Advances in Clinical Medicine
Vol. 11  No. 11 ( 2021 ), Article ID: 46288 , 7 pages
10.12677/ACM.2021.1111721

CTRP9与糖尿病视网膜病变关系的研究进展

朱晓燕1,刘勤1,2*,金涛1,白惠玲2,张书2

1甘肃中医药大学,第一临床医学院(甘肃省人民医院),甘肃 兰州

2甘肃省人民医院,眼科,甘肃 兰州

收稿日期:2021年10月2日;录用日期:2021年10月29日;发布日期:2021年11月5日

摘要

糖尿病视网膜病变在糖尿病微血管病变中是最为主要的病变,也是其最严重的并发症之一,如果不能够及时治疗将可能导致终身失明,而糖尿病视网膜病变的发病机制比较复杂,目前尚未完全阐述清楚,主要由炎症、氧化应激和细胞凋亡引起。补体C1q肿瘤坏死因子相关蛋白9 (C1q/TNF-related protein 9, CTRP9)是最接近脂联素旁系同源物的脂肪细胞因子,以往的研究表明CTRP9主要在心血管疾病的研究中发挥着重要作用,近年来有研究发现它在糖尿病视网膜病变中也发挥有益的作用。本文就CTRP9与糖尿病视网膜病变关系的研究进展做一综述。

关键词

CTRP9,脂联素,糖尿病视网膜病变

Research Progress of the Relationship between CTRP9 and Diabetic Retinopathy

Xiaoyan Zhu1, Qin Liu1,2*, Tao Jin1, Huiling Bai2, Shu Zhang2

1The First College of Clinical Medical (Gansu Provincial Hospital), Gansu University of Traditional Chinese Medicine, Lanzhou Gansu

2Department of Ophthalmology, Gansu Provincial Hospital, Lanzhou Gansu

Received: Oct. 2nd, 2021; accepted: Oct. 29th, 2021; published: Nov. 5th, 2021

ABSTRACT

Diabetic retinopathy is the most important lesion in diabetic microangiopaemia and one of its most serious complications. If not treated in time, it may lead to lifelong blindness. However, the pathogenesis of diabetic retinopathy is complicated and has not been fully explained yet. It is mainly caused by inflammation, oxidative stress and apoptosis. C1q/TNF-related protein 9 (CTRP9) is the adipocytokine closest to the adiponectin parafunctional homolog. Previous studies have shown that CTRP9 mainly plays an important role in the study of cardiovascular diseases. In recent years, it has been found that it also plays a beneficial role in diabetic retinopathy. This article reviews the research progress of the relationship between CTRP9 and diabetic retinopathy.

Keywords:CTRP9, Adiponectin, Diabetic Retinopathy

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

糖尿病视网膜病变(diabetic retinopathy, DR)是糖尿病(diabetes mellitus, DM)的严重微血管病变,是一种影响视力甚至会致盲的慢性进行性疾病 [1]。近年来,由于饮食和生活方式的改变导致DM患者逐渐增多,DR的发病率也明显增加,并且成为劳动年龄人群失明的主要原因之一 [2] [3]。CTRP9是一种最接近脂联素旁系同源物的脂肪细胞因子 [4],有研究发现它在DM及其并发症中发挥有益的作用 [5]。本文就CTRP9与DR关系的研究进展做一综述。

2. DR的发病机制

DR发病机制相对来说比较复杂,目前尚未完全阐述清楚。近年来发现,DR的基本病理改变是内皮功能障碍、血视网膜屏障破坏和新生血管的形成,血管完整性的破坏可导致视网膜新生血管和渗漏的未成熟新生血管的萌发,高血糖主要损害视网膜的微小血管,视网膜毛细血管内皮细胞受损,失去屏障功能发生渗漏 [6] [7]。DR的视网膜损伤可由多种因素引起,主要包括炎症、氧化应激和细胞凋亡 [8]。

炎症反应是贯穿DR整个发病阶段的关键特征,它可以引起血-视网膜屏障 (blood retinal barrier, BRB)的破坏,多种促炎因子参与了DR的病理过程,如单核细胞趋化蛋白-1 (Monocyte chemotactic protein-1, MCP-1)、白细胞介素-1β (interleukin 1beta, IL-1β)、肿瘤坏死因子-α (tumor necrosis factor-α, TNF-α)、血管内皮生长因子(vascular endothelial growth factor, VEGF)和色素上皮衍生因子(Pigment epithelium-derived factor, PEDF)等,其中VEGF和PEDF是与DR关系最为密切的细胞因子,其在新生血管的形成中起着重要作用 [9]。

氧化应激增高也被认为是DR发展的主要代谢异常之一,长时间的高血糖水平会刺激视网膜细胞导致活性氧(reactive oxygen species, ROS)的过量产生,从而破坏细胞的正常生理机能,ROS水平升高可通过脂质过氧化、DNA修饰、蛋白质错误折叠和线粒体损伤等途径导致视网膜细胞 [10]。临床研究也证实DM患者的视网膜及其毛细血管细胞中氧化应激增加 [11] [12]。

还有研究发现DR视网膜毛细血管周细胞丢失与细胞凋亡也密切相关 [13]。视网膜毛细血管主要由周细胞和内皮细胞组成,周细胞和内皮细胞的功能完整对维持视网膜毛细血管的稳定性具有重要作用。周细胞具有调节内皮细胞增殖、新生血管生长、毛细血管的通透性及稳定性等多种功能,通过多种途径参与DR的发生发展,尤其与早期DR密切相关 [14]。近年研究认为,DR早期周细胞选择性丧失的原因是周细胞发生凋亡 [13],关于在DR中内皮细胞是否发生凋亡国内外报道不一,Li等 [15] 研究显示由高到低的葡萄糖浓度波动只导致周细胞凋亡,而内皮细胞未见凋亡。Lorenzi等 [16] 则认为葡萄糖进入内皮细胞后扰乱了DNA功能,使DNA单链断裂发生率增高,DNA损伤严重不能修复内皮细胞而发生凋亡。因此内皮细胞是否发生凋亡一直有争议,还有待进一步研究。

3. CTRP家族和CTRP9

3.1. CTRP家族

CTRP家族是一组脂肪来源的脂肪因子家族,由一组与脂联素结构相似且高度保守的蛋白质组成 [17]。目前发现的成员主要有CTRP1~15,该15种成员的表达与分泌具有组织特异性,即不同成员在不同组织器官中的表达与分布不同,如CTRP1、CTRP2、CTRP11、CTRP12和CTRP13等主要由脂肪组织分泌,其中CTRP1在心脏、胎盘、肝脏、肾脏、肌肉、前列腺和卵巢等器官也有表达,CTRP3在脂肪组织、软骨组织、胎盘、结肠、小肠、胰腺、脑、肾脏、胸腺和卵巢等都有表达,但以软骨中表达为主,并在骨肉瘤成软骨细胞瘤和巨细胞瘤中表达增加;CTRP4则主要在小鼠脑组织的神经元中表达和分泌,并且在人类脂肪组织和脑组织中呈高表达;CTRP5在小鼠脂肪组织的血管间质细胞呈高表达,同时在视网膜色素上皮及骨骼肌细胞也有表达;CTRP6主要表达于胎盘组织和脂肪组织,胎盘组织还表达CTRP1、CTRP3和CTRP10,CTRP10也在眼睛中特异性表达;肺和睾丸主要表达CTRP7和CTRP8;CTRP14在脑和脂肪组织中均有表达;CTRP15主要表达于肌肉组织 [18]。近年来,CTRP家族因其抗炎和胰岛素增敏作用而备受关注 [19]。CTRP家族成员很多且功能各异,不同的CTRP家族成员表现出不同的生物学功能,但大多数表现为抗炎、增加胰岛素敏感性、调节糖脂代谢和免疫功能以及代谢相关的疾病,如胰岛素抵抗、糖尿病、非酒精性脂肪性肝病和心脑血管等疾病 [20]。

3.2. CTRP9

作为CTRP家族的新成员,CTRP9于2009年被指定为CTRP9。CTRP9基因存在于大多数生物基因组中,尽管人和小鼠在大小和位置上略有不同。人CTRP9基因分为CTRP9A和CTRP9B两个亚型。CTRP9A基因位于染色体13q12.12上,大小为12.6 kb,CTRP9B基因位于CTRP9A上游407 kb处,而小鼠CTRP9基因大小为12.7 kb,位于14号染色体上。然而,CTRP9基因在整个进化过程中是高度保守的,因为人和小鼠的CTRP9基因都由4个外显子组成,分别编码339个氨基酸。更具体地说,CTRRP9A和CTRP9B具有98%的氨基酸同源性。同样,小鼠CTRP9和人CTRP9也有84%的氨基酸同源性。与脂联素类似,CTRP9由一个指导蛋白质分泌的信号肽(残基1e19)、一个短的N-末端结构域(残基20e28)、一个具有56个Gly-X-Y重复序列的胶原域(残基29e196)和一个CTerinal球形C1q结构域(残基197e333)组成。这4个结构域也存在于除CTRP4以外的其他CTRP中。然而,CTRP9与脂联素在C端球状C1q区域的氨基酸同源性最高(54%),这表明两种脂肪因子可能具有相似的功能,CTRP9在进化上也在狗、鸡、斑马鱼、青蛙、老鼠和人类中高度保守 [21] [22]。

CTRP9主要来源于非免疫细胞,包括内皮细胞、心肌细胞和血管平滑肌细胞,并且主要在脂肪组织中表达 [23]。CTRP9还是一种多功能细胞因子,通过调节丝裂原活化蛋白激酶、Toll样受体4、信号转导和转录激活因子3、核因子-κB (nuclear factor kappa-B, NF-κB)信号通路,调节免疫和非免疫细胞,参与炎症反应、氧化应激、细胞凋亡、自噬、葡萄糖代谢和其他生物学效应的调节 [24]。

CTRP9主要由脂肪组织分泌,其基因在肥胖小鼠的脂肪组织中上调。研究发现血清CTRP9水平与T2DM个体的BMI呈正相关(r = 0.29, P < 0.01) [25],并且在减肥手术后的肥胖患者中观察到CTRP9水平降低 [26]。在目前的研究中,CTRP9对葡萄糖代谢和胰岛素敏感性的有利影响先前已被证明。CTRP9的靶向缺失已被证明会降低小鼠的胰岛素敏感性 [27],并且人体研究表明血清CTRP9水平与葡萄糖代谢参数呈正相关 [28] [29]。

以往的研究提示,CTRP9对大血管具有保护作用 [28],CTRP9能够抑制受损血管再狭窄,延缓大血管动脉损伤后粥样硬化的发展 [29]。此外,先前的研究已经证明CTRP9在DM和糖尿病肾病中起着有益的作用 [30],CTRP9通过改善糖尿病db/db小鼠的肾小球和肾小管糖原积聚、纤维化、高血糖介导的氧化应激和细胞凋亡来减轻糖尿病肾病 [31]。越来越多的证据表明,CTRP9在调节代谢、抑制肝脏脂肪变性和改善胰岛素抵抗方面起着重要的保护作用 [32]。CTRP9还对葡萄糖代谢、细胞存活、氧化应激调节和抑制内质网应激有积极作用 [33]。

4. CTRP9与DR的关系

自2009年Wong等人 [4] 发现CTRP9以来,它就引起了相当多学者的关注。近年研究发现,CTRP9除了对上述提及的大血管疾病(冠心病 [34] 等)、DM和糖尿病肾病等疾病发挥有益作用外,对DR也具有治疗作用。有基础实验发现,CTRP9可以抑制T2DM模型小鼠视网膜炎症因子(IL-1β、TNF-α、MCP-1和粘附分子)的表达,平衡PEDF和VEGF的表达,防止T2DM模型小鼠BRB的破坏和紧密连接蛋白的下调,这项研究首次表明,CTRP9主要通过抑制炎症相关分子的表达并保持紧密连接蛋白和BRB的完整性来在DR中提供保护作用 [35]。研究表明,在患有DR的患者中,玻璃体和血清中血管细胞粘附因子-1 (vascular cell adhesion molecule-1, VCAM-1)和细胞间粘附分子-1 (Intercellular adhesion molecule-1, ICAM-1)等粘附分子的浓度升高 [36] [37]。NF-κB可增强内皮细胞炎症相关基因如粘附分子VCAM1和ICAM1、细胞因子和趋化因子的水平 [38]。CTRP9通过降低NF-κB的活化,降低内皮细胞单核细胞趋化蛋白-1、粘附分子VCAM1和ICAM1的蛋白水平,具有明显的保护性抗炎作用 [39]。

视网膜血管通透性受紧密连接的调节,它包含40多种蛋白,如claudin和occludin家族以及其他膜相关蛋白 [40]。视网膜血管内皮细胞中存在occludin、Claudin-5和ZO-1 [41],肿瘤坏死因子-α可通过蛋白激酶C/NF-κB途径抑制紧密连接蛋白ZO-1和Claudin-5的水平并增加视网膜内皮细胞通透性 [42],而有研究表明,CTRP9的过表达可以下调肿瘤坏死因子-α和NF-κB的表达,并上调紧密连接蛋白ZO-1、Claudin-5和occludin的水平 [35]。

国外研究用人视网膜色素上皮细胞ARPE-19进一步研究了CTRP9在DR中的作用,结果发现CTRP9通过激活AMPK/Nrf2信号通路对高血糖诱导的视网膜氧化损伤具有保护作用,CTRP9还可提高高血糖诱导的ARPE-19细胞的存活率,减轻视网膜的氧化应激和凋亡 [43]。临床研究发现,DR组患者与单纯DM组相比,血清CTRP9水平显著降低,且在校正病程、血脂等因素后其与DR之间仍有相关性,提示CTRP9可能与T2DM患者DR相关,随着CTRP9水平降低DR的患病风险显著增加 [44]。这些证据证实了CTRP9可通过抗炎、抗氧化应激和减轻细胞凋亡从而发挥对DR的视网膜保护作用,因此CTRP9可能成为未来治疗DR的一种新的临床方法。

5. 展望

DR的发病机制较为复杂且仍未彻底研究清楚,但主要为炎症、氧化应激和细胞凋亡引起了视网膜的损伤。目前没有持续有效的方法来抑制DR进展,因此寻找能够早期检测和治疗DR的靶点是极为重要的。CTRP9作为一种新近发现的脂肪细胞因子,除了对大血管疾病(冠心病等)、DM和糖尿病肾病等疾病发挥有益作用外,大量研究还发现其具有调节丝裂原活化蛋白激酶、Toll样受体4、信号转导和转录激活因子3、NF-κB信号通路,调节免疫和非免疫细胞,参与炎症反应、氧化应激、细胞凋亡、自噬、葡萄糖代谢和其他生物学效应的调节作用。上述大量研究表明,CTRP9对DR视网膜组织可通过抗炎、抗氧化应激和减轻细胞凋亡而发挥保护作用,这种独特的保护作用,使对其的研究和应用可能是治疗DR的潜在选择。然而就当前来说,CTRP9的研究成果主要来自基础实验和心血管疾病,还需要更大规模的长期研究和数据来讨论评价其在视网膜疾病方面的应用空间,为DR的研究提供新思路。

基金项目

甘肃省卫生行业科研计划基金资助项目(GSWSKY-2019-40);甘肃省人民医院院内科研基金资助项目(20GSSY1-15)。

文章引用

朱晓燕,刘 勤,金 涛,白惠玲,张 书. CTRP9与糖尿病视网膜病变关系的研究进展
Research Progress of the Relationship between CTRP9 and Diabetic Retinopathy[J]. 临床医学进展, 2021, 11(11): 4912-4918. https://doi.org/10.12677/ACM.2021.1111721

参考文献

  1. 1. Cheung, N., Mitchell, P. and Wong, T.Y. (2010) Diabetic Retinopathy. The Lancet, 376, 124-136. https://doi.org/10.1016/S0140-6736(09)62124-3

  2. 2. Schmidt, A.M. (2018) Highlighting Diabetes Mellitus: The Epidemic Continues. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, e1-e8. https://doi.org/10.1161/ATVBAHA.117.310221

  3. 3. Hammes, H.P. (2018) Diabetic Retinopathy: Hyperglycaemia, Oxidative Stress and Beyond. Diabetologia, 61, 29-38. https://doi.org/10.1007/s00125-017-4435-8

  4. 4. Wong, G.W., Krawczyk, S.A., Kitidis-Mitrokostas, C., et al. (2009) Identification and Characterization of CTRP9, a Novel Secreted Glycoprotein, from Adipose Tissue That Reduces Serum Glucose in Mice and Forms Heterotrimers with Adiponectin. The FASEB Journal, 23, 241-258. https://doi.org/10.1096/fj.08-114991

  5. 5. 蒋慰, 鲁燕. C1q/肿瘤坏死因子相关蛋白9与代谢相关疾病的基础研究进展[J]. 中国糖尿病杂志, 2018(26): 427-430.

  6. 6. 张铭. 内皮抑素抑制糖尿病视网膜新生血管生成中的研究进展[J]. 中华实验眼科杂志, 2017, 35(5): 474-477.

  7. 7. 温积权, 曹永葆, 汪怿, 等. 羟苯磺酸钙联合血栓通对糖尿病视网膜病变致患者视野缺损的临床疗效[J]. 中国临床药理学杂志, 2016, 32(1): 12-14.

  8. 8. Eshaq, R.S., Aldalati, A.M.Z., Alexander, J.S., et al. (2017) Diabetic Retinopathy: Breaking the Barrier. Pathophysiology, 24, 229-241. https://doi.org/10.1016/j.pathophys.2017.07.001

  9. 9. Xu, J., Chen, L.J., Yu, J., et al. (2018) Involvement of Advanced Glycation End Products in the Pathogenesis of Diabetic Retinopathy. Cellular Physiology and Biochemistry, 48, 705-717. https://doi.org/10.1159/000491897

  10. 10. Barber, A.J. (2003) A New View of Diabetic Retinopathy: A Neurodegenerative Disease of the Eye. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27, 283-290. https://doi.org/10.1016/S0278-5846(03)00023-X

  11. 11. Kowluru, R.A., Kowluru, A., Mishra, M., et al. (2015) Oxidative Stress and Epigenetic Modifications in the Pathogenesis of Diabetic Retinopathy. Progress in Retinal and Eye Research, 48, 40-61. https://doi.org/10.1016/j.preteyeres.2015.05.001

  12. 12. Brownlee, M. (2005) The Pathobiology of Diabetic Complications: A Unifying Mechanism. Diabetes, 54, 1615-1625. https://doi.org/10.2337/diabetes.54.6.1615

  13. 13. Durham, J.T., Dulmovits, B.M., Cronk, S.M., et al. (2015) Pericyte Chemomechanics and the Angiogenic Switch: Insights into the Pathogenesis of Proliferative Diabetic Retinopathy? Investigative Ophthalmology & Visual Science, 56, 3441-3459. https://doi.org/10.1167/iovs.14-13945

  14. 14. Anderson, D.R. and Davis, E.B. (1996) Glaucoma, Capillaries and Pericytes. 5. Preliminary Evidence That Carbon Dioxide Relaxes Pericyte Contractile Tone. Ophthalmologica, 210, 280-284. https://doi.org/10.1159/000310726

  15. 15. Li, W., Liu, X., Yanoff, M., et al. (1996) Cultured Retinal Capillary Pericytes Die by Apoptosis after an Abrupt Fluctuation from High to Low Glucose Levels: A Comparative Study with Retinal Capillary Endothelial Cells. Diabetologia, 39, 537-547. https://doi.org/10.1007/BF00403300

  16. 16. Lorenzi, M., Montisano, D.F., Toledo, S., et al. (1986) High Glucose Induces DNA Damage in Cultured Human Endothelial Cells. Journal of Clinical Investigation, 77, 322-325. https://doi.org/10.1172/JCI112295

  17. 17. Schäffler, A. and Buechler, C. (2012) CTRP Family: Linking Immunity to Metabolism. Trends in Endocrinology & Metabolism, 23, 194-204. https://doi.org/10.1016/j.tem.2011.12.003

  18. 18. Kopp, A., Bala, M., Weigert, J., et al. (2010) Effects of the New Adiponectin Paralogous Protein CTRP-3 and of LPS on Cytokine Release from Monocytes of Patients with Type 2 Diabetes Mellitus. Cytokine, 49, 51-57. https://doi.org/10.1016/j.cyto.2009.10.001

  19. 19. Seldin, M.M., Tan, S.Y. and Wong, G.W. (2014) Metabolic Function of the CTRP Family of Hormones. Reviews in Endocrine and Metabolic Disorders, 15, 111-123. https://doi.org/10.1007/s11154-013-9255-7

  20. 20. Schmid, A., Kopp, A., Hanses, F., et al. (2012) The Novel Adipokine C1q/TNF-Related Protein-3 Is Expressed in Human Adipocytes and Regulated by Metabolic and Infection-Related Parameters. Experimental and Clinical Endocrinology & Diabetes, 120, 611-617. https://doi.org/10.1055/s-0032-1323803

  21. 21. Liang, C., Liu, Y., Gao, L., et al. (2018) Effect of Lipid Factor CTRP9 on Myocardial Remodeling Induced by Isoproterenol in Mice. Scimago Journal & Country Rank, 98, 3025-3031.

  22. 22. Zhao, D., Feng, P., Sun, Y., et al. (2018) Cardiac-Derived CTRP9 Protects against Myocardial Ischemia/Reperfusion Injury via Calreticulin-Dependent Inhibition of Apoptosis. Cell Death & Disease, 9, 723. https://doi.org/10.1038/s41419-018-0726-3

  23. 23. Kambara, T., Ohashi, K., Shibata, R., et al. (2012) CTRP9 Protein Protects against Myocardial Injury Following Ischemia-Reperfusion through AMP-Activated Protein Kinase (AMPK)-Dependent Mechanism. Journal of Biological Chemistry, 287, 18965-18973. https://doi.org/10.1074/jbc.M112.357939

  24. 24. Chen, J.Y., Lei, S.Y., Li, T.T., et al. (2020) CTRP9 Induces iNOS Expression through JAK2/STAT3 Pathway in Raw 264.7 and Peritoneal Macrophages. Biochemical and Biophysical Research Communications, 523, 98-104. https://doi.org/10.1016/j.bbrc.2019.12.008

  25. 25. Jung, C.H., Lee, M.J., Kang, Y.M., et al. (2014) Association of Serum C1q/TNF-Related Protein-9 Concentration with Arterial Stiffness in Subjects with Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 99, E2477-E2484. https://doi.org/10.1210/jc.2014-2524

  26. 26. Wolf, R.M., Steele, K.E., Peterson, L.A., et al. (2016) C1q/TNF-Related Protein-9 (CTRP9) Levels Are Associated with Obesity and Decrease Following Weight Loss Surgery. The Journal of Clinical Endocrinology & Metabolism, 101, 2211-2217. https://doi.org/10.1210/jc.2016-1027

  27. 27. Wei, Z., Lei, X., Petersen, P.S., et al. (2014) Targeted Deletion of C1q/TNF-Related Protein 9 Increases Food Intake, Decreases Insulin Sensitivity, and Promotes Hepatic Steatosis in Mice. The American Journal of Physiology—Endocrinology and Metabolism, 306, E779-E790. https://doi.org/10.1152/ajpendo.00593.2013

  28. 28. Sun, Y., Yi, W., Yuan, Y., et al. (2013) C1q/Tumor Necrosis Factor-Related Protein-9, a Novel Adipocyte-Derived Cytokine, Attenuates Adverse Remodeling in the Ischemic Mouse Heart via Protein Kinase A Activation. Circulation, 128, S113-S120. https://doi.org/10.1161/CIRCULATIONAHA.112.000010

  29. 29. Huang, C., Zhang, P., Li, T., et al. (2019) Overexpression of CTRP9 Attenuates the Development of Atherosclerosis in Apolipoprotein E-Deficient Mice. Molecular and Cellular Biochemistry, 455, 99-108. https://doi.org/10.1007/s11010-018-3473-y

  30. 30. Asada, M., Morioka, T., Yamazaki, Y., et al. (2016) Plasma C1q/TNF-Related Protein-9 Levels Are Associated with Atherosclerosis in Patients with Type 2 Diabetes without Renal Dysfunction. Journal of Diabetes Research, 2016, Article ID: 8624313. https://doi.org/10.1155/2016/8624313

  31. 31. Hu, H., Li, W., Liu, M., et al. (2020) C1q/Tumor Necrosis Factor-Related Protein-9 Attenuates Diabetic Nephropathy and Kidney Fibrosis in db/db Mice. DNA and Cell Biology, 39, 938-948. https://doi.org/10.1089/dna.2019.5302

  32. 32. Moradi, N., Fadaei, R., Emamgholipour, S., et al. (2018) Association of Circulating CTRP9 with Soluble Adhesion Molecules and Inflammatory Markers in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease. PLoS ONE, 13, e0192159. https://doi.org/10.1371/journal.pone.0192159

  33. 33. Yan, W., Guo, Y., Tao, L., et al. (2017) C1q/Tumor Necrosis Factor-Related Protein-9 Regulates the Fate of Implanted Mesenchymal Stem Cells and Mobilizes Their Protective Effects against Ischemic Heart Injury via Multiple Novel Signaling Pathways. Circulation, 136, 2162-2177. https://doi.org/10.1161/CIRCULATIONAHA.117.029557

  34. 34. Yu, X.H., Zhang, D.W., Zheng, X.L., et al. (2018) C1q Tumor Necrosis Factor-Related Protein 9 in Atherosclerosis: Mechanistic Insights and Therapeutic Potential. Atherosclerosis, 276, 109-116. https://doi.org/10.1016/j.atherosclerosis.2018.07.022

  35. 35. Li, W., Ma, N., Liu, M.X., et al. (2019) C1q/TNF-Related Protein-9 Attenuates Retinal Inflammation and Protects Blood-Retinal Barrier in db/db Mice. European Journal of Pharmacology, 853, 289-298. https://doi.org/10.1016/j.ejphar.2019.04.012

  36. 36. Adamiec-Mroczek, J. and Oficjalska-Mlynczak, J. (2008) Assessment of Selected Adhesionmolecule and Proinflammatory Cytokine Levels in the Vitreous Body of Patients with Type 2 Diabetes-Role of the Inflammatory-Immune Process in the Pathogenesis of Proliferative Diabetic Retinopathy. Graefe’s Archive for Clinical and Experimental Ophthalmology, 246, 1665-1670. https://doi.org/10.1007/s00417-008-0868-6

  37. 37. Chernykh, V.V., Varvarinsky, E.V., Smirnov, E.V., et al. (2015) Proliferative and Inflammatory Factors in the Vitreous of Patients with Proliferativediabetic Retinopathy. Indian Journal of Ophthalmology, 63, 33-36. https://doi.org/10.4103/0301-4738.151464

  38. 38. True, A.L., Rahman, A. and Malik, A.B. (2000) Activation of NF-kappaB Induced by H2O2 and TNF-Alpha and Its Effects on ICAM-1 Expression in Endothelial Cells. AJP Lung Cellular and Molecular Physiology, 279, 302-311. https://doi.org/10.1152/ajplung.2000.279.2.L302

  39. 39. Jung, C.H., Lee, M.J., Kang, Y.M., et al. (2016) C1q/TNF-Related Protein-9 Inhibits Cytokine-Induced Vascular Inflammation and Leukocyte Adhesiveness via AMP-Activated Protein Kinase Activationin Endothelial Cells. Molecular and Cellular Endocrinology, 419, 235-243. https://doi.org/10.1016/j.mce.2015.10.023

  40. 40. Matter, K. and Balda, M.S. (2003) Signalling to and from Tight Junctions. Nature Reviews Molecular Cell Biology, 4, 225-236. https://doi.org/10.1038/nrm1055

  41. 41. Gardner, T.W. (1995) Histamine, ZO-1 and Increased Blood-Retinal Barrier permeability in Diabetic Retinopathy. Transactions of the American Ophthalmological Society, 93, 583-621.

  42. 42. Aveleira, C.A., Lin, C.M., Abcouwer, S.F., et al. (2010) TNF-Alpha Signals through PKCzeta/NF-kappaB to Alter the Tight Junction Complex and Increase Retinal Endothelial Cell Permeability. Diabetes, 59, 2872-2882. https://doi.org/10.2337/db09-1606

  43. 43. Cheng, Y., Qi, Y., Liu, S., et al. (2020) C1q/TNF-Related Protein 9 Inhibits High Glucose-Induced Oxidative Stress and Apoptosis in Retinal Pigment Epithelial Cells through the Activation of AMPK/Nrf2 Signaling Pathway. Cell Transplant, 29, 1-11. https://doi.org/10.1177/0963689720962052

  44. 44. 王欣荣, 吕伯昌, 李海燕. 血清补体C1q肿瘤坏死因子相关蛋白3、补体C1q肿瘤坏死因子相关蛋白9水平对糖尿病视网膜病变患者的影响及相关性研究[J]. 中国医药导报, 2015, 12(26): 8-11.

  45. NOTES

    *通讯作者。

期刊菜单