Advances in Clinical Medicine
Vol. 13  No. 12 ( 2023 ), Article ID: 77737 , 11 pages
10.12677/ACM.2023.13122746

肩锁关节脱位治疗概述

王考

延安大学医学院,陕西 延安

收稿日期:2023年11月21日;录用日期:2023年12月14日;发布日期:2023年12月22日

摘要

肩锁关节脱位是临床中常见肩关节损伤,其在上肢运动中发挥着重要的作用,当肩锁关节脱位后,肩关节活动受到了明显的影响,本文旨在对肩锁关节的解剖、肩锁关节脱位的分型、诊治等方面进行总结,现概述如下。

关键词

肩锁关节脱位,喙锁韧带,钩钢板

Overview of Acromioclavicular Joint Dislocation Treatment

Kao Wang

Medical School, Yan’an University, Yan’an Shaanxi

Received: Nov. 21st, 2023; accepted: Dec. 14th, 2023; published: Dec. 22nd, 2023

ABSTRACT

Acromioclavicular joint dislocation is a common shoulder joint injury in clinic, which plays an important role in upper limb movement. When the acromioclavicular joint is dislocated, the shoulder joint activity is significantly affected. This paper aims to summarize the anatomy of the acromioclavicular joint, acromioclavicular joint dislocation typology, diagnosis and treatment, which are outlined as follows.

Keywords:Acromioclavicular Joint Dislocation, Rostral-Clavicular Ligament, Hook Steel Plate

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肩锁关节是连接中轴骨及上肢重要的结构,与肩胛带、韧带等组织协同工作,以确保上肢的流畅运动 [1] 。肩锁关节脱位是指肩锁关节原有的解剖构成遭到破坏,在肩关节损伤中占比约12%,在全身性关节脱位中占比约3.2% [2] 。肩锁关节损伤一般好发于年轻的运动人群,其损伤的常见原因是上臂内收时,向下的力直接作用于肩峰处,致使肩峰向前、下移位 [3] 。肩锁关节损伤最常使用Rockwood描述的六级系统进行分类,依据分类来制定治疗方式 [4] 。尽管肩锁关节脱位在肩关节损伤中占比并不低,但是对于肩锁关节脱位的治疗仍旧没有一个统一的标准,对于治疗方式的最佳选择缺乏共识 [5] 。同时肩锁关节的骨性结构及骨连接组织较为复杂,这两部分共同维持着关节的稳定性,无论是手术治疗或是非手术治疗,都需要临床医生对于局部的解剖、肩锁关节脱位的分型以及诊治原则有着详细的认知。因此本文通过对肩锁关节的局部的解剖结构、诊疗等方面进行概述,从而优化临床工作者在面对这类疾病时的诊疗思路。

2. 肩锁关节区域的解剖

2.1. 肩锁关节骨性结构概述

肩锁关节的骨性结构是由锁骨肩峰端、肩胛骨肩峰关节面以及喙突共同构成。肩锁关节宽度男性平均为1~7 mm,女性平均为1~6 mm [6] ,平均高度为9 mm,前后平均长度为19 mm [7] ,通常锁骨远端高于肩峰,高度差平均为3 mm [8] 。在大多数情况下,肩锁关节并不是完全垂直向下的,锁骨的关节面向尾侧倾斜,肩峰的关节面向头侧倾斜,故而形成了一个由外上自内下的一个倾斜角,因此锁骨是靠在肩峰上的 [9] 。此外锁骨长轴与肩锁关节形成的夹角平均约为50˚,在冠状面通过肩锁关节的线与锁骨夹角平均约为12˚ [10] 。肩锁关节是一个微动关节,正常的肩锁关节能够在前、后以及上下四个平面平移4~6 mm [11] ,同时肩锁关节在肩峰运动时可适应5˚~8°的旋转运动,在肩关节外展和抬高时可做40˚~45˚的旋转运动 [12] 。肩锁关节被关节囊所包围,关节面之间是半月板的同源物,已被证明会随着年龄的增长而退化 [13] ,关节盘在成人中几乎没有功能作用,在第20岁时就开始退化,到40岁时显著退变 [14] [15] 。

2.1.1. 锁骨

锁骨是体内第一个骨化的长骨(宫内第5周),但锁骨内侧端的骨骺是体内最后出现和最后闭合的骨骺。锁骨内侧骨骺直到18~20岁才骨化,并在23~25岁左右与锁骨干融合 [16] 。锁骨是肩胛带的组成部分之一,连接着上肢骨和躯干骨,为上肢的灵活运动创造了必要的条件。锁骨位于胸廓的前上方,呈横“S”形,在体表可直接触及,锁骨内侧2/3向前凸起,呈三棱形,外侧1/3向后凸起,呈扁平形。锁骨远端下表面有明显的标志,圆锥形结节位于锁骨最后方,在锁骨中1/3向外侧1/3弯曲的位置。梯形隆起在锁骨外侧1/3的下表面向前、向外延伸,这些标志代表相应韧带附着的位置 [17] 。男性和女性标本锁骨远端边缘到圆锥形结节内侧的距离分别为47.2 ± 4.6 mm和42.8 ± 5.6 mm。男性到梯形结节的距离为25.4 ± 3.7 mm,女性为22.9 ± 3.7 mm [18] 。锁骨向内侧形成胸锁关节,外侧形成肩锁关节,同时锁骨是形状变化最大的骨结构之一,其弯曲程度以及厚度伴随着肌肉及韧带的牵拉而发生改变 [19] 。锁骨是诸多肌肉附着的主要部位,胸大肌附着于锁骨内侧三分之二的前表面,三角肌附着到锁骨外侧三分之一的前表面,而斜方肌附着在锁骨外侧三分之一的后部 [20] 。

2.1.2. 肩峰

肩峰在妊娠第二个月后期发育,在出生前主要以软骨的形式存在,肩峰在8~10岁左右出现两个继发骨骺中心,在20~25岁之间与肩胛骨的其余部分合并 [17] 。三角肌附着在其粗糙的外侧表面,肩锁韧带附着在肩峰的前端 [17] 。通常肩峰会被认为是肩部最高的部分,但锁骨远端高于肩峰,因此肩峰构成了肩部凸出部分的外缘,其上方为锁骨,外侧为肱骨大结节,同时肩峰是肩胛骨上形状变化最大的部分 [21] 。故而肩峰的分类是依据形状来分,分为I型——平坦型(12%)、II型——弯曲型(56%)、III型——钩状型(29%)和IV型——凸起型(3%) [22] 。

2.1.3. 喙突

起源自肩胛骨,向颅骨和前外侧突出,但随后转向,尖端向前和向下突出,下表面弯曲。在婴儿出生后的第一年,喙突作为主要的骨化中心发育,在14~15岁左右扩大并与肩胛骨融合 [23] 。其与锥形中心和梯形中心的平均距离分别为16.4 ± 2.4和10.9 ± 2.4 mm [24] 。此外喙突是许多肌腱以及韧带的附着点,包括胸小肌、喙肱肌和肱二头肌短头的肌腱,以及喙锁韧带、喙肱韧带、喙肩韧带和肩胛横韧带。喙突作为肩部重要结构标志,同时靠近臂丛和腋窝动静脉等主要神经血管结构,在定位以及选择手术入路中有着重要作用,故而外科医生通常将喙突比作“肩部的灯塔” [25] 。

2.2. 骨连接组织

由于肩锁关节的骨结构不稳定,锁骨与肩胛骨之间的牢固连接主要依赖于周围的韧带组织。静力学稳定性由喙锁韧带、肩锁韧带、喙肩韧带共同维持 [26] ,动力性稳定主要由斜方肌以及三角肌来提供 [13] 。

2.2.1. 三角肌

三角肌是由腋神经支配,在前臂、肩部的运动中发挥重要的作用。三角肌包括三个部分,前部(起自锁骨)、中部(起自肩峰)、后部(起自肩胛冈),所有的肌纤维汇合在肱骨近端外侧的三角结节之上 [27] 。后部分与背阔肌共同作用,完成手臂的伸展、内收和侧向旋旋,前部分与胸大肌协同作用,负责手臂的屈曲、内收和内旋,而中间部分最大,为手臂的外展提供必要条件,这也是三角肌最重要的作用 [28] 。

2.2.2. 斜方肌

斜方肌是所有肩胸肌中最明显、最浅表的肌群,斜方肌是一块分布广泛的肌肉,分为上、中、下三部分。上斜方肌起自枕骨、颈上韧带以及颈6椎体的棘突,近乎垂直地附着于锁骨远端三分之一的后缘。中、下斜方肌起自颈7~胸12椎体的棘突,水平走向的中斜方肌附着在肩峰和肩胛冈上。而下斜方肌则向斜上方走形,附着在肩胛冈内侧 [29] 。

2.2.3. 肩锁韧带

肩锁韧带连接肩峰与锁骨,是限制锁骨后移和后轴旋转的主要制约因素,维持着肩锁关节水平面的稳定。通常分为上韧带、前韧带、下韧带和后韧带,用于周向支撑肩锁关节囊的前、后、下、上四个方向 [30] 。然而在大量的尸体标本研究中未找到下韧带的频率高达50% [31] ,Nakazawa等人将肩锁韧带分为上后韧带和前下韧带两部分 [32] 。肩锁韧带是由关节囊上缘以及下缘增厚的部分组成,肩锁关节囊的上部是最厚的部分,并且在后部最为突出,此外肩锁关节上韧带、后韧带是防止锁骨远端前后平移最重要因素。在发生小的移位时,肩锁韧带是抵抗锁骨发生后侧移位(89%)和锁骨向上移位(68%)的主要约束,而在位移较大时,肩锁韧带仍旧对后侧平移起着主要约束的作用(90%),而圆锥韧带替代了其一部分约束作用,成为限制向上平移最主要的结构(62%) [33] 。

2.2.4. 喙锁韧带

在抵抗纵向脱位应力中主要发挥作用的是喙锁韧带 [34] 。喙锁韧带连接锁骨远端和喙突,起到稳定肩锁关节的作用,它由梯形和圆锥形韧带两个独立的束组成,圆锥韧带位于梯形韧带内侧,两者之间被脂肪或滑囊隔开 [35] 。Salter [36] 等人发现梯形韧带和圆锥韧带在部分标本上融合于喙突,但在锁骨的附着点却大不相同。圆锥韧带从喙突垂直向上延伸至锁骨圆锥结节处,而梯形韧带沿前外侧至后内侧方向延伸至锁骨梯形隆起。梯形韧带和圆锥韧带的长度和宽度差异很大,梯形韧带的长度和宽度从0.8 cm到2.5 cm不等。圆锥韧带的长度为0.7~2.5 cm,宽度为0.4~0.95 cm。梯形韧带为四边形,其位于锥形韧带的前方和外侧。当这两部分韧带受到损伤,发生断裂后锁骨远端向上移动,会导致肩锁关节的脱位 [37] 。Fukuda K等人在一项尸体研究中发现,当锁骨沿肩锁关节的前后轴向上旋转时,圆锥韧带的长度,尤其是内侧部分,大大增加。锁骨沿前后轴下旋时,圆锥韧带和梯形韧带长度减小,肩锁韧带长度略有增加,此外在不同位移情况下,不同的韧带发挥了不同的作用,在水平位移较小的情况下,肩锁韧带提供了约49% ± 29%的阻力,圆锥韧带仅有35% ± 8%的阻力,而在水平位移增大后,肩锁关节提供的阻力降至12% ± 11%,而锥形韧带大幅度提高至70% ± 11% [38] 。但在维持肩锁关节稳定中这三部分韧带所发挥的作用不是完全独立的,在肩锁韧带完全断裂的情况下,喙锁韧带会替代一部分肩锁韧带的原有功能 [39] 。这也证明了肩锁关节生物力学中喙锁韧带的重要性,同时也表明喙锁韧带不仅在垂直方向上起着稳定肩锁关节的作用,在水平方向上也发挥了一定的作用 [40] 。

3. 常规影像学检查

如果怀疑肩锁关节不稳定,需要的常规影像学评估应包括双侧负重情况下Zanca x线片(x线光机球管向头侧倾斜10˚~15˚)、轴位x线片和双侧Alexander x线片,通过这些特殊的诊断技术,可以诊断出锁骨外侧相对抬高、锁骨背侧移位和较高程度的水平不稳定 [41] 。磁共振成像(MRI)和超声等其他成像方式在肩锁关节损伤诊断也有着重要的意义。MRI可以可视化韧带和软组织结构,从而评估损伤程度,并可能为制定治疗方式提供有价值的信息 [42] 。

4. 肩锁关节脱位的分型

4.1. Tossy分型

是由Tossy在1963年根据肩锁韧带(AC)和喙锁韧带(CC)的损伤模式,首次将肩锁关节脱位分为I型到III型 [43] (见表1)。

Table 1. Tossy typing

表1. Tossy分型

4.2. Rockwood分型

对于肩锁关节脱位有多种分型,而在临床工作中应用最广泛的为Rockwood分型,其实在Tossy分型基础之上改进而来,分为以下6种(见表2)。

Table 2. Rockwood typing

表2. Rockwood分型

4.3. 基于Rockwood III型提出的亚分类

ISAKOS (国际关节镜,膝关节外科和骨科运动医学学会)在Rockwood分型基础之上,提出了IIIA (稳定性)、IIIB型(不稳定型)两个亚分类。其分类的基础依据功能而不是解剖。IIIA级损伤的定义是肩锁关节稳定,在交叉内收动作(患侧上肢搭对侧肩部)时锁骨远端没有脱离肩锁关节,同时也没有明显的肩胛骨功能障碍。不稳定的IIIB级损伤则是定义为在完成交叉内收时锁骨远端凸起,存在分离情况。不稳定的III型病变(IIIB型)将继续引起疼痛(通常在前肩峰、肩袖和肩胛骨内侧区域),屈曲和外展活动范围减小,观察发现存在明显的肩胛骨运动障碍 [44] 。

5. 肩锁关节脱位的治疗

5.1. 非手术治疗

目前大部分人认为肩锁关节脱位Rockwood I型以及II型不需要进行手术治疗,I型和II型通常采用悬吊、冰敷和短时间固定(通常持续3至7天)的保守治疗 [45] 。Gladston等人提出四阶段保守治疗方案,第一阶段的重点是通过悬吊固定消除疼痛和保护肩锁关节(3~10天),同时预防肌肉萎缩。第二阶段包括运动范围的练习,以恢复完全的活动能力,并逐渐加强。第三阶段涉及高级强化,以提高肩锁关节的动态稳定性。第四阶段包括运动专项训练,为完全恢复之前的活动水平做准备 [46] 。

5.2. 手术治疗

肩锁关节修复有着悠久的历史,可以追溯到1917年,当时Cadenet等人首次提出了肩锁关节修复技术,从那时起,已有超过150种不同的技术被应用,分为开放和封闭技术,包括金属丝、螺钉、钩板、自体或同种异体移植物、悬挂装置、合成韧带、韧带或肌腱转移、锁骨截骨或切除 [47] 。目前,对于Rockwood III型损伤的手术或保守治疗尚无共识,Rockwood IV至VI级损伤需手术治疗。尽管已有多种手术方法被报道,但没有一种可以被认为是肩锁关节脱位手术的“金标准”。肩锁关节脱位损伤的手术治疗原则包括:1、在冠状面和矢状面准确复位肩锁关节;2、修复或重建受伤的韧带,3、在韧带愈合后去除内固定物以防止疲劳断裂 [48] 。第一种主要观点是围绕在通过内固定实现肩锁关节复位,第二种是采用韧带移植/重建,以达到恢复关节功能的目的 [49] 。Weinstein将区分急性手术和延迟手术的时间点描述为肩部损伤后3周,并认为手术最恰当的时机是在3月之内 [50] 。Okereke I等人在对Rockwood III型外科治疗的一项系统性回顾中认为,在肩锁关节脱位的治疗中,使用自体或替代物重建喙锁韧带的治疗方法是优于使用刚性固定方法(钩钢板) [51] 。然而,很少有证据能够证明手术治疗相较于非手术治疗,具有巨大的优势 [52] 。

5.2.1. 内固定

克氏针内固定曾经是检索关节脱位最常用手术治疗方法之一,具有操作简单、治疗费用低等优势,但因其存在容易断裂、移位等不良并发症,逐渐在临床工作中被淘汰 [53] 。Endobutton系统(为带袢钢板,由钢板和线缆组成)最早在膝关节交叉韧带重建中应用,近年来逐步运用于治疗肩锁关节脱位。是通过将小钢板放到锁骨和喙突之上,通过袢之间的连接来达到复位肩锁关节的目的。环形袢所能承受的受力强度优于人体天然韧带,不容易发生断裂,所以其具有更有效地重建喙锁韧带的作用,并且还具有内植入物较小,无需二次手术取出的优点 [54] 。钩钢板有着独特的钩状结构,为肩锁关节提供了稳定性,并且允许一定程度的旋转活动 [55] 。其单钩插入肩峰下方,位于肩锁关节后方,远端固定于锁骨之上,起到了杠杆的作用,将锁骨固定在肩锁关节的肩峰水平,以达到维持稳定,促进骨愈合、韧带愈合的目的 [56] 。临床观察表明,采用钩钢板治疗后,患者的功能和影像学检查均可以恢复到满意水平 [57] [58] 。因此钩钢板在临床工作中得到了广泛的应用,但仍旧存在一系列相关问题 [59] 。包括肩峰下撞击综合征、肩峰骨折、韧带损伤和植入物刺激作用 [60] ,以及钩向上穿过肩峰、肩峰下骨溶解、骨折、肩锁关节骨关节炎、和肩袖撕裂等并发症 [61] 。此外,钩钩板固定后肩锁关节运动的分析表明,钩钢板固定后锁骨运动和肩锁关节生物力学发生了显著变化,肩峰下的钩固定导致锁骨远端相对于肩峰内侧的内旋减少和前移增加 [62] 。相关研究表明,钩钢板在置入肩锁关节后发生骨溶解的概率与肩峰类型有关,I型肩峰发生骨溶解的概率较其他类型较高,究其原因是因为单钩钢板与肩峰接触面积不足而导致局部应力过高所致 [63] 。Li-Kun Hung等人通过构建肩锁关节有限元模型,模拟不同角度及长度的单钩钢板植入后进行生物力学分析,得到钩角度越小,锁骨中三分之一的应力越大,钩角度越大,锁骨钩钢板对肩峰的作用力越大。钢板最内侧位置的螺钉产生的应力最大,锁骨钩钢板的最大应力出现在钩的转角处 [64] 。Wu等人采用3D打印模型定制锁骨钩钢板来治疗肩锁关节脱位,其预制的锁骨钩钢板与骨面更加贴合,有助于降低术后出现并发症的风险 [65] 。Liu等人则是提出了双钩钢板这一概念,在构建有限元模型并进行力学测试后认为双钩锁骨钢板能迅速重建肩锁关节的稳定性,有效降低锁骨及螺钉周围骨应力。此外,双钩锁骨钢板可以降低肩峰的峰值应力,使应力分布更加均匀,达到减少骨溶解的可能性 [66] 。

5.2.2. 修复/重建喙锁韧带韧带

生物力学研究已经证明了肩锁韧带在维持肩锁关节稳定性方面具有着重要的作用 [67] ,因此为了达到重建和修复喙锁韧带的目的,众多学者进行了大量尝试。其主要分为自体肌腱移植以及人工韧带重建。1972年Weaver和Dunn在总结众多内固定手术中发现存在:1) 用于固定的螺钉移动,2) 内固定装置对骨骼的侵蚀,3) 金属固定装置失效,4) 畸形复发,5) 肩锁关节痛的晚期发展,6) 需要第二次手术来移除固定装置等诸多问题,为了防止这些问题的产生,他们提出通过移植喙肩韧带来进行修复,通过切除外侧锁骨5~10 mm,然后将喙肩韧带转移,以补充肩锁韧带和喙锁韧带的缺陷,并取得了较好的疗效 [68] 。但随着进一步研究,Weaver-Dunn术式也被证明在维持肩锁关节稳定方面并不具有优势,Paul W等人在一项尸体研究中发现,天然肩锁关节、改良Weaver-Dunn手术、使用掌长肌腱移植物和使用桡侧腕屈肌腱移植物来进行肩锁关节的重建,其断裂时所所承载的力为分别为815 N、483 N、326 N和774 N,这也说明喙肩韧带移植物、掌长肌腱所能承受的应力与喙锁韧带相差甚远 [69] 。而在另一项尸体研究中,采用喙肩韧带移位、编织涤纶吊索、缝合锚和Bosworth螺丝钉重建喙锁韧带后也同样得到了喙肩韧带所能承受的应力最小的结论 [70] 。在此基础之上,Jones等人率先使用半腱肌肌腱移植重建喙锁韧带,成功挽救了一例肩锁关节Weaver-Dunn手术失败的患者。在此之后应用肌腱移植用来重建喙锁韧带在临床中的应用越来越多,考虑其受力性能等因素,目前临床工作中主要以移植半腱肌肌腱为主 [71] ,在此之外还有股薄肌、拇伸肌 [67] ,以及腓短肌腱 [72] 。当下合成韧带的因其独有的优势已经开始取代传统的Weaver-Dunn手术 [73] ,用于人造韧带的材料有聚酯纤维、涤纶、碳纤维、聚四氟乙烯等 [74] 。Jeon IH等人通过使用两端有环的编织聚酯制成的人工喙锁韧带来进行重建,在11例病人中有10例都取得了良/优的疗效,并且证明人工韧带具有良好的受力性能 [75] 。Tightrope系统(为锁扣带袢钛板,由钛板,锁扣、引线组成)其是一种喙锁韧带重建手术,可以通过孔道重建断裂的喙锁韧带,进而有效恢复肩锁关节垂直稳定性 [76] ,同时其已成为除了锁骨钩钢板内固定以外在临床中应用最多的固定技术 [77] 。双Tightrope锁扣带袢钢板是一种重建/加强双侧喙锁韧带的微创技术,为确保局部喙锁韧带愈合,建议最佳手术时间在创伤后三周内 [37] 。Walz等人的研究发现,通过此种技术重建后可以获得与天然韧带相同甚至更高的力,从而获得良好的治疗效果 [78] 。但是值得注意的是,Jensen G等人在一项临床实验中,通过VAS评分、肩关节活动测验评分等方面的比较,得出了双Tightrope技术在治疗肩锁关节脱位的疗效并不优于锁骨钩钢板的结论 [79] 。

6. 小结

肩锁关节脱位在临床中较为好发,多见于年轻患者。最常用的分型为Rockwood分型,目前大家普遍认为I、II型无需手术治疗,IV~VI型需要进一步行手术治疗,但对于III型的治疗尚无明确的定论。这也提示我们临床工作者在面对这类疾病时,要综合影像学、临床体征等多方面信息,做出更加准确的判断,合适的治疗方式是关键点所在。同时目前应用最广泛的钩钢板存在着诸多并发症,与钢板是否贴服骨质、钩的角度等因素息息相关。随着医疗技术的发展与进步,对于钩钢板的改进设计越来越多,随着改进钩钢板更加符合肩锁关节的生物力学机制,其应用后的肩锁关节脱位的治疗效果会更加令人满意。

基金项目

陕西省重点研发计划:老年OVCF患者PKP术后椎体再骨折风险预测模型的建立及唑来膦酸预防椎体再骨折的随机对照研究。编码:2023-YBSF-655;局级课题:不同晶格单元类型改良钦合金多孔结构骨整合性能的效果与机制研究。编码:2022ms02。

文章引用

王 考 . 肩锁关节脱位治疗概述
Overview of Acromioclavicular Joint Dislocation Treatment[J]. 临床医学进展, 2023, 13(12): 19502-19512. https://doi.org/10.12677/ACM.2023.13122746

参考文献

  1. 1. Ludewig, P.M., Phadke, V., Braman, J.P., Hassett, D.R., Cieminski, C.J. and LaPrade, R.F. (2009) Motion of the Shoulder Complex during Multiplanar Humeral Elevation. The Journal of Bone and Joint Surgery. American Volume, 91, 378-389. https://doi.org/10.2106/JBJS.G.01483

  2. 2. Gao, Z., Cai, P., Yao, K., Long, N., Liu, L. and Xiao, C. (2021) Mid-Clavicle Fracture with Dislocation of the Ipsilateral Acromioclavicular Joint Treated with Endobutton System. A Case Report and Review of the Literature. Medicine, 100, e27894. https://doi.org/10.1097/MD.0000000000027894

  3. 3. Johansen, J.A., Grutter, P.W., McFarland, E.G. and Petersen, S.A. (2011) Acromioclavicular Joint Injuries: Indications for Treatment and Treatment Options. Journal of Shoulder and Elbow Surgery, 20, S70-S82. https://doi.org/10.1016/j.jse.2010.10.030

  4. 4. Liu, C.T. and Yang, T.F. (2020) Hook Plate with or without Coraco-clavicular Ligament Augmentation in the Treatment of Acute Acromioclavicular Separation. BMC Musculoskeletal Dis-orders, 21, Article No. 701. https://doi.org/10.1186/s12891-020-03726-z

  5. 5. Stucken, C. and Cohen, S.B. (2015) Management of Acromio-clavicular Joint Injuries. Orthopedic Clinics of North America, 46, 57-66. https://doi.org/10.1016/j.ocl.2014.09.003

  6. 6. Petersson, C.J. and Redlund-Johnell, I. (1983) Radiographic Joint Space in Normal Acromioclavicular Joints. Acta Orthopaedica Scandinavica, 54, 431-433. https://doi.org/10.3109/17453678308996596

  7. 7. Frank, R.M., Cotter, E.J., Leroux, T.S. and Romeo, A.A. (2019) Acromioclavicular Joint Injuries: Evidence-Based Treatment. Journal of the American Academy of Orthopaedic Surgeons, 27, e775-e788. https://doi.org/10.5435/JAAOS-D-17-00105

  8. 8. Kim, S.J., Kee, Y.M., Park, D.H., Ko, Y.I. and Lee, B.G. (2018) Evaluation of the Acromioclavicular Joint Morphology for Minimizing Subacromial Erosion after Surgical Fixation of the Joint Using a Clavicular Hook Plate. Clinics in Shoulder and Elbow, 21, 138-144. https://doi.org/10.5397/cise.2018.21.3.138

  9. 9. Prescher, A. (2000) Anatomical Basics, Variations, and Degenera-tive Changes of the Shoulder Joint and Shoulder Girdle. European Journal of Radiology, 35, 88-102. https://doi.org/10.1016/S0720-048X(00)00225-4

  10. 10. Stine, I.A. and Vangsness, C.T. (2009) Analysis of the Capsule and Ligament Insertions about the Acromioclavicular Joint: A Cadaveric Study. Arthroscopy, 25, 968-974. https://doi.org/10.1016/j.arthro.2009.04.072

  11. 11. Debski, R.E., Parsons, I.M., Fenwick, J. and Vangura, A. (2000) Ligament Mechanics during Three Degree-of-Freedom Motion at the Acromioclavicular Joint. Annals of Biomedical En-gineering, 28, 612-618. https://doi.org/10.1114/1.1304848

  12. 12. Willimon, S.C., Gaskill, T.R. and Millett, P.J. (2011) Acromioclavicular Joint Injuries: Anatomy, Diagnosis, and Treatment. The Physician and Sportsmedicine, 39, 116-122. https://doi.org/10.3810/psm.2011.02.1869

  13. 13. Rios, C.G. and Mazzocca, A.D. (2008) Acromioclavicular Joint Problems in Athletes and New Methods of Management. Clinics in Sports Medicine, 27, 763-788. https://doi.org/10.1016/j.csm.2008.06.006

  14. 14. Saccomanno, M.F., Dei, C. and Milano, G. (2014) Acromioclavic-ular Joint Instability: Anatomy, Biomechanics and Evaluation. Joints, 2, 87-92. https://doi.org/10.11138/jts/2014.2.2.087

  15. 15. Ha, A.S., Petscavage-Thomas, J.M. and Tagoylo, G.H. (2014) Acromioclavicular Joint: The Other Joint in the Shoulder. AJR. American Journal of Roentgenology, 202, 375-385. https://doi.org/10.2214/AJR.13.11460

  16. 16. Wirth, M.A. and Rockwood, C.A. (1996) Acute and Chronic Traumatic Injuries of the Sternoclavicular Joint. Journal of the American Academy of Orthopaedic Surgeons, 4, 268-278. https://doi.org/10.5435/00124635-199609000-00005

  17. 17. Renfree, K.J. and Wright, T.W. (2003) Anatomy and Biomechanics of the Acromioclavicular and Sternoclavicular Joints. Clinics in Sports Medicine, 22, 219-237. https://doi.org/10.1016/S0278-5919(02)00104-7

  18. 18. Maier, D., Jaeger, M., Reising, K., Feucht, M.J., Südkamp, N.P. and Izadpanah, K. (2016) Injury Patterns of the Acromioclavicular Ligament Complex in Acute Acromioclavicular Joint Dislocations: A Cross-Sectional, Fundamental Study. BMC Musculoskeletal Disorders, 17, Article No. 385. https://doi.org/10.1186/s12891-016-1240-3

  19. 19. Ljunggren, A.E. (1979) Clavicular Function. Acta Orthopaedica Scandinavica, 50, 261-268. https://doi.org/10.3109/17453677908989766

  20. 20. Klassen, J.F., Morrey, B.F. and An, K.-N. (1997) Surgical Anatomy and Function of the Acromioclavicular and Coracoclavicular Ligaments. Operative Techniques in Sports Medi-cine, 5, 60-64. https://doi.org/10.1016/S1060-1872(97)80015-9

  21. 21. Macalister, A. (1893) Notes on Acromion. Journal of Anat-omy and Physiology, 1, 244. https://doi.org/10.1136/bmj.1.1675.244

  22. 22. Koca, R., Fazlıogulları, Z., Aydın, B.K., Durmaz, M.S., Karabulut, A.K. and Unver Dogan, N. (2022) Acromion Types and Morphometric Evaluation of Painful Shoulders. Folia Morpho-logica (Warsz), 81, 991-997. https://doi.org/10.5603/FM.a2021.0087

  23. 23. Li, C.H., Skalski, M.R., Matcuk Jr., G.R., Patel, D.B., Gross, J.S., Tomasian, A., et al. (2019) Coracoid Process Fractures: Anatomy, Injury Patterns, Multimodality Imaging, and Approach to Management. Emergency Radiology, 26, 449-458. https://doi.org/10.1007/s10140-019-01683-2

  24. 24. Salzmann, G.M., Paul, J., Sandmann, G.H., Imhoff, A.B. and Schöttle, P.B. (2008) The Coracoidal Insertion of the Coracoclavicu-lar Ligaments: An Anatomic Study. The American Journal of Sports Medicine, 36, 2392-2397. https://doi.org/10.1177/0363546508322887

  25. 25. Mohammed, H., Skalski, M.R., Patel, D.B., Tomasian, A., Schein, A.J., White, E.A., et al. (2016) Coracoid Process: The Lighthouse of the Shoulder. Radiographics, 36, 2084-2101. https://doi.org/10.1148/rg.2016160039

  26. 26. 王晨, 杨娜, 衡立松, 樊伟, 朱养均, 张堃, 等. 肩锁关节功能解剖及垂直方向的生物力学研究[J]. 中华创伤骨科杂志, 2019, 21(11): 986-990.

  27. 27. Madi, N.S., Issa, R., Koaik, Y. and Al-Taki, M. (2020) Complete Distal Deltoid Muscle Detachment: A Case Report. Sportverletzung Sportschaden, 36, 55-59. https://doi.org/10.1055/a-1113-1546

  28. 28. Moser, T., Lecours, J., Michaud, J., Bureau, N.J., Guillin, R. and Cardinal, É. (2013) The Deltoid, a Forgotten Muscle of the Shoulder. Skeletal Radiology, 42, 1361-1375. https://doi.org/10.1007/s00256-013-1667-7

  29. 29. Camargo, P.R. and Neumann, D.A. (2019) Kinesiologic Consid-erations for Targeting Activation of Scapulothoracic Muscles Part 2: Trapezius. Brazilian Journal of Physical Therapy, 23, 467-475. https://doi.org/10.1016/j.bjpt.2019.01.011

  30. 30. Klimkiewicz, J.J., Williams, G.R., Sher, J.S., Karduna, A., Des Jardins, J. and Iannotti, J.P. (1999) The Acromioclavicular Capsule as a Restraint to Posterior Translation of the Clavicle: A Biomechanical Analysis. Journal of Shoulder and Elbow Surgery, 8, 119-124. https://doi.org/10.1016/S1058-2746(99)90003-4

  31. 31. Nolte, P.C., Lacheta, L., Dekker, T.J., Elrick, B.P. and Millett, P.J. (2020) Optimal Management of Acromioclavicular Dislocation: Current Perspectives. Orthopedic Research and Re-views, 12, 27-44. https://doi.org/10.2147/ORR.S218991

  32. 32. Nakazawa, M., Nimura, A., Mochizuki, T., Koizumi, M., Sato, T. and Akita, K. (2016) The Orientation and Variation of the Acromioclavicular Ligament. The American Journal of Sports Medicine, 44, 2690-2695. https://doi.org/10.1177/0363546516651440

  33. 33. Lee, K.W., Debski, R.E., Chen, C.H., Woo, S.L. and Fu, F.H. (1997) Functional Evaluation of the Ligaments at the Acromioclavicular Joint during Anteroposterior and Superoinferior Translation. The American Journal of Sports Medicine, 25, 858-862. https://doi.org/10.1177/036354659702500622

  34. 34. Mazzocca, A.D., Arciero, R.A. and Bicos, J. (2007) Evaluation and Treatment of Acromioclavicular Joint Injuries. The American Journal of Sports Medicine, 35, 316-329. https://doi.org/10.1177/0363546506298022

  35. 35. Kim, A.C., Matcuk, G., Patel, D., Itamura, J., Forrester, D., White, E., et al. (2012) Acromioclavicular Joint Injuries and Reconstructions: A Review of Expected Imaging Findings and Po-tential Complications. Emergency Radiology, 19, 399-413. https://doi.org/10.1007/s10140-012-1053-0

  36. 36. Salter, E.G., Nasca, R.J. and Shelley, B.S. (1987) Anatomical Observations on the Acromioclavicular Joint and Supporting Ligaments. The American Journal of Sports Medicine, 15, 199-206. https://doi.org/10.1177/036354658701500301

  37. 37. Salzmann, G.M., Walz, L., Buchmann, S., Glabgly, P., Ven-jakob, A. and Imhoff, A.B. (2010) Arthroscopically Assisted 2-Bundle Anatomical Reduction of Acute Acromioclavicu-lar Joint Separations. The American Journal of Sports Medicine, 38, 1179-1187. https://doi.org/10.1177/0363546509355645

  38. 38. Fukuda, K., Craig, E.V., An, K.N., Cofield, R.H. and Chao, E.Y. (1986) Biomechanical Study of the Ligamentous System of the Acromioclavicular Joint. The Journal of Bone and Joint Surgery. American Volume, 68, 434-440. https://doi.org/10.2106/00004623-198668030-00019

  39. 39. Debski, R.E., Parsons, I.M., Woo, S.L. and Fu, F.H. (2001) Effect of Capsular Injury on Acromioclavicular Joint Mechanics. The Journal of Bone and Joint Surgery. Ameri-can Volume, 83, 1344-1351. https://doi.org/10.2106/00004623-200109000-00009

  40. 40. Minkus, M., Wieners, G., Maziak, N., Plachel, F., Scheibel, M. and Kraus, N. (2021) The Ligamentous Injury Pattern in Acute Acromioclavicular Dislocations and Its Im-pact on Clinical and Radiographic Parameters. Journal of Shoulder and Elbow Surgery, 30, 795-805. https://doi.org/10.1016/j.jse.2020.10.026

  41. 41. Martetschläger, F., Kraus, N., Scheibel, M., Streich, J., Venjakob, A. and Maier, D. (2019) The Diagnosis and Treatment of Acute Dislocation of the Acromioclavicular Joint. Deutsches Ärz-teblatt International, 116, 89-95. https://doi.org/10.3238/arztebl.2019.0089

  42. 42. Schaefer, F.K., Schaefer, P.J., Brossmann, J., Hilgert, R.E., Heller, M. and Jahnke, T. (2006) Experimental and Clinical Evaluation of Acromioclavicular Joint Structures with New Scan Orientations in MRI. European Radiology, 16, 1488-1493. https://doi.org/10.1007/s00330-005-0093-1

  43. 43. Masionis, P., Bobina, R. and Ryliskis, S. (2020) The Relationship between the Clinical and Radiological Findings and the Outcomes of Early Surgical Treatment after Tossy Type III Acromioclavicular Joint Dislocation. Cureus, 12, e6681. https://doi.org/10.7759/cureus.6681

  44. 44. Beitzel, K., Mazzocca, A.D., Bak, K., Itoi, E., Kibler, W.B., Mirzayan, R., et al. (2014) ISAKOS Upper Extremity Committee Consensus Statement on the Need for Diversification of the Rock-wood Classification for Acromioclavicular Joint Injuries. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 30, 271-278. https://doi.org/10.1016/j.arthro.2013.11.005

  45. 45. Cote, M.P., Wojcik, K.E., Gomlinski, G. and Mazzocca, A.D. (2010) Rehabilitation of Acromioclavicular Joint Separations: Operative and Nonoperative Considerations. Clinics in Sports Medicine, 29, 213-228. https://doi.org/10.1016/j.csm.2009.12.002

  46. 46. Gladstone, J.N., Wilk, K.E. and Andrews, J.R. (1997) Nonopera-tive Treatment of Acromioclavicular Joint Injuries. Operative Techniques in Sports Medicine, 5, 78-87. https://doi.org/10.1016/S1060-1872(97)80018-4

  47. 47. Berthold, D.P., Muench, L.N., Dyrna, F., Mazzocca, A.D., Garvin, P., Voss, A., et al. (2022) Current Concepts in Acromioclavicular Joint (AC) Instability—A Proposed Treatment Algorithm for Acute and Chronic AC-Joint Surgery. BMC Musculoskeletal Disorders, 23, Article No. 1078. https://doi.org/10.1186/s12891-022-05935-0

  48. 48. Banaszek, D., Pickell, M., Wilson, E., Ducsharm, M., Hesse, D., Easteal, R., et al. (2017) Anatomical Evaluation of the Proximity of Neurovascular Structures during Arthroscopically Assisted Acromioclavicular Joint Reconstruction: A Cadaveric Pilot Study. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 33, 75-81. https://doi.org/10.1016/j.arthro.2016.05.041

  49. 49. Tuxun, A., Keremu, A., Aila, P., Abulikemu, M., Xie, Z. and Ababokeli, P. (2022) Combination of Clavicular Hook Plate with Coracoacromial Ligament Transposition in Treatment of Acromioclavicular Joint Dislocation. Orthopaedic Surgery, 14, 613-620. https://doi.org/10.1111/os.13197

  50. 50. Weinstein, D.M., McCann, P.D., McIlveen, S.J., Flatow, E.L. and Bigliani, L.U. (1995) Surgical Treatment of Complete Acromioclavicular Dislocations. The American Journal of Sports Medicine, 23, 324-331. https://doi.org/10.1177/036354659502300313

  51. 51. Okereke, I. and Abdelfatah, E. (2022) Surgical Management of Acute Rockwood Grade III Acromioclavicular Joint Dislocations: A Systematic Review. Cureus, 14, e28657. https://doi.org/10.7759/cureus.28657

  52. 52. Spencer, E.E. (2007) Treatment of Grade III Acromioclavicular Joint In-juries. Clinical Orthopaedics and Related Research, 455, 38-44. https://doi.org/10.1097/BLO.0b013e318030df83

  53. 53. 黄晓晓, 曾跃林, 朱崇瑜, 谭海涛, 吴安平. 肩锁关节脱位手术治疗的研究进展[J]. 中国骨与关节损伤杂志, 2020(9): 1004-1005.

  54. 54. Wei, H.-F., Chen, Y.-F., Zeng, B.-F., Zhang, C.-Q., Chai, Y.-M., Wang, H.-M., et al. (2010) Triple Endobuttton Technique for the Treatment of Acute Com-plete Acromioclavicular Joint Dislocations: Preliminary Results. International Orthopaedics, 35, 555-559. https://doi.org/10.1007/s00264-010-1057-x

  55. 55. Kim, Y.S., Yoo, Y.-S., Jang, S.W., Nair, A.V., Jin, H. and Song, H.-S. (2015) In Vivo Analysis of Acromioclavicular Joint Motion after Hook Plate Fixation Using Three-Dimensional Computed Tomography. Journal of Shoulder and Elbow Surgery, 24, 1106-1111. https://doi.org/10.1016/j.jse.2014.12.012

  56. 56. Lin, H.Y., Wong, P.K., Ho, W.P., Chuang, T.Y., Liao, Y.S. and Wong, C.C. (2014) Clavicular Hook Plate May Induce Subacromial Shoulder Impingement and Rotator Cuff Le-sion—Dynamic Sonographic Evaluation. Journal of Orthopaedic Surgery and Research, 9, Article No. 6. https://doi.org/10.1186/1749-799X-9-6

  57. 57. Qu, Y.Z., Xia, T., Liu, G.H., Zhou, W., Mi, B.B., Liu, J., et al. (2019) Treatment of Anterior Sternoclavicular Joint Dislocation with Acromioclavicular Joint Hook Plate. Orthopaedic Surgery, 11, 91-96. https://doi.org/10.1111/os.12422

  58. 58. Taleb, H., Afshar, A., Shariyate, M.J. and Tabrizi, A. (2019) Comparison of Short-Term Clinical Outcomes of Hook Plate and Continuous Loop Double Endobutton Fixations in Acute Acromiocla-vicular Joint Dislocation. The Archives of Bone and Joint Surgery, 7, 545-550.

  59. 59. Tiren, D., van Bemmel, A.J.M., Swank, D.J. and van der Linden, F.M. (2012) Hook Plate Fixation of Acute Displaced Lateral Clavicle Fractures: Mid-Term Results and a Brief Literature Overview. Journal of Orthopaedic Surgery and Research, 7, Article No. 2. https://doi.org/10.1186/1749-799X-7-2

  60. 60. Zhang, C., Huang, J., Luo, Y. and Sun, H. (2014) Comparison of the Efficacy of a Distal Clavicular Locking Plate versus a Clavicular Hook Plate in the Treatment of Unstable Distal Clavicle Fractures and a Systematic Literature Review. International Orthopaedics, 38, 1461-1468. https://doi.org/10.1007/s00264-014-2340-z

  61. 61. Jeong, J.Y. and Chun, Y.M. (2020) Treatment of Acute High-Grade Acromioclavicular Joint Dislocation. Clinics in Shoulder and Elbow, 23, 159-165. https://doi.org/10.5397/cise.2020.00150

  62. 62. Malahias, M.A., Sarlikiotis, T., Brilakis, E., Gerogiannis, D., Av-ramidis, G. and Antonogiannakis, E. (2020) The Clinical Outcome of the “Surgilig” Technique for the Reconstruction of Acromioclavicular Dislocations: A Systematic Review. Journal of Orthopaedics, 18, 126-131. https://doi.org/10.1016/j.jor.2019.09.011

  63. 63. Unal, O.K. and Dagtas, M.Z. (2020) Comparison of the Results of Hook Plate and Endo-Button Used in the Surgical Treatment of Acromioclavicular Joint Separation. Cureus, 12, e11987. https://doi.org/10.7759/cureus.11987

  64. 64. Hung, L.-K., Su, K.C., Lu, W.-H. and Lee, C.-H. (2017) Biomechanical Analysis of Clavicle Hook Plate Implantation with Different Hook Angles in the Acromioclavicular Joint. International Orthopaedics, 41, 1663-1669. https://doi.org/10.1007/s00264-016-3384-z

  65. 65. Wu, X., Wang, G., Rong, K., Xia, Q., Gan, M., Wen, G., et al. (2020) 3D Printed Model Used as Preoperative Tool for Treating Acromioclavicular Joint Dislocation with Pre-Contoured Clavicle Hook Plate: Technical Note. Zeitschrift für Orthopädie und Unfallchirurgie, 158, 221-226. https://doi.org/10.1055/a-0946-2886

  66. 66. Liu, J., Gao, Y., Niu, B., Xiu, J., Wang, H., Wang, Y., et al. (2021) Biomechanical Analysis of a Novel Clavicular Hook Plate for the Treatment of Acromioclavicular Joint Dislocation: A Finite Element Analysis. Computers in Biology and Medicine, 133, Article ID: 104379. https://doi.org/10.1016/j.compbiomed.2021.104379

  67. 67. Lee, S.J., Nicholas, S.J., Akizuki, K.H., McHugh, M.P., Kremenic, I.J. and Ben-Avi, S. (2003) Reconstruction of the Coracoclavicular Ligaments with Tendon Grafts: A Com-parative Biomechanical Study. The American Journal of Sports Medicine, 31, 648-655. https://doi.org/10.1177/03635465030310050301

  68. 68. Weaver, J.K. and Dunn, H.K. (1972) Treatment of Acromio-clavicular Injuries, Especially Complete Acromioclavicular Separation. The Journal of Bone and Joint Surgery. American Volume, 54, 1187-1194. https://doi.org/10.2106/00004623-197254060-00005

  69. 69. Grutter, P.W. and Petersen, S.A. (2017) Anatomical Acromioclavicular Ligament Reconstruction. The American Journal of Sports Medicine, 33, 1723-1728. https://doi.org/10.1177/0363546505275646

  70. 70. Harris, R.I., Wallace, A.L., Harper, G.D., Goldberg, J.A., Son-nabend, D.H. and Walsh, W.R. (2000) Structural Properties of the Intact and the Reconstructed Coracoclavicular Liga-ment Complex. The American Journal of Sports Medicine, 28, 103-108. https://doi.org/10.1177/03635465000280010201

  71. 71. Jones, H.P., Lemos, M.J. and Schepsis, A.A. (2001) Sal-vage of Failed Acromioclavicular Joint Reconstruction Using Autogenous Semitendinosus Tendon from the Knee. Sur-gical Technique and Case Report. The American Journal of Sports Medicine, 29, 234-237. https://doi.org/10.1177/03635465010290022001

  72. 72. Gonzalez, R., Damacen, H., Nyland, J. and Caborn, D. (2007) Acromioclavicular Joint Reconstruction Using Peroneus Brevis Tendon Allograft. Arthroscopy, 23, 788.e1-4. https://doi.org/10.1016/j.arthro.2006.09.006

  73. 73. Baren, J.P., Rowbotham, E. and Robinson, P. (2022) Acromio-clavicular Joint Injury and Repair. Seminars in Musculoskeletal Radiology, 26, 597-610. https://doi.org/10.1055/s-0042-1750726

  74. 74. Fauci, F., Merolla, G., Paladini, P., Campi, F. and Porcellini, G. (2013) Surgical Treatment of Chronic Acromioclavicular Dislocation with Biologic Graft vs Synthetic Ligament: A Pro-spective Randomized Comparative Study. Journal of Orthopaedics and Traumatology, 14, 283-290. https://doi.org/10.1007/s10195-013-0242-2

  75. 75. Jeon, I.H., Dewnany, G., Hartley, R., Neumann, L. and Wallace, W.A. (2007) Chronic Acromioclavicular Separation: The Medium Term Results of Coracoclavicular Ligament Recon-struction Using Braided Polyester Prosthetic Ligament. Injury, 38, 1247-1253. https://doi.org/10.1016/j.injury.2007.05.019

  76. 76. Zhao, Y., Tan, L., Tang, W. and Yu, T. (2019) A New Coraco-clavicular Guider for Minimally Invasive Anatomic Coracoclavicular Reconstruction with Two TightRope Systems in Acute Acromioclavicular Joint Dislocation. Scientific Reports, 9, Article No. 14452. https://doi.org/10.1038/s41598-019-51119-7

  77. 77. Balke, M., Schneider, M.M., Akoto, R., Bäthis, H., Bouillon, B. and Banerjee, M. (2015) Acute Acromioclavicular Joint Injuries. Changes in Diagnosis and Therapy over the Last 10 Years. Die Unfallchirurgie, 118, 851-857. https://doi.org/10.1007/s00113-013-2547-2

  78. 78. Walz, L., Salzmann, G.M., Fabbro, T., Eichhorn, S. and Imhoff, A.B. (2008) The Anatomic Reconstruction of Acromioclavicular Joint Dislocations Using 2 TightRope Devices: A Bio-mechanical Study. The American Journal of Sports Medicine, 36, 2398-2406. https://doi.org/10.1177/0363546508322524

  79. 79. Jensen, G., Katthagen, J.C., Alvarado, L.E., Lill, H. and Voigt, C. (2012) Has the Arthroscopically Assisted Reduction of Acute AC Joint Separations with the Double Tight-Rope Tech-nique Advantages over the Clavicular Hook Plate Fixation? Knee Surgery, Sports Traumatology, Arthroscopy, 22, 422-430. https://doi.org/10.1007/s00167-012-2270-5

期刊菜单