Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 65571 , 11 pages
10.12677/ACM.2023.1351125

铜死亡相关基因在癌症中的表达及治疗

张子晴,沈国双*

青海大学附属医院乳腺疾病诊疗中心,青海 西宁

收稿日期:2023年4月17日;录用日期:2023年5月9日;发布日期:2023年5月22日

摘要

铜依赖性死亡是一种新型的导致细胞死亡的机制,研究中主要鉴定10种铜死亡相关基因(cuproptosis-related genes, CRGs)的表达水平发生异常改变,可能是肿瘤发生的驱动因素之一。目前CRGs在肿瘤中的作用尚未阐明,但在某些对CRGs的研究中,发现CRGs是在肿瘤的发生、发展过程中发挥关键作用的一类基因,它们参与了肿瘤细胞增殖、凋亡、侵袭、转移等多个生物学过程,帮助我们理解了肿瘤的分子机制,为癌症的治疗和预后预测提供参考。此外,CRGs的表达模式和水平在癌症中也会有所不同。CRGs的表达水平可以被用来预测肿瘤的治疗效果和预后。对于某些癌症来说,高表达的CRGs可能预示着肿瘤对特定治疗方法的敏感性,而低表达的CRGs则可能提示治疗效果较差。并且,CRGs的表达水平也可以用于预测患者的生存期和疾病复发率等临床结果。本综述揭示了CRGs在乳腺癌、黑色素瘤、肾癌等各种癌症中的基因组改变和临床特征。

关键词

铜,铜死亡,铜死亡相关基因,抗肿瘤治疗

Expression of Cuproptosis-Related Genes in Cancer and Treatment

Ziqing Zhang, Guoshuang Shen*

Breast Disease Treatment Center, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: Apr. 17th, 2023; accepted: May 9th, 2023; published: May 22nd, 2023

ABSTRACT

Copper-dependent death is a novel mechanism leading to cell death. In this study, we identified 10 cuproptosis-related genes (CRGs) with abnormal expression levels, which may be one of the driving factors of tumorigenesis. At present, the role of CRGs in tumor has not been elucidated, but in some research on CRGs, it is found that CRGs is a kind of gene that plays a key role in the development of tumor; they are involved in many biological processes, such as cell proliferation, apoptosis, invasion and metastasis, which help us to understand the molecular mechanism of cancer and provide references for cancer therapy and prognosis prediction. In addition, the expression patterns and levels of CRGs vary in cancer. The expression level of CRGs can be used to predict the therapeutic effect and prognosis of tumor. For some cancers, high expression of CRGs may indicate tumor sensitivity to specific therapies, whereas low expression of CRGs may indicate poor therapeutic efficacy. Furthermore, the expression level of CRGs can also be used to predict clinical outcomes such as patient survival and disease recurrence. This review reveals the genomic alterations and clinical features of CRGs in breast cancer, melanoma, renal cell carcinoma and other cancers.

Keywords:Copper, Copper Death, Cuproptosis-Related Genes, Anti-Tumor Therapy

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

根据世界卫生组织的报告,癌症的发病率和死亡率正快速增长,成为延长预期寿命的主要障碍之一 [1] [2] 。因为癌症的高发和复杂的发生机制,癌症治疗仍然面临严峻的形势。因此,深入研究相关基因在各种癌症中的表达情况,评估其表达水平对于临床治疗和预后预测至关重要。现如今备受关注的一种新型的导致细胞死亡的机制,即铜依赖性死亡,简称为铜死亡 [3] 。主要是通过铜与三羧酸循环(tricarboxylic acid cycle, TCA)的脂酰化成分直接结合而发生的死亡,导致脂化蛋白聚集和随后的铁硫簇蛋白丢失,从而导致蛋白毒性应激并最终导致细胞死亡 [4] [5] 。Tsvetkov P等 [6] 研究发现了13个CRGs (FDX1、LIAS、LIPT1、GCSH、DBT、DLST、DLD、DLAT、PDHA1、PDHB、SLC31A1、ATP7A和ATP7B)用于后续分析。其中主要的靶标包括7个正调基因:分别是FDX1、LIAS、LIPT1、DLD、DLAT、PDHA1、PDHB,3个负调基因:分别是MTF1、GLS、CDKN2A。其中,FDX1是编码电子传递蛋白铁硫蛋白的基因,它可作为电子传递链上的电子载体,在线粒体内催化铁硫簇蛋白和铁硫酶的合成,从而参与人体的能量代谢和DNA合成过程。LIAS是编码亮氨酸伸链酰化酶的基因,主要定位于线粒体中。它是参与亮氨酸代谢途径中的催化作用,将亮氨酸转化为甲基己酸,从而为线粒体能量代谢过程提供能量基质。LIPT1是编码肝脏微粒体磷脂酶的基因,它是催化脂肪酸的β氧化反应,从而参与体内脂肪代谢过程。二氢脂酰胺S-乙酰转移酶(DLAT)是丙酮酸脱氢酶(PDH)复合物的成分之一。具体来说,CRGs参与铜离子的转运和代谢过程,维持铜离子的平衡水平。由于铜可促进细胞增殖、血管生成和转移参与恶性肿瘤的发生和发展 [7] ,我们可以以CRGs为新靶点,为癌症的治疗提供新的方向和证据 [8] [9] 。

铜是人体内不可或缺的微量元素,其稳态失调可能引发细胞毒性,但细胞内铜水平的改变也可能影响癌症的发生和进展 [10] [11] [12] 。铜死亡是一种依赖于线粒体呼吸的细胞死亡形式,不同于其他形式如铁死亡、凋亡和坏死等 [13] 。多项研究表明,在癌症患者和健康患者之间,CRGs存在差异表达,这些基因与癌症患者的总生存期(Overall survival, OS)和无进展生存期(progression-free survival, PFS)显著相关。其中包括乳腺癌、肾细胞癌、黑色素瘤、头颈部鳞状细胞癌、肺癌、肝癌、骨肉瘤、食管癌、肾癌等 [14] [15] [16] [17] 。在乳腺癌中,ATP7A、DLST和LIAS高表达,与较差的OS相关。在黑色素瘤中,LITP 1的表达增加比LIPT1表达降低的OS增高,表明LIPT1在黑色素瘤中的预后预测价值较好。CDKN2A在肾细胞癌中表现出致癌特征,其过表达与较差的生存率相关。因此,CRGs可能是癌症治疗的潜在靶点,是癌症的治疗反应和预后的新的预测因子。本文对近期来有关CRGs在癌症中的表达以及其在肿瘤治疗方面的研究进展作一综述。

2. 乳腺癌

乳腺癌已经超过肺癌成为全世界最常见的癌症类型 [2] 。其中相关文献报道三阴性乳腺癌(triple-negative breast cancer, TNBC)约占浸润性乳腺癌的15%至20%,由于缺乏特异性靶点和靶向治疗药物,TNBC的治疗难度大,复发风险高,也是患者死亡的主要原因之一 [18] [19] 。Sha S等 [20] 进行了一项关于TNBC患者预后和CRGs表达水平之间关系的研究。结果显示,ATP7A、DLST和LIAS的高表达水平与较差的总生存期(OS)相关,而LIPT1和PDHA1的高表达水平则表明预后良好,为进一步探究这些基因对患者预后的影响提供了有价值的线索。使用maftools软件包对TCGA-TNBC队列中低和高CRGs评分的体细胞突变分布进行差异分析 [21] 。由于TNBC的个体异质性和复杂性 [22] ,以免疫炎症表型和免疫沙漠表型为特征的杯突型分别显示较低和较高的CRGs评分。同时,两个队列之间在多个方面存在显著差异,包括临床预后特征、基因突变、免疫浸润、基质评分、MSI、功能障碍、排除、TIDE、TMB和药物敏感性等方面。这些发现表明,评估不同表型和评分机制的性能时,需要考虑多个方面的因素。为了进一步分析CRGs与不同途径和机制的关联,进行KEGG分析发现CRGs与TCA、柠檬酸代谢过程、乙酰辅酶A代谢过程、线粒体基质、氧化还原酶复合物、过渡金属离子跨膜转运蛋白活性等有关。此外,研究还发现CRGs主要参与柠檬酸循环(TCA循环)、碳代谢、丙酮酸代谢、糖酵解/糖异生和铂类药物耐药性等KEGG途径 [20] 。这些发现有助于深入了解CRGs的功能和与肿瘤发生和发展相关的机制和途径。并为深入理解TNBC的分子机制提供了有价值的信息。

TNBC具有独特的肿瘤微环境(Tumor microenvironment, TME),与细胞增殖、凋亡、血管生成、免疫抑制和耐药性相关 [23] 。目前,免疫检查点抑制剂是临床研究中应用最广泛的乳腺癌免疫治疗药物。IMpassion 130试验使用PD-L1作为治疗转移性TNBC的成熟生物标志物 [24] ,但TNBC患者的预后仍然很差。相关研究表明 [25] [26] TNBC肿瘤中相当数量的T细胞通过先天免疫功能杀死癌细胞。高水平的CD4记忆静息和T细胞都与OS显著相关。Sha S等 [20] 研究表明CRGs与药物敏感性相关,CRGs评分与免疫细胞中T细胞、CD4记忆静止T细胞和嗜酸性粒细胞的数量呈负相关,表明CRGs评分低的患者预后良好。B细胞在TNBC也具有免疫抑制作用,通过增强髓源性抑制细胞(MDSCs)的水平或促进IL-10水平以促进同型转化为免疫抑制IgG4抗体 [27] [28] 。CRGs的作用和表达在不同类型的乳腺癌中可能存在差异,需要进一步研究以确定其在乳腺癌治疗中的潜在作用。未来,随着个性化医疗的发展,CRGs可能成为指导乳腺癌治疗决策的重要生物标志物之一,为患者提供更加精准的治疗方案。

3. 黑色素瘤

皮肤黑色素瘤(Skin cutaneous melanoma, SKCM)是由黑色素细胞的恶性转化引起的最具侵袭性和致命性的皮肤癌类型 [29] 。虽然它只占所有皮肤癌的1%,但却是导致80%皮肤癌死亡的主要原因 [30] 。紫外线暴露和高肿瘤突变负荷被认为是SKCM最常见的危险因素 [31] 。最近的研究发现,CRGs中的LIPT1在SKCM患者中的表达增加,是一个独立的有利预后指标。LIPT1基因编码的脂肪酰基转移酶1在调节硫辛酸(LA)转运和癌细胞代谢中具有关键作用 [32] 。研究表明LIPT1缺乏会抑制TCA循环代谢 [33] ,Lv H等 [34] 证明,而其在SKCM患者中的表达与预后预测和免疫浸润之间存在相关性。因此,LIPT1可能成为SKCM治疗中的新靶点。这项研究揭示了LIPT1基因在SKCM治疗中的潜在价值,可能成为新的治疗策略和预后评估工具。然而,需要进一步的研究来探讨LIPT1在SKCM发展和治疗中的确切作用和机制,并确定其是否适用于其他类型的肿瘤。

恶性黑色素瘤是一种高度侵袭性的肿瘤,对传统化疗和放疗的反应很差。虽然靶向疗法和免疫检查点阻断疗法的出现带来了新的治疗选择,但原发性和获得性耐药性仍然是一个棘手的问题 [35] 。因此,需要寻找新的治疗策略来解决这一难题。近年来,调节性细胞死亡(Regulatory cell death, RCD)在肿瘤治疗中引起了越来越多的关注 [36] ,铜死亡是一种新发现的RCD形式,它在许多病理和生理过程中起着重要作用。虽然铜突在肿瘤发生中的作用仍然未知,但已有研究表明 [37] ,铜通过与MEK1结合并形成铜-MEK1相互作用来促进肿瘤发生。因此,铜是癌症治疗的重要靶点,也是黑色素瘤的治疗靶点。通过抑制CTR1的表达或破坏结合的MEK1突变可以抑制BRAF信号传导和肿瘤发生。这意味着,通过调节铜的水平或铜-MEK1相互作用,可能有可能抑制黑色素瘤的生长和扩散,从而提高治疗效果。未来,还可以进一步探索LIPT1在黑色素瘤中的作用机制,以及其与PD-L1、Treg细胞浸润等因素的关系,从而更准确地预测黑色素瘤患者的治疗效果。此外,还可以进一步研究IFNγ信号通路与ICIs治疗的关系,以便在治疗黑色素瘤时更有效地激活IFNγ信号通路,提高治疗的疗效 [38] [39] [40] [41] 。虽然这一领域的研究还处于起步阶段,但可以预见,通过深入研究铜的生物学作用,开发针对铜的治疗药物,将成为恶性黑色素瘤治疗的新方向。

4. 肾癌

肾细胞癌(Renal cell carcinoma, RCC)是泌尿系统中最常见的癌症类型之一,2020年全球影响超过430,000人 [35] 。透明细胞肾细胞癌(Clear cell renal cell carcinoma, ccRCC)是最普遍和最具侵袭性的亚型 [2] 。临床上,大约三分之一的ccRCC患者在最初诊断时已经出现转移,四分之一的局部疾病患者在根治性手术切除后会出现复发转移 [42] [43] 。ccRCC通常伴随着TCA的重编程,从而下调能量产生,使肿瘤细胞能够在营养耗尽和缺氧的条件下存活并逃离免疫系统 [44] [45] 。对于ccRCC的研究,关注肿瘤代谢调节机制特别重要,其中TCA和相关代谢通路的异常调节被认为是导致ccRCC发展的主要因素之一。

相关研究已经发现,部分CRGs在ccRCC中的表达和遗传变异与该疾病的发展和治疗有关。一项研究发现 [46] ,10个CRGs中的4个(CDKN2A、DLAT、FDX1和LIAS)可以构建一个有效的预后评分来预测ccRCC患者的生存率。Bian Z等 [47] 比较了TCGA肿瘤组织与正常组织差异表达基因,发现仅CDKN2A显示出显著的表达。此外,相关研究表明 [48] [49] ,一些植物提取物有助于调节CRGs的代谢和合成,可能成为癌症预防和治疗的替代非药物干预(NPI)策略。例如,牛至提取物可能是一种潜在的抗癌NPIs,通过影响CRGs的线粒体和DNA损伤途径诱导细胞死亡。这些研究为寻找新的治疗策略提供了新的思路和方向。总体而言,了解CRGs的调控机制和作用方式对于ccRCC的治疗和预防非常关键。未来的研究方向可能包括研究CRGs在肾细胞癌发生和发展中的分子机制,以及与肾细胞癌相关的信号通路;研究CRGs在肾细胞癌治疗中的应用价值,包括作为单一靶点或联合靶向治疗的组成部分,以及与其他抗癌药物的协同作用等。

5. 食管癌

食管癌(Esophageal carcinoma, ESCA)是世界上最常见的癌症之一,在所有癌症中发病率排名第七,死亡率排名第六 [2] [50] 。吸烟和饮酒是食管癌的主要危险因素,由于缺乏早期诊断,大多数患者在晚期才被发现,这导致了几十年来仅有20%~25%的五年生存率 [51] 。现在,越来越多的研究表明,CRGs与食管癌的发展和预后有关,其中8个基因(SLC25A5、SLC23A2、PDHX、COX7B、PIH1D2、FDX1、ATP7A、NDUFB1)与食管癌的分级和预后相关 [52] 。在高CRGs评分的样品中,存在异常的细胞粘附素和铜浓度增加 [53] [54] 。高血清Cu水平也与化疗抗性有关 [54] 。因此,CRGs可能成为食管癌预后生物标志物和治疗策略的一个有用的方向。

APOBEC是一种载脂蛋白B mRNA编辑酶催化多肽,它是胞苷脱氨酶的一个家族。研究发现,APOBECs家族可以促进炎细胞因子和趋化因子的激活,并驱动促癌病毒突变体的形成 [55] 。此外,APOBEC基因编码功能还可以诱导促进癌症的驱动突变,在炎症–癌症转化中发挥桥梁作用 [56] [57] 。在高CRGs评分的患者中,许多APOBEC基因的突变比低CRGs评分组多,这可能是高CRGs评分组中肿瘤进展的原因之一。为了研究ESCA治疗的潜在药物,Jiang R等 [52] 使用癌症药物敏感性基因组学(GDSC)数据库,研究ESCA的潜在治疗药物。研究结果表明,COX7B的高表达与博莱霉素、TGX221和达沙替尼等多种药物的高敏感性相关。此外,SLC25A5和PIH1D2的表达也与药物敏感性呈正相关。其中,TGX221和SB216763是PI3K-AKT途径抑制剂,与COX7B或SLC25A5的表达显著正相关。综上所述,APOBECs家族在癌症的发展中发挥重要作用,COX7B、SLC25A5和PIH1D2等基因的表达与ESCA治疗药物敏感性相关。并且Zhou B等 [58] 研究发现,铜离子载体双硫仑可以通过使癌细胞超载铜来诱导PD-L1的稳定,而旁观者T细胞在一些癌症中常常出现,如肺癌和结肠癌,这代表了较差的免疫治疗反应。Jiang R等 [52] 研究还发现高CRG评分患者持有较低的CD39 (ESPDN1),这是旁观者T细胞的标志 [59] [60] 。免疫检查点基因如PD-L1表达在较高CRGs组中下调,但由于CMTM6和CMTM4的上调,PD-L1的稳定性在这些样品中上调,这可以阻止PD-L1被靶向用于溶酶体介导的降解 [61] 。在一些研究中,高CRGs评分患者对PD-L1治疗更敏感,具有更好的疗效和更好的生存结局。这些结果表明,高CRGs评分可以作为一个新的预后预测因子,并且为铜死亡和免疫检查点靶向治疗的临床应用提供了新的见解。

6. 结肠腺癌

结肠腺癌(Colon adenocarcinoma, COAD)是全球第三大常见恶性肿瘤,也是癌症相关死亡的第二大常见原因 [62] [63] [64] 。由于COAD常常被晚期诊断,且转移和复发的频率高,患者的预后往往不佳。因此,开发新的潜在生物标志物,用于预测和干预COAD患者的预后和治疗,变得尤为重要。FDX1是诱导细胞死亡的关键调节因子和蛋白质脂酰化的上游调节因子,是铜离子的载体。FDX1在诱导铜死亡和调节肿瘤免疫功能方面具有一定作用,因此有望成为COAD的潜在治疗靶点。

FDX1基因编码的铁硫(Fe/S)蛋白在细胞色素P450酶的还原和类固醇合成中发挥多种作用,参与血红素A和Fe/S簇的生物合成 [65] [66] 。此外,FDX1通过调节线粒体和类固醇代谢参与多囊卵巢综合征的发展 [67] 。Wang L等 [68] 研究表明,在许多癌症中,包括BRCA、KICH、KIRC、LUAD、LUSC、PCPG、THCA和COAD等,FDX1的表达水平较低。但在COAD患者中,FDX1的高表达与总生存期(OS)和疾病特异性生存期(DSS)均有正向关联。此外,FDX1的高表达对不同临床变量的预后,如T4期、N0期、M0期、女性、无结肠息肉存在、无结肠息肉史和残留肿瘤也有积极影响。本研究旨在通过COAD单个细胞功能和免疫浸润水平的探索,阐明FDX1高表达对预后良好的潜在机制。进一步研究发现,FDX1的表达水平与免疫细胞的浸润程度呈正相关,特别是CD8+T细胞、NK细胞和中性粒细胞。这些免疫细胞可以直接杀伤肿瘤细胞,从而抑制肿瘤的生长和转移。另外,FDX1的表达水平与癌症相关成纤维细胞(CAFs)的浸润程度呈负相关。CAFs在促进肿瘤生长、转移和免疫逃逸方面发挥着重要作用 [69] [70] ,因此FDX1的高表达可以抑制CAFs的作用,进而抑制肿瘤生长和转移。总之,FDX1的高表达与COAD患者的预后良好有关,可能通过增强免疫反应和抗原表达和提呈能力的方式发挥作用。这些发现为COAD的治疗和预后评估提供了重要的参考。

在肿瘤功能中,FDX1的表达与中枢基因的检测非常重要。Wang L等 [68] 利用STRING工具构建了FDX1及其相关基因之间的蛋白质相互作用网络,并发现FDX1仅与CYCS相互作用。CYCS作为中枢基因,在多种癌症中都扮演着重要角色,如卵巢癌、乳腺癌和宫颈癌等 [71] [72] [73] 。FDX1和CYCS之间的高频相互作用进一步巩固了其在COAD发病机制中的重要作用。通过CancerSEA数据库分析,发现COAD中FDX1的表达与“静止”和“炎症”呈显著正相关;FDX1的表达与侵袭性呈负相关。炎症是肿瘤微环境的关键组成部分,也是肿瘤发展中的一把双刃剑。一方面,肿瘤微环境中的炎症增强了肿瘤免疫原性,增加了对免疫调节的易感性 [74] 。另一方面,炎症可以损害肿瘤的免疫监视,促进肿瘤细胞的增殖和转移,以及诱导化疗耐药性 [75] [76] 。因此,FDX1的表达与COAD的发生和发展密切相关,可能通过调节炎症反应和侵袭性的变化来影响肿瘤的生长和转移。CRGs作为一种新型的COAD生物标志物,具有重要的临床价值,可以帮助医生提高COAD的早期诊断和预测患者的预后。但CRGs的研究尚不完善,需要进一步深入探索其调控机制和作用途径。

7. 宫颈癌

宫颈癌(Cervical cancer, CC)是全球女性第四大最常见和第四大致命恶性肿瘤 [2] ,其中致癌性人乳头瘤病毒感染是CC的主要原因 [77] [78] ,并且是发展中国家女性癌症死亡的最常见原因之一 [78] 。然而,自20世纪70年代中期以来,CC的存活率一直没有显著提高,这反映出缺乏对复发和转移患者的重大治疗进展。因此,新的和可靠的预后生物标志物模型对于改善CC的预后至关重要。铜是一把双刃剑,其代谢紊乱可能导致细胞死亡的关键方面,并引发一些威胁生命的疾病。因此,CRGs可能是难治性癌症的一个有前途的治疗靶点。

Lei L等 [79] 利用LASSO Cox回归算法,基于13个铜突相关基因(CRGs)的表达构建了一个风险特征,并选择了7个基因用于构建预后信号。在这个预后信号中,DBT、FDX1、LIPT1和PDHA1是宫颈癌患者生存率的阳性预测因子,而ATP7A、DLAT和GCSH则是阴性预测因子。这些基因在癌症发展中扮演着重要角色,其中一些已被证明是难治性癌症的潜在治疗靶点。例如,FDX1是elesclomol的直接靶点,elesclomol可以促进铜依赖性细胞死亡,从而抑制肿瘤生长 [80] 。PDHA1则似乎在人类肿瘤中起着双重作用。低表达PDHA1与某些癌症(如卵巢癌和胃癌)的不良预后相关 [81] [82] ,但在其他癌症(如前列腺癌和胆管癌)中,PDHA1通过调节脂质生物合成和Warburg效应来促进肿瘤生长 [83] [84] 。ATP7A是选择性增强铂类化疗有效性的潜在治疗靶点 [85] [86] 。总之,Lei等人的研究为宫颈癌的预后预测提供了新的研究方向,并揭示了铜死亡机制与个性化治疗的关系,有助于为患者提供更有效的治疗方案。

NK细胞、CD8+T细胞和I型IFN反应都被认为可以抑制肿瘤的增殖和转移,因此它们是重要的免疫活性指标 [87] [88] [89] [90] 。Lei L等 [79] 研究中两个风险组之间的免疫状态进行了比较,结果发现高风险组和低风险组之间NK细胞、ADC、CD8+T细胞和pDCs的比例存在显著差异。此外,研究还发现,高风险组对除苯乙双胍以外的所有药物的IC50值都更低,说明高风险组对这些药物更加敏感。尽管铜在细胞代谢中发挥着重要的作用,但其代谢紊乱可能导致细胞死亡,并引发一些威胁生命的疾病。铜突症是最近发现的一种新的细胞死亡形式,可能会推动探索使用铜治疗癌症的研究 [90] 。因此,对于铜代谢的深入理解和对CRGs的研究有助于探索使用铜治疗癌症的新方向。

8. 总结

目前已有一些研究探讨了CRGs在不同类型肿瘤中的表达和预后意义。例如,ATP7A和ATP7B在乳腺癌、肺癌、肝癌等多种肿瘤中高表达,与肿瘤的恶性转移和预后不良相关。SCO2的低表达则与胃癌、乳腺癌等肿瘤的预后不良相关。总的来说,CRGs在肿瘤中的表达和作用机制十分复杂,其在不同类型肿瘤中的表达和预后意义也存在差异。由于癌症缺乏特异性靶点和靶向治疗药物,这是目前观察到的抗癌治疗失败和患者最终死亡的关键原因。由于CRGs是参与铜离子稳态调节和铜离子代谢过程的一类基因,它们在人类疾病中发挥着重要作用。未来,对CRGs的研究可能会有以下几个方向的发展,如疾病预防和治疗:CRGs在多种疾病中发挥着重要作用,如肝硬化、阿尔茨海默病、帕金森病等,目前已经有一些铜离子调节药物被用于治疗疾病,如Wilson病等,对这些基因的深入研究可以为这些疾病的预防和治疗提供新的思路和靶点;系统生物学研究:CRGs在铜离子代谢和稳态调节中发挥着复杂的调控作用,涉及到多个信号通路和分子机制。这些基因的研究可以为系统生物学的研究提供新的方向和方法;抗氧化研究:铜离子在细胞代谢过程中会产生自由基等有害物质,对细胞造成损伤,CRGs参与了细胞内铜离子的稳态调节和代谢,对于保护细胞免受自由基等有害物质的损伤具有重要作用。综上所述,CRGs的未来研究方向将涉及多个领域,包括疾病预防和治疗、药物开发、系统生物学研究以及抗氧化研究等。这些研究将为人类健康和生命科学研究提供新的思路和突破口。

文章引用

张子晴,沈国双. 铜死亡相关基因在癌症中的表达及治疗
Expression of Cuproptosis-Related Genes in Cancer and Treatment[J]. 临床医学进展, 2023, 13(05): 8034-8044. https://doi.org/10.12677/ACM.2023.1351125

参考文献

  1. 1. Bray, F., Laversanne, M., Weiderpass, E. and Soerjomataram, I. (2021) The Ever-Increasing Importance of Cancer as a Leading Cause of Premature Death Worldwide. Cancer, 127, 3029-3030. https://doi.org/10.1002/cncr.33587

  2. 2. Sung, H., Ferlay, J., Siegel, R., Laversanne, M., Soerjomataram, I. Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  3. 3. Tsvetkov, P., Coy, S., Petrova, B., et al. (2022) Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science, 375, 1254-1261. https://doi.org/10.1126/science.abf0529

  4. 4. Solmonson, A. and DeBerardinis, R.J. (2018) Lipoic Acid Metabo-lism and Mitochondrial Redox Regulation. Journal of Biological Chemistry, 293, 7522-7530. https://doi.org/10.1074/jbc.TM117.000259

  5. 5. Rowland, E.A., Snowden, C.K. and Cristea, I.M. (2018) Protein Lipoylation: An Evolutionarily Conserved Metabolic Regulator of Health and Disease. Current Opinion in Chemical Bi-ology, 42, 76-85. https://doi.org/10.1016/j.cbpa.2017.11.003

  6. 6. Tsvetkov, P., Detappe, A., Cai, K., et al. (2019) Mitochondrial Metabolism Promotes Adaptation to Proteotoxic Stress. Nature Chemical Biology, 15, 681-689. https://doi.org/10.1038/s41589-019-0291-9

  7. 7. da Silva, D.A., De Luca, A., Squitti, R., et al. (2022) Copper in Tumors and the Use of Copper-Based Compounds in Cancer Treatment. Journal of Inorganic Biochemistry, 226, Article ID: 111634. https://doi.org/10.1016/j.jinorgbio.2021.111634

  8. 8. Park, K.C., Fouani, L., Jansson, P.J., et al. (2016) Copper and Conquer: Copper Complexes of Di-2-Pyridylketone Thiosemicarbazones as Novel Anti-Cancer Therapeutics. Metallom-ics, 8, 874-886. https://doi.org/10.1039/C6MT00105J

  9. 9. Ge, E.J., Bush, A.I., Casini, A., et al. (2022) Connecting Copper and Cancer: From Transition Metal Signalling to Metalloplasia. Nature Reviews Cancer, 22, 102-113. https://doi.org/10.1038/s41568-021-00417-2

  10. 10. Bandmann, O., Weiss, K.H. and Kaler, S.G. (2015) Wilson’s Disease and Other Neurological Copper Disorders. The Lancet Neurology, 14, 103-113. https://doi.org/10.1016/S1474-4422(14)70190-5

  11. 11. Gaggelli, E., Kozlowski, H., Valensin, D. and Valensin, G. (2006) Copper Homeostasis and Neurodegenerative Disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and Amy-otrophic Lateral Sclerosis). Chemical Reviews, 106, 1995-2044. https://doi.org/10.1021/cr040410w

  12. 12. Tang, D., Chen, X. and Kroemer, G. (2022) Cuproptosis: A Copper-Triggered Modality of Mitochondrial Cell Death. Cell Re-search, 32, 417-418. https://doi.org/10.1038/s41422-022-00653-7

  13. 13. Feng, Y., Zeng, J.-W., Ma, Q., et al. (2020) Serum Copper and Zinc Levels in Breast Cancer: A Meta-Analysis. Journal of Trace Elements in Medicine and Biology, 62, Article ID: 126629. https://doi.org/10.1016/j.jtemb.2020.126629

  14. 14. Lossow, K., Schwarz, M. and Kipp, A.P. (2021) Are Trace Element Concentrations Suitable Biomarkers for the Diagnosis of Cancer? Redox Biology, 42, Article ID: 101900. https://doi.org/10.1016/j.redox.2021.101900

  15. 15. Wang, W., Wang, X., Luo, J., et al. (2021) Serum Copper Level and the Copper-to-Zinc Ratio Could Be Useful in the Prediction of Lung Cancer and Its Prognosis: A Case-Control Study in Northeast China. Nutrition and Cancer, 73, 1908-1915. https://doi.org/10.1080/01635581.2020.1817957

  16. 16. Denoyer, D., Masaldan, S., La Fontaine, S. and Cater, M.A. (2015) Targeting Copper in Cancer Therapy: ‘Copper That Cancer’. Metallomics, 7, 1459-1476. https://doi.org/10.1039/C5MT00149H

  17. 17. Nagai, M., Vo, N.H., Shin Ogawa, L., et al. (2012) The Oncology Drug Elesclomol Selectively Transports Copper to the Mitochondria to Induce Oxidative Stress in Cancer Cells. Free Radical Biology and Medicine, 52, 2142-2150. https://doi.org/10.1016/j.freeradbiomed.2012.03.017

  18. 18. Kumar, P. and Aggarwal, R. (2016) An Overview of Triple-Negative Breast Cancer. Archives of Gynecology and Obstetrics, 293, 247-269. https://doi.org/10.1007/s00404-015-3859-y

  19. 19. Cocco, S., Piezzo, M., Calabrese, A., et al. (2020) Biomarkers in Triple-Negative Breast Cancer: State-of-the-Art and Future Perspectives. International Journal of Molecular Sciences, 21, Article No. 4579. https://doi.org/10.3390/ijms21134579

  20. 20. Sha, S., Si, L., Wu, X., et al. (2022) Prognostic Analysis of Cupropto-sis-Related Gene in Triple-Negative Breast Cancer. Frontiers in Immunology, 13, Article 922780. https://doi.org/10.3389/fimmu.2022.922780

  21. 21. Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-Garcia, W., Treviño, V., Shen, H., Laird, P.W., Levine, D.A., Carter, S.L., Getz, G., Stemke-Hale, K., Mills, G.B. and Verhaak, R.G. (2013) Inferring Tumour Purity and Stromal and Immune Cell Admixture from Expres-sion Data. Nature Communications, 4, Article 2612. https://doi.org/10.1038/ncomms3612

  22. 22. Karaayvaz, M., Cristea, S., Gillespie, S.M., et al. (2018) Unravelling Subclonal Heterogeneity and Aggressive Disease States in TNBC through Single-Cell RNA-Seq. Nature Communications, 9, Article No. 3588. https://doi.org/10.1038/s41467-018-06052-0

  23. 23. Deepak, K.G.K., Vempati, R., Nagaraju, G.P., et al. (2020) Tu-mor Microenvironment: Challenges and Opportunities in Targeting Metastasis of Triple Negative Breast Cancer. Phar-macological Research, 153, Article ID: 104683. https://doi.org/10.1016/j.phrs.2020.104683

  24. 24. Schmid, P., Rugo, H.S., Adams, S., et al. (2020) Atezolizumab Plus Nab-Paclitaxel as First-Line Treatment for Unresectable, Locally Advanced or Metastatic Triple-Negative Breast Cancer (IMpassion130): Updated Efficacy Results From a Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet Oncology, 21, 44-59. https://doi.org/10.1016/S1470-2045(19)30689-8

  25. 25. Wu, Y., Kyle-Cezar, F., Woolf, R.T., et al. (2019) An In-nate-Like Vδ1+ γδ T Cell Compartment in the Human Breast Is Associated with Remission in Triple-Negative Breast Cancer. Science Translational Medicine, 11, Article No. eaax9364. https://doi.org/10.1126/scitranslmed.aax9364

  26. 26. Zhang, S.-C., Hu, Z.-Q., Long, J.-H., et al. (2019) Clinical Im-plications of Tumor-Infiltrating Immune Cells in Breast Cancer. Journal of Cancer, 10, 6175-6184. https://doi.org/10.7150/jca.35901

  27. 27. Vito, A., Salem, O., El-Sayes, N., et al. (2021) Immune Checkpoint Block-ade in Triple Negative Breast Cancer Influenced by B Cells through Myeloid-Derived Suppressor Cells. Communications Biology, 4, Article No. 859. https://doi.org/10.1038/s42003-021-02375-9

  28. 28. Toney, N.J., Opdenaker, L.M., Cicek, K., et al. (2022) Tu-mor-B-Cell Interactions Promote Isotype Switching to an Immunosuppressive Igg4 Antibody Response Through Upreg-ulation of IL-10 in Triple Negative Breast Cancers. Journal of Translational Medicine, 20, Article No. 112. https://doi.org/10.1186/s12967-022-03319-5

  29. 29. Huang, A.C. and Zappasodi, R. (2022) A Decade of Checkpoint Blockade Immunotherapy in Melanoma: Understanding the Molecular Basis for Immune Sensitivity and Resistance. Na-ture Immunology, 23, 660-670. https://doi.org/10.1038/s41590-022-01141-1

  30. 30. Banach, K., Kowalska, J., Rzepka, Z., et al. (2021) The Role of UVA Radiation in Ketoprofen-Mediated BRAF-Mutant Amelanotic Melanoma Cells Death—A Study at the Cellular and Molecular Level. Toxicology in Vitro, 72, Article ID: 105108. https://doi.org/10.1016/j.tiv.2021.105108

  31. 31. Moyers, J.T. and Glitza Oliva, I.C. (2021) Immunotherapy for Mel-anoma. In: Naing, A. and Hajjar, J., Eds., Immunotherapy. Advances in Experimental Medicine and Biology, Vol. 1342, Springer, Cham, 81-111. https://doi.org/10.1007/978-3-030-79308-1_3

  32. 32. Mayr, J.A., Feichtinger, R.G., Tort, F., Ribes, A. and Sperl, W. (2014) Lipoic Acid Biosynthesis Defects. Journal of Inherited Metabolic Disease, 37, 553-563. https://doi.org/10.1007/s10545-014-9705-8

  33. 33. Solmonson, A., Faubert, B., Gu, W., et al. (2022) Compart-mentalized Metabolism Supports Midgestation Mammalian Development. Nature, 604, 349-353. https://doi.org/10.1038/s41586-022-04557-9

  34. 34. Lv, H., Liu, X., Zeng, X., et al. (2022) Comprehensive Analysis of Cuproptosis-Related Genes in Immune Infiltration and Prognosis in Melanoma. Frontiers in Pharmacology, 13, Arti-cle ID: 930041. https://doi.org/10.3389/fphar.2022.930041

  35. 35. Sosman, J.A., Kim, K.B., Schuchter, L., et al. (2012) Survival in BRAF V600–Mutant Advanced Melanoma Treated with Vemurafenib. New England Journal of Medicine, 366, 707-714. https://doi.org/10.1056/NEJMoa1112302

  36. 36. Tang, D., Kang, R., Berghe, T.V., Vandenabeele, P. and Kroemer, G. (2019) The Molecular Machinery of Regulated Cell Death. Cell Research, 29, 347-364. https://doi.org/10.1038/s41422-019-0164-5

  37. 37. Brady, D.C., Crowe, M.S., Turski, M.L., et al. (2014) Copper Is Required for Oncogenic BRAF Signaling and Tumorigenesis. Nature, 509, 492-496. https://doi.org/10.1038/nature13180

  38. 38. Ayers, M., Lunceford, J., Nebozhyn, M., et al. (2017) IFN-γ-Related mRNA Profile Predicts Clinical Response to PD-1 Blockade. Journal of Clinical Investigation, 127, 2930-2940. https://doi.org/10.1172/JCI91190

  39. 39. Grasso, C.S., Tsoi, J., Onyshchenko, M., et al. (2020) Conserved Interfer-on-γ Signaling Drives Clinical Response to Immune Checkpoint Blockade Therapy in Melanoma. Cancer Cell, 38, 500-515. https://doi.org/10.1016/j.ccell.2020.08.005

  40. 40. Kim, Y.J., Sheu, K.M., Tsoi, J., et al. (2021) Melanoma Dediffer-entiation Induced by IFN-γ Epigenetic Remodeling in Response to Anti-PD-1 Therapy. Journal of Clinical Investigation, 131, e145859. https://doi.org/10.1172/JCI145859

  41. 41. Nguyen, T.-T., Ramsay, L., Ahanfeshar-Adams, M., et al. (2021) Mutations in the IFNγ-JAK-STAT Pathway Causing Resistance to Immune Checkpoint Inhibitors in Melanoma Increase Sensitivity to Oncolytic Virus Treatment. Clinical Cancer Research, 27, 3432-3442. https://doi.org/10.1158/1078-0432.CCR-20-3365

  42. 42. Jonasch, E., Gao, J. and Rathmell, W.K. (2014) Renal Cell Carcinoma. BMJ, 349, Article No. g4797. https://doi.org/10.1136/bmj.g4797

  43. 43. Lalani, A.-A., McGregor, B.A., Albiges, L., et al. (2019) Systemic Treat-ment of Metastatic Clear Cell Renal Cell Carcinoma in 2018: Current Paradigms, Use of Immunotherapy, and Future Di-rections. European Urology, 75, 100-110. https://doi.org/10.1016/j.eururo.2018.10.010

  44. 44. Jonasch, E., Walker, C.L. and Rathmell, W.K. (2021) Clear Cell Renal Cell Carcinoma Ontogeny and Mechanisms of Lethality. Nature Reviews Nephrology, 17, 245-261. https://doi.org/10.1038/s41581-020-00359-2

  45. 45. Linehan, W.M., Schmidt, L.S., Crooks, D.R., et al. (2019) The Metabolic Basis of Kidney Cancer. Cancer Discovery, 9, 1006-1021. https://doi.org/10.1158/2159-8290.CD-18-1354

  46. 46. Cancer Genome Atlas Research Network (2013) Comprehen-sive Molecular Characterization of Clear Cell Renal Cell Carcinoma. Nature, 499, 43-49. https://doi.org/10.1038/nature12222

  47. 47. Bian, Z., Fan, R. and Xie, L. (2022) A Novel Cuproptosis-Related Prog-nostic Gene Signature and Validation of Differential Expression in Clear Cell Renal Cell Carcinoma. Genes, 13, Article No. 851. https://doi.org/10.3390/genes13050851

  48. 48. Singh, D., Narayanamoorthy, S., Gamre, S., et al. (2018) Hydroxy-chavicol, a Key Ingredient of Piper betle Induces Bacterial Cell Death by DNA Damage and Inhibition of Cell Division. Free Radical Biology and Medicine, 120, 62-71. https://doi.org/10.1016/j.freeradbiomed.2018.03.021

  49. 49. Nanni, V., Di Marco, G., Sacchetti, G., Canini, A. and Gismondi, A. (2020) Oregano Phytocomplex Induces Programmed Cell Death in Melanoma Lines via Mitochondria and DNA Damage. Foods, 9, Article No. 1486. https://doi.org/10.3390/foods9101486

  50. 50. Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71, 7-33. https://doi.org/10.3322/caac.21654

  51. 51. Rustgi, A.K. and El-Serag, H.B. (2014) Esophageal Carcinoma. New England Journal of Medicine, 371, 2499-2509. https://doi.org/10.1056/NEJMra1314530

  52. 52. Jiang, R., Huan, Y., Li, Y., et al. (2022) Transcriptional and Genetic Alterations of Cuproptosis-Related Genes Correlated to Malignancy and Immune-Infiltrate of Esophageal Carcinoma. Cell Death Discovery, 8, Article No. 370. https://doi.org/10.1038/s41420-022-01164-5

  53. 53. Lavilla, I., Costas, M., Miguel, P.S., Millos, J. and Bendicho, C. (2009) Elemental Fingerprinting of Tumorous and Adjacent Non-Tumorous Tissues From Patients with Colorectal Can-cer Using ICP-MS, ICP-OES and Chemometric Analysis. BioMetals, 22, 863-875. https://doi.org/10.1007/s10534-009-9231-6

  54. 54. Majumder, S., Chatterjee, S., Pal, S., et al. (2009) The Role of Copper in Drug-Resistant Murine and Human Tumors. BioMetals, 22, 377-384. https://doi.org/10.1007/s10534-008-9174-3

  55. 55. Xu, W.K., Byun, H. and Dudley, J.P. (2020) The Role of APO-BECs in Viral Replication. Microorganisms, 8, Article No. 1899. https://doi.org/10.3390/microorganisms8121899

  56. 56. Elango, R., Osia, B., Harcy, V., et al. (2019) Repair of Base Damage within Break-Induced Replication Intermediates Promotes Kataegis Associated with Chromosome Rearrange-ments. Nucleic Acids Research, 47, 9666-9684. https://doi.org/10.1093/nar/gkz651

  57. 57. Shi, M.-J., Meng, X.-Y., Fontugne, J., et al. (2020) Identification of New Driver and Passenger Mutations within APOBEC-Induced Hotspot Mutations in Bladder Cancer. Genome Medicine, 12, Article No. 85. https://doi.org/10.1186/s13073-020-00781-y

  58. 58. Zhou, B., Guo, L., Zhang, B., et al. (2019) Disulfiram Combined with Copper Induces Immunosuppression via PD-L1 Stabilization in Hepatocellular Carcinoma. American Journal of Cancer Research, 9, 2442-2455.

  59. 59. Simoni, Y., Becht, E., Fehlings, M., et al. (2018) Bystander CD8+ T Cells Are Abundant and Phenotypically Distinct in Human Tumor Infiltrates. Nature, 557, 575-579. https://doi.org/10.1038/s41586-018-0130-2

  60. 60. Meier, S.L., Satpathy, A.T. and Wells, D.K. (2022) Bystander T Cells in Cancer Immunology and Therapy. Nature Cancer, 3, 143-155. https://doi.org/10.1038/s43018-022-00335-8

  61. 61. Yamaguchi, H., Hsu, J.-M., Yang, W.-H. and Hung, M.-C. (2022) Mechanisms Regulating PD-L1 Expression in Cancers and Associated Opportunities for Novel Small-Molecule Therapeutics. Nature Reviews Clinical Oncology, 19, 287-305. https://doi.org/10.1038/s41571-022-00601-9

  62. 62. Haraldsdottir, S., Einarsdottir, H.M., Smaradottir, A., et al. (2022) Colorectal Cancer—A Review. Laeknabladid, 100, 75-82.

  63. 63. Torre, L.A., Bray, F., Siegel, R.L., et al. (2015) Global Cancer Statistics, 2012. CA: A Cancer Journal for Clinicians, 65, 87-108. https://doi.org/10.3322/caac.21262

  64. 64. Baidoun, F., Elshiwy, K., Elkeraie, Y., et al. (2021) Colorectal Cancer Ep-idemiology: Recent Trends and Impact on Outcomes. Current Drug Targets, 22, 998-1009. https://doi.org/10.2174/18735592MTEx9NTk2y

  65. 65. Sheftel, A.D., Stehling, O., Pierik, A.J., et al. (2010) Hu-mans Possess Two Mitochondrial Ferredoxins, Fdx1 and Fdx2, with Distinct Roles in Steroidogenesis, Heme, and Fe/S Cluster Biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 11775-11780. https://doi.org/10.1073/pnas.1004250107

  66. 66. Strushkevich, N., MacKenzie, F., Cherkesova, T., et al. (2011) Structural Basis for Pregnenolone Biosynthesis by the Mitochondrial Monooxygenase System. Proceedings of the National Academy of Sciences of the United States of America, 108, 10139-10143. https://doi.org/10.1073/pnas.1019441108

  67. 67. Wang, Z., Dong, H., Yang, L., et al. (2021) The Role of FDX1 in Granulosa Cell of Polycystic Ovary Syndrome (PCOS). BMC Endocrine Disorders, 21, Article No. 119. https://doi.org/10.1186/s12902-021-00775-w

  68. 68. Wang, L., Cao, Y., Guo, W. and Xu, J. (2023) High Expression of Cuproptosis-Related Gene FDX1 in Relation to Good Prognosis and Immune Cells Infiltration in Colon Adenocarci-noma (COAD). Journal of Cancer Research and Clinical Oncology, 149, 15-24. https://doi.org/10.1007/s00432-022-04382-7

  69. 69. O’Shaughnessy, M.J., Murray, K.S., La Rosa, S.P., et al. (2018) Systemic Antitumor Immunity by PD-1/PD-L1 Inhibition Is Potentiated by Vascular-Targeted Photodynamic Therapy of Primary Tumors. Clinical Cancer Research, 24, 592-599. https://doi.org/10.1158/1078-0432.CCR-17-0186

  70. 70. Buas, M.F., He, Q., Johnson, L.G., et al. (2017) Germline Variation in Inflammation-Related Pathways and Risk of Barrett’s Oesophagus and Oesophageal Adenocarcinoma. Gut, 66, 1739-1747. https://doi.org/10.1136/gutjnl-2016-311622

  71. 71. Ha, J.H., Jayaraman, M., Yan, M., et al. (2021) GNAi2/gip2-Regulated Transcriptome and Its Therapeutic Significance in Ovarian Cancer. Biomolecules, 11, Article No. 1211. https://doi.org/10.3390/biom11081211

  72. 72. Ma, X., Zhang, Q., Du, J., Tang, J. and Tan, B. (2021) Integrat-ed Analysis of ceRNA Regulatory Network Associated with Tumor Stage in Cervical Cancer. Frontiers in Genetics, 12, Article 618753. https://doi.org/10.3389/fgene.2021.618753

  73. 73. Rimal, R., Desai, P., Marquez, A.B., et al. (2021) 3-D Vascular-ized Breast Cancer Model to Study the Role of Osteoblast in Formation of a Pre-Metastatic Niche. Scientific Reports, 11, Article No. 21966. https://doi.org/10.1038/s41598-021-01513-x

  74. 74. Ding, H., Zhang, X., Su, Y., Jia, C. and Dai, C. (2020) GNAS Promotes Inflammation-Related Hepatocellular Carcinoma Progression by Promoting STAT3 Activation. Cellular & Molecular Biology Letters, 25, Article No. 8. https://doi.org/10.1186/s11658-020-00204-1

  75. 75. Duperret, E.K., Trautz, A., Ammons, D., et al. (2018) Alteration of the Tumor Stroma Using a Consensus DNA Vaccine Targeting Fibroblast Activation Protein (FAP) Synergizes with Antitumor Vaccine Therapy in Mice. Clinical Cancer Research, 24, 1190-1201. https://doi.org/10.1158/1078-0432.CCR-17-2033

  76. 76. Elyada, E., Bolisetty, M., Laise, P., et al. (2019) Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting Can-cer-Associated Fibroblasts. Cancer Discovery, 9, 1102-1123. https://doi.org/10.1158/2159-8290.CD-19-0094

  77. 77. Olusola, P., Banerjee, H.N., Philley, J.V. and Dasgupta, S. (2019) Human Papilloma Virus-Associated Cervical Cancer and Health Disparities. Cells, 8, Article No. 622. https://doi.org/10.3390/cells8060622

  78. 78. Lei, J., Ploner, A., Elfström, K.M., et al. (2020) HPV Vaccination and the Risk of Invasive Cervical Cancer. New England Journal of Medicine, 383, 1340-1348. https://doi.org/10.1056/NEJMoa1917338

  79. 79. Lei, L., Tan, L. and Sui, L. (2022) A Novel Cuproptosis-Related Gene Signature for Predicting Prognosis in Cervical Cancer. Frontiers in Genetics, 13, Article 957744. https://doi.org/10.3389/fgene.2022.957744

  80. 80. Wang, L., Kaneko, S., Kagaya, M., et al. (2002) Molecular Clon-ing, and Characterization and Expression of Dihydrolipoamide Acetyltransferase Component of Murine Pyruvate Dehy-drogenase Complex in Bile Duct Cancer Cells. Journal of Gastroenterology, 37, 449-454. https://doi.org/10.1007/s005350200065

  81. 81. Li, Y., Huang, R., Li, X., et al. (2016) Decreased Expression of Py-ruvate Dehydrogenase A1 Predicts an Unfavorable Prognosis in Ovarian Carcinoma. American Journal of Cancer Re-search, 6, 2076-2087.

  82. 82. Song, L., Liu, D., Zhang, X., et al. (2019) Low Expression of PDHA1 Predicts Poor Prog-nosis in Gastric Cancer. Pathology-Research and Practice, 215, 478-482. https://doi.org/10.1016/j.prp.2018.12.038

  83. 83. Chen, J., Guccini, I., Di Mitri, D., et al. (2018) Compartmentalized Activities of the Pyruvate Dehydrogenase Complex Sustain Lipogenesis in Prostate Cancer. Nature Genetics, 50, 219-228. https://doi.org/10.1038/s41588-017-0026-3

  84. 84. Li, D., Wang, C., Ma, P., et al. (2018) PGC1α Promotes Cholangiocarcinoma Metastasis by Upregulating PDHA1 and MPC1 Expression to Reverse the Warburg Effect. Cell Death & Disease, 9, Article No. 466. https://doi.org/10.1038/s41419-018-0494-0

  85. 85. Ishida, S., McCormick, F., Smith-McCune, K. and Hanahan, D. (2010) Enhancing Tumor-Specific Uptake of the Anticancer Drug Cisplatin with a Copper Chelator. Cancer Cell, 17, 574-583. https://doi.org/10.1016/j.ccr.2010.04.011

  86. 86. Gao, W., Huang, Z., Duan, J., et al. (2021) Elesclomol In-duces Copper-Dependent Ferroptosis in Colorectal Cancer Cells via Degradation of ATP7A. Molecular Oncology, 15, 3527-3544. https://doi.org/10.1002/1878-0261.13079

  87. 87. Henning, A.N., Roychoudhuri, R. and Restifo, N.P. (2018) Epigenetic Control of CD8+ T Cell Differentiation. Nature Reviews Immunology, 18, 340-356. https://doi.org/10.1038/nri.2017.146

  88. 88. Hodgins, J.J., Khan, S.T., Park, M.M., Auer, R.C. and Ardolino, M. (2019) Killers 2.0: NK Cell Therapies at the Forefront of Cancer Control. Journal of Clinical Investigation, 129, 3499-3510. https://doi.org/10.1172/JCI129338

  89. 89. Liang, Y., Hannan, R. and Fu, Y.-X. (2021) Type I IFN Acti-vating Type I Dendritic Cells for Antitumor Immunity. Clinical Cancer Research, 27, 3818-3824. https://doi.org/10.1158/1078-0432.CCR-20-2564

  90. 90. Kahlson, M.A. and Dixon, S.J. (2022) Copper-Induced Cell Death. Science, 375, 1231-1232. https://doi.org/10.1126/science.abo3959

  91. NOTES

    *通讯作者。

期刊菜单