Advances in Clinical Medicine
Vol. 12  No. 11 ( 2022 ), Article ID: 58369 , 6 pages
10.12677/ACM.2022.12111544

肿瘤相关巨噬细胞在调控乳腺癌微环境的研究进展

张锦坤1*,陈佳玥2,贾存洁1,周海存3,马秀芬3#

1甘肃中医药大学第一临床医学院,甘肃 兰州

2甘肃中医药大学公共卫生学院,甘肃 兰州

3甘肃省妇幼保健院(甘肃省中心医院),甘肃 兰州

收稿日期:2022年10月23日;录用日期:2022年11月18日;发布日期:2022年11月25日

摘要

肿瘤微环境(tumor microenvironment, TME)中肿瘤相关巨噬细胞(tumor-associated macrophages, TAMs)与炎症反应和恶性肿瘤之间的关系愈来愈明显。TAMs可分泌细胞因子、生长因子和复杂的炎症底物等,对肿瘤的启动、生长、侵袭和转移中起重要作用。针对TAMs进行靶向药物治疗乳腺癌将成为一个富有前景的方向。作者通过TAMs的类型和生物学特点,对乳腺癌的免疫逃逸、侵袭和转移,以及乳腺癌耐药的影响等研究进展做一综述。旨在为乳腺癌个性化治疗,提高生存质量提供新的思路和借鉴。

关键词

巨噬细胞,乳腺癌,肿瘤微环境

Research Progress of Tumor-Associated Macrophages in the Regulation of Breast Cancer Microenvironment

Jinkun Zhang1*, Jiayue Chen2, Cunjie Jia1, Haicun Zhou3, Xiufen Ma3#

1The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou Gansu

2School of Public Health, Gansu University of Chinese Medicine, Lanzhou Gansu

3Maternal and Child Health Hospital of Gansu Province (Central Hospital of Gansu Province), Lanzhou Gansu

Received: Oct. 23rd, 2022; accepted: Nov. 18th, 2022; published: Nov. 25th, 2022

ABSTRACT

The relationship between tumor-associated macrophages (TAMs), inflammatory response and malignancy in tumor microenvironment (TME) is becoming more and more obvious. TAMs can secrete cytokines, growth factors and complex inflammatory substrates, which play an important role in tumor initiation, growth, invasion and metastasis. It will be a promising direction for TAMs to treat breast cancer with targeted drugs. This article reviews the research progress of immune escape, invasion and metastasis of breast cancer, as well as the influence of drug resistance of breast cancer, based on the types and biological characteristics of TAMs, aiming to provide new ideas and reference for personalized treatment of breast cancer and improve the quality of life.

Keywords:Macrophage, Breast Cancer, Tumor Microenvironment

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

最新统计 [1],在女性当中,乳腺癌(Breast cancer, BC)的新增发病例相比其他恶性肿瘤,仍处在第一位。虽然死亡率有所下降,但仍然是严重威胁女性健康的恶性肿瘤之一。在我国 [2],女性乳腺癌的个性化治疗正在逐步的改善,通过大数据回顾性分析,其总体的生存率并没有明显的改善,这可能跟乳腺癌的高异质性有着密切的关系。

肿瘤相关巨噬细胞(tumor associated macrophage, TAM)是肿瘤微环境中主要的免疫细胞,其可塑性很强。在乳腺癌的新辅助治疗中都发挥了特别的作用,同时作为潜在的治疗靶点具有非常大的发展前景 [3]。因此,本文就TAMs的研究进展和促进乳腺癌侵袭和转移机制,针对TAMs对乳腺癌微环境的调控以及靶向治疗展开综述。

2. TAMs的生物学特性与TME的关系

在肿瘤微环境(Tumor microenvironment, TME)中,存在特殊的巨噬细胞群,可占到肿瘤间质的50%~70% [4] [5],这类细胞群被称为TAMs。TAMs不但具有多种功能,而且参与肿瘤的增殖、发展、侵袭和迁移。根据以往研究显示,TAMs主要来源于骨髓分化的循环单核细胞和胚胎前体细胞。正常情况 [6] 下,肿瘤可分泌大量细胞因子,通过结合血小板来招募血液循环中的单核细胞进入肿瘤,如巨噬细胞集落刺激因子(Macrophage colony-stimulating factor, M-CSF)、集落刺激因子-1 (Colony stimulating factor-1, CSF-1)、血管内皮生长因子(Vascular endothelial growth factor, VEGF)、趋化因子2 (CCL2)、CCL5、CCL7等。其中CC基序趋化因子配体2 (CC chemokine ligand 2, CCL2)是介导单核细胞和巨噬细胞招募至TME的关键趋化因子,CCL2高表达常常伴有TAMs的数量增多 [7]。

TAMs根据极化状态的不同,可以分为两种类型。即经典激活的巨噬细胞M1型和交替激活的巨噬细胞M2型。M1型可以使肿瘤细胞凋亡以及阻碍病原体的入侵,属于正向细胞。M2型具有增强肿瘤的分裂、侵袭和转移的能力,属于负向细胞。经研究发现,TME中发现的巨噬细胞主要表现为M2型。M1型巨噬细胞占有少量,但它具有产生多种细胞因子来抑制肿瘤生长和激活辅助性T细胞来增强抗肿瘤能力,并通过细胞毒效应杀死肿瘤细胞 [8]。相反,M2型巨噬细胞可被白细胞介素-4和白细胞介素-13 (interleu-kin-13, IL-13)激活,产生大量的IL-10,抑制肿瘤周围炎症反应,从而减弱机体的免疫能力 [9]。M2型巨噬细胞对T细胞的失活有影响,T细胞失活会严重降低人体抵抗肿瘤的能力。M1型和M2型巨噬细胞的可塑性很强,在致癌因子的作用下,TME中的各类因子都可以影响M1型和M2型巨噬细胞之间的相互转化。TAMs的极化是一个动态发展的过程,在乳腺肿瘤微环境下,TAMs可通过异常透明质酸的作用而发生M2极化 [10]。有学者认为,TAMs可以使癌细胞穿过肿瘤组织内的毛细血管壁进入外周血循环 [11] [12]。因此可以设想,局部的乳腺癌组织可以通过这种侵袭作用,影响外周血循环中M2/M1单核细胞比例的动态变化。进而发生远处转移,以此来影响新辅助治疗的敏感性和耐药性。这可能对乳腺癌的诊断和治疗具有重要意义。

在乳腺癌组织中,IL-22水平和丝裂原活化蛋白激酶8 (mitogen-activated protein kinase 8, MAPK8)的表达呈正相关。而且乳腺癌可促进CD4+T细胞大量分泌IL-22,由此释放IL-1促进肿瘤生长。相反,IL-22可刺激小鼠乳腺癌细胞株EMT6细胞周期减缓在G2/M期。当IL-22表达与TAM浸润相结合时,其总体获益情况具有很大的差异 [13]。

3. TAMs与BC肿瘤微环境

三阴性乳腺癌(Triple negative breast cancer, TNBC)占所有乳腺癌的20%,其特征是缺乏孕激素受体、雌激素受体和人表皮生长因子受体2 (HER2) [14]。与其他类型的乳腺癌相比,TNBC最突出的特点是表现出更丰富的血管生成和上皮-间充质转化(epithelial-mesenchymal transition, EMT),并且具有更具侵袭性的临床特征 [15]。TNBC具有P53、PIK3CA和PTEN频繁的体细胞突变 [16]、侵袭边界增强和中央坏死区的组织学特征、高肺转移和基底细胞样表型等特征。尽管如此,TNBC也是一种具有瘤内异质性的肿瘤 [17]。有学者研究报道,癌细胞具有适应和绕过免疫系统的能力,而免疫系统已被发现是癌症反应的一个标志 [18]。肿瘤浸润性免疫细胞通过抑制免疫效应或增强肿瘤的增殖来促进恶性肿瘤的发生,在肿瘤的发展过程中发挥重要作用。M2样TAMs在TNBC中显著上调。典型的M2样TAMs的基因特征,如MS4A6A和PLAUR,在TNBC肿瘤组织的巨噬细胞中异常表达。也有研究报道,在TNBC中,高M2型TAMs密度与较差的RFS相关。在不同的癌症中,高TAM密度和EMT活性之间存在一定的关联 [19] [20] [21]。一项研究表明,TAMS可以通过转化生长因子-β1信号诱导肝癌细胞发生EMT,并促进肝癌细胞的肿瘤干细胞分化 [22]。由此可以推出,M2型的TAMs在TNBC中占有很大的比例。但对高EMT和异常血管生成的发生机制,则还需要大量的实验验证。M2型TAMs在TNBC中可发挥免疫抑制作用,如在肿瘤发展中和新辅助治疗后阻止T细胞和自然杀伤细胞攻击乳腺肿瘤细胞 [23]。杀灭或复极化M2型TAMs可能有助于乳腺癌的治疗 [24]。由于巨噬细胞具有可塑性,在巨噬细胞靶向治疗方法时可能会导致全身毒性,因为靶向作用于所有类型的巨噬细胞。只有针对M2型TAMs的复杂疗法才有一定的可能性。为了达到这种程度,则需要明确癌症中巨噬细胞类型的定义,以推进向M2型TAM靶向治疗。另一种有效的方法是通过抑制TAMs的免疫抑制表达来加强免疫治疗。如使用中和抗PD1、PD-L1或CTLA-4抗体来抑制调节性T细胞机制,但这需要大量的试验来验证 [25]。

4. TAMs诱导BC远处和侵袭转移

当TAMs位于血管周围时,可以分泌大量的VEGF与血管内皮上的相应受体相结合而促进内皮细胞的增殖和迁移,诱导血管生成。TAMs在低氧的刺激下,能分泌HIF-1、HIF-2等多种因子,促进肿瘤血管的形成 [26]。Tsutsui等采用免疫组化技术对249例乳腺癌患者组织中巨噬细胞浸润和微血管密度进行了研究,结果报告肿瘤组织中巨噬细胞的浸润程度与微血管密度呈正相关 [27]。此外学者认为,TAMs分泌的精氨酸酶I等可抑T细胞功能,降低机体对乳腺癌细胞的杀伤作用 [28]。由于TAMs在乳腺癌细胞的侵袭转移中发挥着重要作用,激化上皮间质转化、局部浸润、渗入血管、癌细胞过度生长等许多因素。在乳腺癌的侵袭转移过程中,基质金属蛋白酶能够降解基底膜和细胞外基质的大多数蛋白,重塑局部微环境,促进肿瘤进程的发展。有研究表明,TAMs可分泌MMP-2、MMP-7、MMP-9、MMP-12等多种酶,从而增强肿瘤细胞的侵袭能力 [29]。

5. TAMs对BC新辅助治疗的影响

TAMs分泌的IL-6通过激活STAT3通路,抑制抑癌分子mir-204-5p的表达活性,使得结直肠癌细胞抗凋亡能力增强,对5-氟尿嘧啶(5-fluorocrail, 5-FU)和奥沙利铂产生抵抗 [30]。Li等 [31] 研究发现,乳腺癌组织中的M2型TAMs与肿瘤细胞可通过IL-6的旁分泌逆向促进肿瘤细胞对多柔比星(doxorubicin, DOX)耐药。有学者研究发现,乳腺癌组织中的巨噬细胞可以通过激活PI3K/AKT信号通路,抑制肿瘤细胞凋亡并诱导其发生自噬,从而降低乳腺癌细胞对DOX的敏感性 [32]。Li等 [33] 在乳腺癌免疫治疗过程中发现TAMs通过CCL2/PI3K/AKT来增强肿瘤细胞的抗凋亡能力,进而对他莫昔芬产生耐药性。紫杉醇等化疗药物的使用诱导乳腺癌细胞产生CSF1和IL-34,募集巨噬细胞向TME浸润,继而抑制细胞毒性T淋巴细胞(cytotoxic T-lymphocyte, CTL)的激活和增殖,降低抗肿瘤免疫能力,同时也降低了细胞毒类药物的抗肿瘤效果 [34]。

6. 展望

肿瘤巨噬细胞的复杂性不仅取决于肿瘤细胞的固有特性,而且还取决于转化的肿瘤细胞和肿瘤微环境的不同成分之间在肿瘤生长、发展、转移中的相互作用。乳腺癌的致瘤性是乳腺肿瘤细胞与周围间质相互作用的结果。组成TME的这些TAMs的表型和遗传改变有助于肿瘤的发生、发展、转移和耐药性。转移和治疗耐药是BC死亡的主要原因。肿瘤细胞与TME之间的相互作用已成为研究的关键,TAMs是否能够成为靶向药物治疗的方向,这需要大量的实验验证以及时间的沉淀。这一知识可能为乳腺癌的治疗开辟新的前沿。尽管在BC异质性的分子表型方面取得了重大进展,但仍缺乏对临床实践的实质性影响。因此需要精心设计的即将进行的临床试验,包括新的联合或顺序治疗,也包括针对癌细胞和TAMs的生物和免疫药物,以确定预后不良的BC患者的最佳治疗方案。

文章引用

张锦坤,陈佳玥,贾存洁,周海存,马秀芬. 肿瘤相关巨噬细胞在调控乳腺癌微环境的研究进展
Research Progress of Tumor-Associated Macrophages in the Regulation of Breast Cancer Microenvironment[J]. 临床医学进展, 2022, 12(11): 10722-10727. https://doi.org/10.12677/ACM.2022.12111544

参考文献

  1. 1. Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clini-cians, 72, 7-33. https://doi.org/10.3322/caac.21708

  2. 2. Xia, C., Dong, X., Li, H., et al. (2022) Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants. Chinese Medical Journal (English), 135, 584-590. https://doi.org/10.1097/CM9.0000000000002108

  3. 3. Lopez-Yrigoyen, M., Cassetta, L. and Pollard, J.W. (2021) Macrophage Targeting in Cancer. Annals of the New York Academy of Sciences, 1499, 18-41. https://doi.org/10.1111/nyas.14377

  4. 4. Vitale, I., Manic, G., Coussens, L.M., Kroemer, G. and Galluzzi, L. (2019) Macrophages and Metabolism in the Tumor Microenvironment. Cell Metabolism, 30, 36-50. https://doi.org/10.1016/j.cmet.2019.06.001

  5. 5. Dymicka-Piekarska, V., Koper-Lenkiewicz, O.M., Zinczuk, J., Kratz, E. and Kaminska, J. (2021) Inflammatory Cell-Associated Tumors. Not Only Macrophages (TAMs), Fibroblasts (TAFs) and Neutrophils (TANs) Can Infiltrate the Tumor Microenvironment. The Unique Role of Tumor Associated Platelets (TAPs). Cancer Immunology, Immunotherapy, 70, 1497-1510. https://doi.org/10.1007/s00262-020-02758-7

  6. 6. Lee, H.W., Choi, H.J., Ha, S.J., Lee, K.T. and Kwon, Y.G. (2013) Recruitment of Monocytes/Macrophages in Different Tumor Microenvironments. Biochimica et Biophysica Acta, 1835, 170-179. https://doi.org/10.1016/j.bbcan.2012.12.007

  7. 7. Yang, H., Zhang, Q., Xu, M., et al. (2020) CCL2-CCR2 Axis Recruits Tumor Associated Macrophages to Induce Immune Evasion through PD-1 Signaling in Esophageal Carcino-genesis. Molecular Cancer, 19, Article No. 41. https://doi.org/10.1186/s12943-020-01165-x

  8. 8. Nascimento, C. and Ferreira, F. (2021) Tumor Microenviron-ment of Human Breast Cancer, and Feline Mammary Carcinoma as a Potential Study Model. Biochimica et Biophysica Acta—Reviews on Cancer, 1876, Article ID: 188587. https://doi.org/10.1016/j.bbcan.2021.188587

  9. 9. Hinshaw, D.C. and Shevde, L.A. (2019) The Tumor Microen-vironment Innately Modulates Cancer Progression. Cancer Research, 79, 4557-4566. https://doi.org/10.1158/0008-5472.CAN-18-3962

  10. 10. Zhang, G., Guo, L., Yang, C., et al. (2016) A Novel Role of Breast Cancer-Derived Hyaluronan on Inducement of M2-Like Tumor-Associated Macrophages Formation. Oncoimmunology, 5, e1172154. https://doi.org/10.1080/2162402X.2016.1172154

  11. 11. Roussos, E.T., Balsamo, M., Alford, S.K., et al. (2011) Mena Invasive (MenaINV) Promotes Multicellular Streaming Motility and Transendothelial Migration in a Mouse Model of Breast Cancer. Journal of Cell Science, 124, 2120-2131. https://doi.org/10.1242/jcs.086231

  12. 12. Adams, D.L., Martin, S.S., Alpaugh, R.K., et al. (2014) Circulating Giant Macrophages as a Potential Biomarker of Solid Tumors. Proceedings of the National Academy of Sciences of the United States of America, 111, 3514-3519. https://doi.org/10.1073/pnas.1320198111

  13. 13. Zhao, J., Liu, H., Zhang, X., et al. (2021) Tumor Cells Interleukin-22 Expression Associates with Elevated Tumor-Associated Macrophages Infiltrating and Poor Prognosis in Patients with Breast Cancer. Cancer Biotherapy and Radiopharmaceuticals, 36, 160-166. https://doi.org/10.1089/cbr.2020.3794

  14. 14. Yin, L., Duan, J.J., Bian, X.W. and Yu, S.C. (2020) Triple-Negative Breast Cancer Molecular Subtyping and Treatment Progress. Breast Cancer Research, 22, Article No. 61. https://doi.org/10.1186/s13058-020-01296-5

  15. 15. Chung, W., Eum, H.H., Lee, H.O., et al. (2017) Single-Cell RNA-seq Enables Comprehensive Tumour and Immune Cell Profiling in Primary Breast Cancer. Nature Communica-tions, 8, Article No. 15081. https://doi.org/10.1038/ncomms15081

  16. 16. Shah, S.P., Roth, A., Goya, R., et al. (2012) The Clonal and Mutational Evolution Spectrum of Primary Triple-Negative Breast Cancers. Nature, 486, 395-399. https://doi.org/10.1038/nature10933

  17. 17. Karaayvaz, M., Cristea, S., Gillespie, S.M., et al. (2018) Unravelling Subclonal Heterogeneity and Aggressive Disease States in TNBC through Single-Cell RNA-seq. Nature Communica-tions, 9, Article No. 3588. https://doi.org/10.1038/s41467-018-06052-0

  18. 18. Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013

  19. 19. Su, S., Liu, Q., Chen, J., et al. (2014) A Positive Feedback Loop between Mesenchymal-Like Cancer Cells and Macrophages Is Essential to Breast Cancer Metastasis. Cancer Cell, 25, 605-620. https://doi.org/10.1016/j.ccr.2014.03.021

  20. 20. Gwak, J.M., Jang, M.H., Kim, D.I., Seo, A.N. and Park, S.Y. (2015) Prognostic Value of Tumor-Associated Macrophages According to Histologic Locations and Hormone Receptor Status in Breast Cancer. PLOS ONE, 10, e0125728. https://doi.org/10.1371/journal.pone.0125728

  21. 21. Huang, Y., Ge, W., Zhou, J., Gao, B., Qian, X. and Wang, W. (2021) The Role of Tumor Associated Macrophages in Hepatocellular Carcinoma. Journal of Cancer, 12, 1284-1294. https://doi.org/10.7150/jca.51346

  22. 22. Yang, Z., Xie, H., He, D. and Li, L. (2016) Infiltrating Macrophages In-crease RCC Epithelial Mesenchymal Transition (EMT) and Stem Cell-Like Populations via AKT and mTOR Signaling. Oncotarget, 7, 44478-44491. https://doi.org/10.18632/oncotarget.9873

  23. 23. Noy, R. and Pollard, J.W. (2014) Tumor-Associated Macrophages: From Mechanisms to Therapy [Published Correction Appears in Immunity. 2014 Nov 20, 41(5): 866]. Immunity, 41, 49-61. https://doi.org/10.1016/j.immuni.2014.06.010

  24. 24. Tariq, M., Zhang, J., Liang, G., Ding, L., He, Q. and Yang, B. (2017) Macrophage Polarization: Anti-Cancer Strategies to Target Tumor-Associated Macrophage in Breast Cancer. Journal of Cellular Biochemistry, 118, 2484-2501. https://doi.org/10.1002/jcb.25895

  25. 25. Seidel, J.A., Otsuka, A. and Kabashima, K. (2018) Anti-PD-1 and An-ti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Frontiers in Oncology, 8, Article No. 86. https://doi.org/10.3389/fonc.2018.00086

  26. 26. Werno, C., Menrad, H., Weigert, A., et al. (2010) Knockout of HIF-1α in Tumor-Associated Macrophages Enhances M2 Polarization and Attenuates Their Pro-Angiogenic Responses. Carcinogenesis, 31, 1863-1872. https://doi.org/10.1093/carcin/bgq088

  27. 27. Tsutsui, S., Yasuda, K., Suzuki, K., Tahara, K., Higashi, H. and Era, S. (2005) Macrophage Infiltration and Its Prognostic Implications in Breast Cancer: The Relationship with VEGF Ex-pression and Microvessel Density. Oncology Reports, 14, 425-431. https://doi.org/10.3892/or.14.2.425

  28. 28. Doedens, A.L., Stockmann, C., Rubinstein, M.P., et al. (2010) Macro-phage Expression of Hypoxia-Inducible Factor-1 Alpha Suppresses T-Cell Function and Promotes Tumor Progression. Cancer Research, 70, 7465-7475. https://doi.org/10.1158/0008-5472.CAN-10-1439

  29. 29. Hagemann, T., Robinson, S.C., Schulz, M., Trumper, L., Balkwill, F.R. and Binder, C. (2004) Enhanced Invasiveness of Breast Cancer Cell Lines upon Co-Cultivation with Macrophages Is Due to TNF-alpha Dependent Up-Regulation of Matrix Metalloproteases. Carcinogenesis, 25, 1543-1549. https://doi.org/10.1093/carcin/bgh146

  30. 30. Yin, Y., Yao, S., Hu, Y., et al. (2017) The Im-mune-Microenvironment Confers Chemoresistance of Colorectal Cancer through Macrophage-Derived IL6. Clinical Cancer Research, 23, 7375-7387. https://doi.org/10.1158/1078-0432.CCR-17-1283

  31. 31. Li, J., He, K., Liu, P. and Xu, L.X. (2016) Iron Participated in Breast Cancer Chemoresistance by Reinforcing IL-6 Paracrine Loop. Biochemical and Biophysical Research Com-munications, 475, 154-160. https://doi.org/10.1016/j.bbrc.2016.05.064

  32. 32. Zhang, M., Zhang, H., Tang, F., et al. (2016) Doxorubicin Re-sistance Mediated by Cytoplasmic Macrophage Colony-Stimulating Factor Is Associated with Switch from Apoptosis to Autophagic Cell Death in MCF-7 Breast Cancer Cells. Experimental Biology and Medicine (Maywood), 241, 2086-2093. https://doi.org/10.1177/1535370216660399

  33. 33. Li, D., Ji, H., Niu, X., et al. (2020) Tumor-Associated Macrophages Secrete CC-Chemokine Ligand 2 and Induce Tamoxifen Resistance by Activating PI3K/Akt/mTOR in Breast Cancer. Cancer Science, 111, 47-58. https://doi.org/10.1111/cas.14230

  34. 34. DeNardo, D.G., Brennan, D.J., Rexhepaj, E., et al. (2011) Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy. Cancer Discovery, 1, 54-67. https://doi.org/10.1158/2159-8274.CD-10-0028

  35. NOTES

    *第一作者。

    #通讯作者。

期刊菜单