﻿ 非线性时间分数阶微分方程的exp(-Φ(ξ))解法 The Exp(-Φ(ξ)) Method for the Nonlinear Time Fractional Differential Equations

Vol.06 No.04(2017), Article ID:21433,8 pages
10.12677/AAM.2017.64062

The Exp(-Φ(ξ)) Method for the Nonlinear Time Fractional Differential Equations

College of Mathematics Sciences, Xinjiang Normal University, Urumqi Xinjiang

*通讯作者。

Received: Jun. 29th, 2017; accepted: Jul. 17th, 2017; published: Jul. 20th, 2017

ABSTRACT

In this paper, the exp(-Φ(ξ)) method is used to construct the approximate analytical solution of Korteweg-de Vries Zakharov Kuznetsov (KdV-ZK) equation via the (3 + 1)-dimensional. The results of numerical example show that the method is very useful in solving nonlinear time fractional differential equations.

Keywords:Time Fractional KdV-ZK Equation, Fractional Derivative, Exact Solutions, Exp(-Φ(x)) Method

1. 引言

2. 准备工作

, (1)

,

,(2)

. (3)

, (4)

.

, (5)

, (6)

. (7)

3. Exp(-Φ(ξ))方法的基本思想

, (8)

, (9)

,

, (10)

, (11)

, (12)

① 当时，

, (13)

② 当时，

, (14)

③ 当时，

, (15)

④ 当时，

, (16)

⑤ 当时，

, (17)

4. 数值算例

(18)

, (19)

,

, (20)

. (21)

;

;

;(22)

;

;

, (23)

, (24)

. (25)

a) 当时，

.

b) 当时，

.

c) 当时，

.

d) 当时，

.

e) 当时，

.

, (26)

, (27)

, (28)

a) 当时，

.

b) 当时，

.

c) 当

.

d) 当

.

e) 当

.

5. 总结

The Exp(-Φ(ξ)) Method for the Nonlinear Time Fractional Differential Equations[J]. 应用数学进展, 2017, 06(04): 515-522. http://dx.doi.org/10.12677/AAM.2017.64062

1. 1. Sahoo, S. and Ray, S.S. (2015) Improved Fractional Sub-Equation Method for (3+1)-Dimensional Generalized Fractional KdV-Zakharov-Kuznetsov Equations. Computers and Mathematics with Applications, 70, 158-166. https://doi.org/10.1016/j.camwa.2015.05.002

2. 2. Ray, S.S. and Gupta, A.K. (2014) An Approach with Haar Wavelet Collocation Method for Numerical Simulations of Modified KDV and Modified Burgers Equations. Computer Modeling in Engineering and Sciences, 103, 315-341.

3. 3. Cairns, R.A., Mamun, A.A., Bingham, R., Dendy, R.O., Bostrom, R., Shukla, P.K. and Nairn, C.M.C. (1995) Electrostatic Solitary Structures in Non-Thermal Plasmas. Geophysical Research Letters, 22, 2709-2712. https://doi.org/10.1029/95GL02781

4. 4. Islam, S., Bandyopadhyay, A. and Das, K.P. (2008) Ion-Acoustic Solitary Waves in a Multi-Species Magnetized Plasma Consisting of Non-Thermal and Isothermal Electrons. Journal of Plasma Physics, 74, 765-806. https://doi.org/10.1017/S0022377808007241

5. 5. Zakharov, V.E. and Kuznetsov, E.A. (1974) On Three-Dimensional Solitons. Journal of Experimental and Theoretical Physics, 39, 285-286.

6. 6. Mace, R.L. and Hellberg, M.A. (2001) The Korteweg-de Vries-Zakharov-Kuznetsov Equation for Electron-Acoustic Waves. Physics of Plasmas, 8, 2649-2656. https://doi.org/10.1063/1.1363665

7. 7. Zheng, B. (2012) (G'/G)-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics. Communications in Theoretical Physics, 58, 623-630. https://doi.org/10.1088/0253-6102/58/5/02

8. 8. Bekir, A., Guner, O. and Cevikel, A.C. (2013) Fractional Complex Transform and Exp-Function Methods for Fractional Differential Equations. Abstract and Applied Analysis, 1, 233-255. https://doi.org/10.1155/2013/426462

9. 9. Wang, M.L. (1995) Solitary Wave Solutions for Variant Boussinesq Equations. Physics Letters A, 199, 169-172.

10. 10. Guner, O. and Cevikel, A.C. (2014) A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations. The Scientific World Journal, 11, 489-495. https://doi.org/10.1155/2014/489495

11. 11. Guner, O. and Eser, D. (2014) Exact Solutions of the Space Time Fractional Symmetric Regularized Long Wave Equation Using Different Methods. Advances in Mathematical Physics, 11, 1-8. https://doi.org/10.1155/2014/456804

12. 12. Gepreel, K.A. and Omran, S. (2012) Exact Solutions for Nonlinear Partial Fractional Differential Equations. Chinese Physics B, 21, 110-204. https://doi.org/10.1088/1674-1056/21/11/110204

13. 13. Bekir, A., Guner, O. and Unsal, O. (2013) Exact Solutions of Nonlinear Fractional Differential Equations by (G'/G)-Expansion Method. Chinese Physics B, 11, 110-202. https://doi.org/10.1088/1674-1056/22/11/110202

14. 14. Unsal, O., Guner, O., Bekir, A. and Cevikel, A.C. (2017) The (G'/G)-Expansion Method for the Nonlinear Time Fractional Differential Equations. AIP Conference Proceedings, 1798, Article ID: 020167.

15. 15. American Institute of Physics (1798) Fractional Differential Equations. American Institute of Physics, Prince George's County, Maryland.

16. 16. Yang, X.J. (2012) Advanced Local Fractional Calculus and Its Applications. World Science Publisher, New York.

17. 17. Yang, X.J. (2012) A Short Note on Local Fractional Calculus of Function of One Variable. Journal of Applied Library and Information Science, 1, 1-13.

18. 18. Yang, X.J. (2012) The Zero-Mass Renormalization Group Differential Equations and Limit Cycles in Non-Smooth Initial Value Problems. Prespacetime Journal, 9, 913-923.

19. 19. Hu, M.S., Baleanu, D. and Yang, X.J. (2013) One-Phase Problems for Discontinuous Heat Transfer in Fractal Media. Mathematical Problems in Engineering, 3, Article ID: 358473. https://doi.org/10.1155/2013/358473

20. 20. Feng, Z.S. (2002) The First Integral Method to Study the Burgers-KdV Equation. Journal of Physics A: Mathematical and General, 35, 343-349. https://doi.org/10.1088/0305-4470/35/2/312

21. 21. Su, W.H., Yang, X.J., Jafari, H. and Baleanu, D. (2013) Fractional Complex Transform Method for Wave Equations on Cantor Sets within Local Fractional Differential Operator. Advances in Difference Equations, 97, 1-8. https://doi.org/10.1186/1687-1847-2013-97

22. 22. Yang, X.J., Baleanu, D. and Srivastava, H.M. (2015) Local Fractional Integral Transforms and Their Applications. Elsevier, 10, 1-12.

23. 23. He, J.H., Elagan, S.K. and Li, Z.B. (2012) Geometrical Explanation of the Fractional Complex Transform and Derivative Chain Rule for Fractional Calculus. Physics Letters A, 4, 257-259. https://doi.org/10.1016/j.physleta.2011.11.030