et al. (2011) Vascular Contributions to Cognitive Impairment and Dementia: A Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 42, 2672-2713. https://doi.org/10.1161/STR.0b013e3182299496

  4. 4. Iadecola, C., Yaffe, K., Biller, J., Faraci, F.M., Gorelick, P.B., Gulati, M., Kamel, H., Knopman, D.S., Launer, L.J., Saczynski, J.S., et al. (2016) Impact of Hypertension on Cognitive Function: A Scientific Statement from the American Heart Association. Hypertension, 68, e67-e94. https://doi.org/10.1161/HYP.0000000000000053

  5. 5. Bakker, F.C., Klijn, C.J.M., Jennekens-Schinkel, A. and Kappelle, L.J. (2000) Cognitive Disorders in Patients with Occlusive Disease of the Carotid Artery: A Systematic Review of the Literature. Journal of Neurology, 247, 669-676. https://doi.org/10.1007/s004150070108

  6. 6. Ishikawa, M., Saito, H., Yamaguro, T., Ikoda, M., Ebihara, A., Kusaka, G. and Tanaka, Y. (2016) Cognitive Impairment and Neurovascular Function in Patients with Severe Steno-Occlusive Disease of a Main Cerebral Artery. Journal of the Neurological Sciences, 361, 43-48. https://doi.org/10.1016/j.jns.2015.12.019

  7. 7. Demarin, V., Zavoreo, I. and Basic Kes, V. (2012) Carotid Artery Disease and Cognitive Impairment. Journal of Neurological Sciences, 322, 107-111. https://doi.org/10.1016/j.jns.2012.07.008

  8. 8. Mijajlović, M.D., Pavlović, A., Brainin, M., Heiss, W.D., Quinn, T.J., Ihle-Hansen, H.B., Hermann, D.M., Assayag, E.B., Richard, E., Thiel, A., et al. (2017) Post-Stroke Dementia—A Comprehensive Review. BMC Medicine, 15, Article No.: 11. https://doi.org/10.1186/s12916-017-0779-7

  9. 9. Back, D.B., Kwon, K.J., Choi, D.H., Shin, C.Y., Lee, J., Han, S.H. and Kim, H.Y. (2017) Chronic Cerebral Hypoperfusion Induces Post-Stroke Dementia Following Acute Ischemic Stroke in Rats. Journal of Neuroinflammation, 14, Article No.: 216. https://doi.org/10.1186/s12974-017-0992-5

  10. 10. Schaapsmeerders, P., Tuladhar, A.M., Arntz, R.M., Franssen, S., Maaijwee, N.A., Rutten-Jacobs, L.C., Schoonderwaldt, H.C., Dorresteijn, L.D., van Dijk, E.J., Kessels, R.P., et al. (2016) Remote Lower White Matter Integrity Increases the Risk of Long-Term Cognitive Impairment after Ischemic Stroke in Young Adults. Stroke, 47, 2517-2525. https://doi.org/10.1161/STROKEAHA.116.014356

  11. 11. Moretti, D.V., Pievani, M. and Pini, L. (2017) Cerebral PET Glucose Hypometabolism in Subjects with Mild Cognitive Impairment and Higher EEG High-Alpha/Low-Alpha Frequency Power Ratio. Neurobiology of Aging, 58, 213-224. https://doi.org/10.1016/j.neurobiolaging.2017.06.009

  12. 12. Ishikawa, M., Kusaka, G., Terao, S., Nagai, M., Tanaka, Y. and Naritaka, H. (2017) Improvement of Neurovascular Function and Cognitive Impairment after STA-MCA Anastomosis. Journal of Neurological Sciences, 373, 201-207. https://doi.org/10.1016/j.jns.2016.12.065

  13. 13. Bor-Seng-Shu, E., Kita, W.S., Figueiredo, E.G., Paiva, W.S., Fonoff, E.T., Teixeira, M.J., et al. (2012) Cerebral Hemodynamics: Concepts of Clinical Importance. Arquivos de Neuro-Psiquiatria, 70, 357-365. https://doi.org/10.1590/S0004-282X2012000500010

  14. 14. De la Torre, J.C. (2006) Critically Attained Threshold of Cerebral Hypoperfusion: Can It Cause Alzheimer’s Disease? Ann N Y Acad Sci, 903, 424-436.

  15. 15. Cechetti, F., Pagnussat, A.S., Worm, P.V., Elsner, V.R., Ben, J., da Costa, M.S., et al. (2012) Chronic Brain Hypoperfusion Causes Early Glial Activation and Neuronal Death, and Subsequent Long-Term Memory Impairment. Brain Research Bulletin, 87, 109-116. https://doi.org/10.1016/j.brainresbull.2011.10.006

  16. 16. Yew, B. and Nation, D.A. (2017) Cerebrovascular Resistance: Effects on Cognitive Decline, Cortical Atrophy, and Progression to Dementia. Brain, 140, 1987-2001. https://doi.org/10.1093/brain/awx112

  17. 17. Marshall, R.S., Festa, J.R., Cheung, Y.K., Chen, R., Pavol, M.A., Derdeyn, C.P., et al. (2012) Cerebral Hemodynamics and Cognitive Impairment. Neurology, 78, 250-255. https://doi.org/10.1212/WNL.0b013e31824365d3

  18. 18. Haratz, S., Weinstein, G., Molshazki, N., Beeri, M.S., Ravona-Springer, R., Marzeliak, O., et al. (2015) Impaired Cerebral Hemodynamics and Cognitive Performance in Patients with Atherothrombotic Disease. Journal of Alzheimer’s Disease, 46, 137-144. https://doi.org/10.3233/JAD-150052

  19. 19. Farkas, E. and Luiten, P.G.M. (2001) Cerebral Microvascular Pathology in Aging and Alzheimer’s Disease. Progress in Neurobiology, 64, 575-611. https://doi.org/10.1016/S0301-0082(00)00068-X

  20. 20. Ruitenberg, A., den Heijer, T., Bakker, S.L., van Swieten, J.C., Koudstaal, P.J., Hofman, A., et al. (2005) Cerebral Hypoperfusion and Clinical Onset of Dementia: The Rotterdam Study. Annals of Neurology, 57, 789-794. https://doi.org/10.1002/ana.20493

  21. 21. Antonopoulos, C.N., Kakisis, J.D., Sfyroeras, G.S., Moulakakis, K.G., Kallinis, A., Giannakopoulos, T., et al. (2015) The Impact of Carotid Artery Stenting on Cognitive Function in Patients with Extracranial Carotid Artery Stenosis. Annals of Vascular Surgery, 29, 457-469. https://doi.org/10.1016/j.avsg.2014.10.024

  22. 22. Boehm-Sturm, P., Fuchtemeier, M., Foddis, M., Mueller, S., Trueman, R.C., Zille, M., Rinnenthal, J.L., Kypraios, T., Shaw, L., Dirnagl, U., et al. (2017) Neuroimaging Biomarkers Predict Brain Structural Connectivity Change in a Mouse Model of Vascular Cognitive Impairment. Stroke, 48, 468-475. https://doi.org/10.1161/STROKEAHA.116.014394

  23. 23. Chen, Y.H., Lin, M.S., Lee, J.K., Chao, C.L., Tang, S.C., Chao, C.C., et al. (2012) Carotid Stenting Improves Cognitive Function in Asymptomatic Cerebral Ischemia. The International Journal of Cardiology, 157, 104-107. https://doi.org/10.1016/j.ijcard.2011.10.086

  24. 24. Baracchini, C., Mazzalai, F., Gruppo, M., Lorenzetti, R., Ermani, M. and Ballotta, E. (2012) Carotid Endarterectomy Protects Elderly Patients from Cognitive Decline: A Prospective Study. Surgery, 151, 99-106. https://doi.org/10.1016/j.surg.2011.06.031

  25. 25. Fearn, S.J., Hutchinson, S., Riding, G., Hill-Wilson, G., Wesnes, K. and McCollum, C.N. (2003) Carotid Endarterectomy Improves Cognitive Function in Patients with Exhausted Cerebrovascular Reserve. European Journal of Vascular and Endovascular Surgery, 26, 529-536. https://doi.org/10.1016/S1078-5884(03)00384-8

  26. 26. Bossema, E.R., Brand, N., Moll, F.L., Ackerstaff, R.G. and van Doornen, L.J. (2005) Does Carotid Endarterectomy Improve Cognitive Functioning? Journal of Vascular Surgery, 41, 775-781; discussion 81. https://doi.org/10.1016/j.jvs.2004.12.057

  27. 27. Lunn, S., Crawley, F., Harrisson, M.J.G., Brown, M.M. and Newman, S.P. (1999) Impact of Carotid Endarterectomy upon Cognitive Functioning. A Systematic Review of the Literature. Cerebrovascular Diseases, 9, 74-81. https://doi.org/10.1159/000319066

  28. 28. Feliziani, F.T., Polidori, M.C., De Rango, P., Mangialasche, F., Monastero, R., Ercolani, S., et al. (2010) Cognitive Performance in Elderly Patients Undergoing Carotid Endarterectomy or Carotid Artery Stenting: A Twelve-Month Follow-Up Study. Cerebrovascular Diseases, 30, 244-251. https://doi.org/10.1159/000319066

  29. 29. Marshall, R.S., Lazar, R.M., Liebeskind, D.S., Connolly, E.S., Howard, G., Lal, B.K., Huston, J., Meschia, J.F. and Borott, T.G. (2018) Carotid Revascularization and Medical Management for Asymoptomatic Carotid Stenosis-Hemo- dynamics (CREST-H): Study Design and Rationable. International Journal of Stroke, 13, 985-991. https://doi.org/10.1177/1747493018790088

  30. 30. Kalaria, R.N. (2018) The Pathology and Pathophysiology of Vascular Dementia. Neuropharmacology, 134, 226-239. https://doi.org/10.1016/j.neuropharm.2017.12.030

  31. 31. Skrobot, O.A., Black, S.E., Chen, C., DeCarli, C., Erkinjuntti, T., Ford, G.A., Kalaria, R.N., O’Brien, J., Pantoni, L., Pasquier, F., et al. (2018) Progress toward Standardized Diagnosis of Vascular Cognitive Impairment: Guidelines from the Vascular Impairment of Cognition Classification Consensus Study. Alzheimer’s & Dementia, 14, 280-292. https://doi.org/10.1016/j.jalz.2017.09.007

  32. 32. Xu, Q., Cao, W.W., Mi, J.H., et al. (2014) Brief Screening for Mild Cognitive Impairment in Subcortical Ischemic Vascular Disease: A Comparison Study of the Montreal Cognitive Assessment with the Mini-Mental State Examination. European Neurology, 71, 106-114. https://doi.org/10.1159/000353988

  33. 33. Dong, Y., Shama, V.K., Chan, B.P., et al. (2010) The Montreal Cognitive Assessment (MoCA) Is Superior to the Mini-Mental State Examination (MMSE) for the Detection of Vascular Cognitive Impairment after Acute Stroke. Journal of Neurological Sciences, 299, 15-18. https://doi.org/10.1016/j.jns.2010.08.051

  34. 34. Raja, R., Rosenberg, G.A. and Caprihan, A. (2018) MRI Measurements of Blood-Brain Barrier Function in Dementia: A Review of Recent Studies. Neuropharmacology, 134, 259-271. https://doi.org/10.1016/j.neuropharm.2017.10.034

  35. 35. Suri, M.F.K., Zhou, J., Qiao, Y., Chu, H., Qureshi, A.I., Mosley, T., Gottesman, R.F., Wruck, L., Sharrett, A.R., Alonso, A., et al. (2018) Cognitive Impairment and Intracranial Atherosclerotic Stenosis in General Population. Neurology, 90, e1240-e1247. https://doi.org/10.1212/WNL.0000000000005250

  36. 36. Bouvy, W.H., Zwanenburg, J.J., Reinink, R., Wisse, L.E.M., Luijten, P.R., Kappelle, L.J., Geerlings, M.I. and Biessels, G.J., Utrecht Vascular Cognitive Impairment (VCI) Study Group (2016) Perivascular Spaces on 7 Tesla Brain MRI Are Related to Markers of Small Vessel Disease but Not to Age or Cardiovascular Risk Factors. Journal of Cerebral Blood Flow & Metabolism, 36, 1708-1717. https://doi.org/10.1177/0271678X16648970

  37. 37. Williams, O.A., Zeestraten, E.A., Benjamin, P., Lambert, C., Lawrence, A.J., Mackinnon, A.D., Morris, R.G., Markus, H.S., Charlton, R.A. and Barrick, T.R. (2017) Diffusion Tensor Image Segmentation of the Cerebrum Provides a Single Measure of Cerebral Small Vessel Disease Severity Related to Cognitive Change. NeuroImage: Clinical, 16, 330-342. https://doi.org/10.1016/j.nicl.2017.08.016

  38. 38. Charidimou, A., Boulouis, G., Gurol, M.E., Ayata, C., Bacskai, B.J., Frosch, M.P., Viswanathan, A. and Greenberg, S.M. (2017) Emerging Concepts in Sporadic Cerebral Amyloid Angiopathy. Brain, 140, 1829-1850. https://doi.org/10.1093/brain/awx047

  39. 39. Cheema, I., Switzer, A.R., McCreary, C.R., Hill, M.D., Frayne, R., Goodyear, B.G. and Smith, E.E. (2017) Functional Magnetic Resonance Imaging Responses in CADASIL. Journal of Neurological Sciences, 375, 248-254. https://doi.org/10.1016/j.jns.2017.02.004

  40. 40. Lei, Y., Li, Y.J., Guo, Q.H., Liu, X.D., Liu, Z., Ni, W., Su, J.B., Yang, H., Jiang, H.Q., Xu, B., et al. (2017) Postoperative Executive Function in Adult Moyamoya Disease: A Preliminary Study of Its Functional Anatomy and Behavioral Correlates. Journal of Neurosurgery, 126, 527-536. https://doi.org/10.3171/2015.12.JNS151499

  41. 41. Yamauchi, H., Fukuyama, H., Nagahama, Y., Katsumi, Y., Dong, Y., Konishi, J., et al. (1996) Atrophy of the Corpus Callosum Associated with Cognitive Impairment and Widespread Cortical Hypometabolism in Carotid Artery Occlusive Disease. Archives of Neurology, 53, 1103-1109. https://doi.org/10.1001/archneur.1996.00550110039011

  42. 42. Al-Qazzaz, N.K., Ali, S.H.B.M., Ahmad, S.A., et al. (2018) Discrimination of Stroke-Related Mild Cognitive Impairment and Vascular Dementia Using EEG Signal Analysis. Medical & Biological Engineering & Computing, 56, 137-157. https://doi.org/10.1007/s11517-017-1734-7

  43. 43. Swatridge, K., Regan, K. and Staines, W.R. (2017) The Acute Effects of Aerobic Exercise on Cognitive Control among People with Chronic Stroke. Journal of Stroke and Cerebrovascular Diseases, 26, 2742-2748. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.06.050

  44. 44. de Moraes, F.M. and Bertolucci, P.F. (2018) The Contribution of Supplementary Tests in the Differential Diagnosis of Dementia. American Journal of Alzheimer’s Disease & Other Dementias, 33, 131-137. https://doi.org/10.1177/1533317517744060

  45. 45. Beishon, L., Haunton, V.J. and Panerai, R.B. (2017) Cerebral Hemodynamics in Mild Cognitive Impairment: A Systematic Review. Journal of Alzheimer’s Disease, 59, 369-385. https://doi.org/10.3233/JAD-170181

  46. 46. Amezquita-Sanchez, J.P., Adeli, A. and Adeli, H. (2016) A New Methodology for Automated Diagnosis of Mild Cognitive Impairment (MCI) Using Magnetoencephalography (MEG). Behavioural Brain Research, 305, 174-180. https://doi.org/10.1016/j.bbr.2016.02.035

  47. 47. Baillet, S. (2017) Magnetoencephalography for Brain Electrophysiology and Imaging. Nature Neuroscience, 20, 327-339. https://doi.org/10.1038/nn.4504

  48. 48. Farooq, M.U., Min, J., Goshgarian, C. and Gorelick, P.B. (2017) Pharmacotherapy for Vascular Cognitive Impairment. CNS Drugs, 31, 759-776. https://doi.org/10.1007/s40263-017-0459-3

  49. 49. Soman, S., Prasad, G., Hitchner, E., Massaband, P., Moseley, M.E., Zhou, W. and Rosen, A.C. (2016) Brain Structural Connectivity Distinguishes Patients at Risk for Cognitive Decline after Carotid Interventions. Human Brain Mapping, 37, 2185-2194. https://doi.org/10.1002/hbm.23166

  50. 50. Wang, T., Sun, D., Liu, Y., Mei, B., Li, H., Zhang, S. and Zhang, J. (2017) The Impact of Carotid Artery Stenting on Cerebral Perfusion, Functional Connectivity, and Cognition in Severe Asymptomatic Carotid Stenosis Patients. Frontiers in Neurology, 8, 403. https://doi.org/10.3389/fneur.2017.00403

  51. 51. Lattanzi, S., Carbonari, L., Pagliariccio, G., Bartolini, M., Cagnetti, C., Viticchi, G., Buratti, L., Provinciali, L. and Silvestrini, M. (2018) Neurocognitive Functioning and Cerebrovascular Reactivity after Carotid Endarterectomy. Neurology, 90, e307-e315. https://doi.org/10.1212/WNL.0000000000004862

  52. 52. Noshiro, S., Mikami, T., Komatsu, K., Kanno, A., Enatsu, R., Yazawa, S., Nagamine, T., Matsuhashi, M. and Mikuni, N. (2016) Neuromodulatory Role of Revascularization Surgery in Moyamoya Disease. World Neurosurgery, 91, 473-482. https://doi.org/10.1016/j.wneu.2016.04.087

  53. 53. Perng, C.-H., Chang, Y.-C. and Tzang, R.-F. (2018) The Treatment of Cognitive Dysfunction in Dementia: A Multiple Treatments Meta-Analysis. Psychopharmacology (Berl), 235, 1571-1580. https://doi.org/10.1007/s00213-018-4867-y

  54. 54. Ahn, J.H., Choi, J.H., Park, J.H., Kim, I.H., Cho, J.H., Lee, J.C., Koo, H.M., Hwangbo, G., Yoo, K.Y. and Lee, C.H. (2016) Long-Term Exercise Improves Memory Deficits via Restoration of Myelin and Microvessel Damage, and Enhancement of Neurogenesis in the Aged Gerbil Hippocampus after Ischemic Stroke. Neurorehabilitation and Neural Repair, 30, 894-905. https://doi.org/10.1177/1545968316638444

  55. 55. Lanza, G., Bramanti, P., Cantone, M., Pennisi, M., Pennisi, G. and Bella, R. (2017) Vascular Cognitive Impairment through the Looking Glass of Transcranial Magnetic Stimulation. Behavioural Neurology, 2017, Article ID: 1421326. https://doi.org/10.1155/2017/1421326

  56. 56. Marshall, R.S., Asllani, I., Pavol, M.A., Cheung, Y.K. and Lazar, R.M. (2017) Altered Cerebral Hemodyamics and Cortical Thinning in Asymptomatic Carotid Artery Stenosis. PLoS One, 12, e0189727. https://doi.org/10.1371/journal.pone.0189727

  57. 57. Mocco, J., Wilson, D.A., Komotar, R.J., Zurica, J., Mack, W.J., Halazun, H.J., et al. (2006) Predictors of Neurocognitive Decline after Carotid Endarterectomy. Neurosurgery, 58, 844-850; discussion-50. https://doi.org/10.1227/01.NEU.0000209638.62401.7E

  58. 58. Ortega, G., Alvarez, B., Quintana, M., Yugueros, X., Alvarez-Sabin, J. and Matas, M. (2014) Asymptomatic Carotid Stenosis and Cognitive Improvement Using Transcervical Stenting with Protective Flow Reversal Technique. European Journal of Vascular and Endovascular Surgery, 47, 585-592. https://doi.org/10.1016/j.ejvs.2014.02.022

  59. 59. Borroni, B., Tiberio, G., Bonardelli, S., Cottini, E., Facheris, M., Akkawi, N., et al. (2004) Is Mild Vascular Cognitive Impairment Reversible? Evidence from a Study on the Effect of Carotidendarterectomy. Neurological Research, 26, 594-597. https://doi.org/10.1179/016164104225016245

  60. 60. O’Leary, D.H., Polak, J.F., Kronmal, R.A., Kittner, S.J., Bond, M.G., Wolfson Jr., S.K., et al. (1992) Distribution and Correlates of Sonographically Detected Carotid Artery Disease in the Cardiovascular Health Study. The CHS Collaborative Research Group. Stroke, 23, 1752-1760. https://doi.org/10.1161/01.STR.23.12.1752

  61. 61. Bernstein, M., Fleming, J.F. and Deck, J.H. (1984) Cerebral Hyperperfusion after Carotid Endarterectomy: A Cause of Cerebral Hemorrhage. Neurosurgery, 15, 50-56. https://doi.org/10.1227/00006123-198407000-00010

  62. 62. Ogawa Ito, A., Shindo, A., Ii, Y., Matsuura, K., Tabei, K.I., Maeda, M., Umino, M., Suzuki, Y., Shiba, M., Toma, N., Suzuki, H. and Tomimoto, H. (2019) Microbleeds after Carotid Artervstenting: Small Embolism May Induce Cerebral Microbleeds. Cerebrovascular Diseases Extra, 9, 57-65. https://doi.org/10.1159/000500112

  63. 63. Ainslie, P.N., Cotter, J.D., George, K.P., Lucas, S., Murrell, C., Shave, R., et al. (2008) Elevation in Cerebral Blood Flow Velocity with Aerobic Fitness throughout Healthy Human Ageing. The Journal of Physiology, 586, 4005-4010. https://doi.org/10.1113/jphysiol.2008.158279

  64. NOTES

    *第一作者。

    #通讯作者。

期刊菜单