Advances in Clinical Medicine
Vol. 12  No. 05 ( 2022 ), Article ID: 51984 , 6 pages
10.12677/ACM.2022.125681

Claudin18.2及MMP9在胃癌中的研究进展

王雪纯,王丰梅*,郑小影

青海大学附属医院病理科,青海 西宁

收稿日期:2022年4月27日;录用日期:2022年5月21日;发布日期:2022年5月31日

摘要

Claudin18.2蛋白在多种肿瘤中均可表达,当胃粘膜上皮组织发生恶性转换时,细胞极性的紊乱将导致细胞表面的claudin18.2蛋白表位暴露,使其成为胃癌治疗的潜在靶点。MMP9能够破坏、降解细胞外机制中的组成成分,进而破坏细胞基底膜的完整性,在肿瘤中的浸润、转移中起重要作用。本综述通过阅读大量文献,简要阐述了claudin18.2蛋白和MMP9蛋白,并描述了claudin18.2及MMP9蛋白在胃癌中的表达情况及其与胃癌靶向药物治疗的关系。

关键词

Claudin18.2蛋白,MMP9蛋白,表达,胃癌

Research Progress of Claudin18.2 and MMP9 in Gastric Cancer

Xuechun Wang, Fengmei Wang*, Xiaoying Zheng

Department of Pathology, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: Apr. 27th, 2022; accepted: May 21st, 2022; published: May 31st, 2022

ABSTRACT

Claudin18.2 protein can be expressed in a variety of tumors, and when the gastric mucosal epithelial tissue undergoes malignant transition, the disorder of cell polarity will lead to the exposure of the claudin18.2 protein epitope on the cell surface, making it a potential target for gastric cancer treatment. MMP9 can destroy and degrade the components of the extracellular mechanism, thereby destroying the integrity of the cell basement membrane, and plays an important role in the invasion and metastasis of tumors. By reading a large number of literature, this review briefly expounds the claudin18.2 protein and MMP9 protein, and describes the expression of claudin18.2 and MMP9 protein in gastric cancer and its relationship with targeted drug therapy for gastric cancer.

Keywords:Claudin18.2 Protein, MMP9 Protein, Expression, Gastric Cancer

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

胃癌(Gastrc cancer, GC)是世界上最常见的肿瘤之一,也是全世界肿瘤相关死亡的第四大原因,具有复发高、易转移、预后差等特点 [1]。尽管进行了化疗,但局部晚期胃癌和转移性胃癌依然预后不良,仍然是临床治疗的重大挑战。胃癌是具有一系列独特临床病理、分子特征的肿瘤,其中临床病理特征包括Lauren分型及WHO分型;分子分型包括EBV病毒相关型、微卫星不稳定型(MSI)、基因组稳定型(GS)和染色体不稳定型(CIN) [2]。因而,胃癌更加需要精准治疗。本文简要介绍了claudin18.2作为胃癌靶向治疗新靶点的研究进展以及MMP9在胃癌浸润、转移中的作用、机制。以期为胃癌的诊断与临床治疗提供参考依据。

2. Claudin、Claudin18.2蛋白介绍

2.1. Claudin家族

跨膜蛋白(claudin)是由Tsukita等人首次报道的包含至少27个成员的蛋白家族 [3]。claudins根据其序列的不同分为经典和非经典类型 [4],经典类型包括claudin1-10、claudin14、claudin15、claudin17、CLDN19,非经典类型包括claudin 11-13、claudin16、claudin18和claudin20~24。Claudins由细胞质的N-末端区域、两个细胞外环路、四个跨膜结构域和细胞质的C-末端尾组成 [4]。Claudins的大细胞外环含有带电荷的氨基酸,形成电荷选择性通道,调节邻近细胞的离子选择性 [5]。Claudins的两个半胱氨酸可能形成内部二硫键以稳定蛋白质构象 [6],并且较短的第二个细胞外环以螺旋–转角–螺旋序列折叠。它可能通过保守芳香残基之间相互的疏水作用参与相对细胞膜上的Claudins之间的二聚体形成 [7]。大多数Claudins家族成员为细胞的迁移、细胞粘附、基质重塑和增殖提供了支架。它形成一个与ZO1、ZO2、ZO3和多PDZ结构域蛋白1 (MUPP1)相互作用的C末端PDZ结合基序 [8]。该区域还包含与翻译后修饰相关的氨基酸残基,如丝氨酸–苏氨酸磷酸化、酪氨酸磷酸化、泛素化和棕榈酰化,所有这些都会影响Claudins的定位和功能 [9] [10] [11] [12] [13]。

此外,Claudin蛋白的C末端在序列和长度上表现出多样性。其C末端尾部的磷酸化与几种主要激酶相互作用。例如,Claudin3被蛋白激酶A (PKA)磷酸化,诱导TJs的破坏 [14]、Claudin4在PDZ蛋白结合域结合C末端后被受体酪氨酸激酶EphA2磷酸化,这降低了其与ZO1细胞间的结合。综上所述,Claudins的磷酸化可以下调紧密连接的强度 [15]。

从功能和结构的角度来看,Claudins通常位于细胞膜的顶端区域,形成TJ复合物,用于细胞间粘附、维持细胞极性和选择性细胞旁通透性,并在屏障功能中发挥重要作用 [16]。由于细胞–细胞粘附复合物的丢失与癌症中EMT增加有关,Claudins的磷酸化和减少可能促进肿瘤的转移和浸润。此外,Claudins的过表达增加了胃癌、肺癌、前列腺癌、卵巢癌、结肠直肠癌和乳腺癌中的异常定位和功能,促进了转移和浸润 [17]。

因此,根据肿瘤的类型和Claudins的类型,Claudins通常在肿瘤组织中高度表达,尽管它们由于磷酸化而降低或丧失功能会促进EMT和肿瘤的转移和浸润。

2.2. Claudin18.2蛋白

人类Claudin18基因有两个剪接变异体,它们编码两种蛋白质亚型,Claudin18剪接变异体1 (CLDN18.1)和Claudin18剪接变异体2 (CLDN18.2) Claudin18.1在正常和癌性肺组织中特异性表达,Claudin18.2不表达在除胃粘膜以外的任何健康组织中,但在胃癌中广泛表达,尤其是劳伦分型中的弥漫型 [18]。

Zolbetuximab (以前称为IMAB362)是一种针对Claudin18.2的单克隆抗体。最近一项随机II期研究表明,相对于单独化疗,添加Zolbetuximab可延长患者的生存期 [19]。因此,Claudin18.2被确定为AGC或胃食管结合部癌和Claudin18.2过表达患者极具潜力的治疗靶点 [20]。

3. MMP、MMP9蛋白的介绍

3.1. MMP家族

对于胞外蛋白酶的基质金属蛋白酶(Matrix metalloproteinase, MMP)家族,根据其细胞外基质(extracellular matrix, ECM)底物对这些酶进行了分类 [21]。胶原酶(MMP1,8,13),明胶酶(MMP2和9),基质分解素(MMP3,10和11),基质溶解酶(MMP7和26)和膜锚定的MMPs (MMP14、15、16、17、24和25)构成了该家族。而异质的MMPs,例如巨噬细胞金属弹性蛋白酶(MMP12)和表皮溶解酶(MMP28)构成了其余部分 [22]。最近的研究表明,MMPs处理多种底物,包括趋化因子和其他细胞因子,导致人们的兴趣从细胞外基质的更新转移到稳态和病理学中的细胞信号作用 [23]。随着该家族成员在细胞内意想不到的位置被发现,挑战了它们作为细胞外基质蛋白酶的定义,一个新的旅程正在将MMP研究带入更深的未知领域。这种具有双重作用的蛋白质,除了它们的最佳特征或主要功能之外,还享有不同的功能,被称为“兼职”或“多效性”蛋白质,还能使药物靶向复杂化 [24]。

MMPs是一个分泌型锌依赖性金属蛋白酶家族,由可溶性和膜结合内肽酶组成,在人类中编号为23,该组在大多数组织中表达,其中一些成员仅由特定细胞类型表达 [25],如巨噬细胞和肺上皮细胞表达MMP12。大多数基质金属蛋白酶有四个结构域:分泌信号肽、前结构域、催化结构域和血红素结合蛋白样结构域 [26]。常见的催化结构域在催化口袋中有一个由三个保守的组氨酸残基螯合的Zn2+离子。MMPs分泌的N-末端前结构域含有保守的半胱氨酸残基,负责通 过协调催化袋中的Zn2+离子来保持酶的潜伏性。在大多数基质金属蛋白酶中(除了 MMP7、23和26),一个铰链区将催化结构域连接到一个C端血红素结合蛋白样结构域,一个促进非蛋白水解作用的外切位点 [27]。MMP2和9具有插入其催化结构域的纤连蛋白II型重复序列,结合天然的和变性的胶原蛋白。膜型MMPs (MT-MMPs)通过单程跨膜结构域或糖磷脂酰肌醇(GPI) 连接锚定在胞外细胞表面 [28]。

3.2. MMP9蛋白

MMP-9是MMPs家族中降解细胞外基质的关键酶之一,又为Ⅳ型胶原酶,该基因位于16号染色体,对细胞外基质(ECM)中所有成分均具有降解作用,在胚胎发育、骨组织重建、排异及损伤愈合等过程中也扮演了重要角色,而MMP-9表达异常则可导致肿瘤浸润、转移。MMP-9蛋白包含血红素结合蛋白样结构域、催化结构域、信号肽、铰链区和前肽区。MMP-9参与许多生物过程,这些生物学过程包括但不限于ECM的蛋白水解降解、细胞–细胞和细胞-ECM相互作用的改变、细胞表面蛋白的裂解和细胞外环境中蛋白的裂解 [29]。MMP-9在基底膜降解中起作用,因为基底膜含有胶原,包括可被MMP-9降解的IV型胶原 [30]。在肿瘤发展过程中,基底膜破坏通常是支持肿瘤侵袭和转移的必要步骤。

MMP-9在胃癌队列中的表达水平显著升高 [31]。此外,MMP-9随着浸润深度增加而高表达,特别是在T3和T4癌中,因为在T1、T2和T3、T4肿瘤之间检测到统计学差异,表明MMP-9在ECM的分解中起作用,这对于实体肿瘤的浸润是重要的。就淋巴结状态和远处转移而言,淋巴结阳性和远处转移阳性的胃癌样本都倾向于显示MMP-9表达升高。然而,它的表达与年龄、性别、分化程度和血管侵犯无关,虽说MMP-9高表达与年龄、性别、分化程度和血管侵犯无关,但因其于淋巴结转移和远处转移有关,因此并不能说明MMP-9在预测预后方面毫无益处,这就需要大量的数据来验证MMP-9的高表达是否对预后有影响。从淋巴结转移和远处转移的这个角度来看,MMP-9参与胃癌的侵袭和转移过程,这支持了恶性肿瘤细胞产生MMP-9的观点,并且它可以降解变性胶原和IV、V、VII、IX和X型胶原,其中IV型胶原在基底膜中特别丰富,并且是基底膜的主要胶原成分,其衬在血管内皮细胞中,并且构成肿瘤侵袭和转移的连续物理障碍 [32]。

4. 小结与展望

总之,研究胃癌治疗的新靶点及其浸润、转移的机制是目前的热点,其中针对新靶点的靶向治疗和肿瘤免疫治疗将会是已有的胃癌治疗方法的重要补充,Claudin18.2因其特殊的表达模式以及与临床结果较好的相关性,将会是继PD-L1之后下一个伴随诊断(CDx)热点,而MMP-9是胃癌患者无病生存期的独立预后因素,它也可以作为通过选择性MMP抑制进行抗转移治疗的潜在靶点。因此,检测这些蛋白因子可能更确切的反应肿瘤的发生、发展的动态改变,从而为胃癌的精准治疗提供一定的实验依据及治疗依据。

基金项目

青海省科学技术厅基础研究计划项目(编号2022-ZJ-755)。

文章引用

王雪纯,王丰梅,郑小影. Claudin18.2及MMP9在胃癌中的研究进展
Research Progress of Claudin18.2 and MMP9 in Gastric Cancer[J]. 临床医学进展, 2022, 12(05): 4705-4710. https://doi.org/10.12677/ACM.2022.125681

参考文献

  1. 1. (2020) Erratum: Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 70, 313. https://doi.org/10.3322/caac.21609

  2. 2. Hashimoto, I. and Oshima, T. (2022) Claudins and Gastric Cancer: An Overview. Cancers, 14, Article No. 290. https://doi.org/10.3390/cancers14020290

  3. 3. Tsukita, S. and Furuse, M. (2000) The Structure and Function of Claudins, Cell Adhesion Molecules at Tight Junctions. Annals of the New York Academy of Sciences, 915, 129-135. https://doi.org/10.1111/j.1749-6632.2000.tb05235.x

  4. 4. Lal-Nag, M. and Morin, P.J. (2009) The Claudins. Ge-nome Biology, 10, Article No. 235. https://doi.org/10.1186/gb-2009-10-8-235

  5. 5. Colegio, O.R., Van Itallie, C.M., McCrea, H.J., Rahner, C. and Anderson, J.M. (2002) Claudins Create Charge-Selec- tive Channels in the Paracellular Pathway between Epithelial Cells. American Journal of Physiology-Cell Physiology, 283, C142-C147. https://doi.org/10.1152/ajpcell.00038.2002

  6. 6. Angelow, S., Ahlstrom, R. and Yu, A.S.L. (2008) Biology of Claudins. American Journal of Physiology-Renal Physiology, 295, F867-F876. https://doi.org/10.1152/ajprenal.90264.2008

  7. 7. Piontek, J., Winkler, L., Wolburg, H., Müller, S.L., Zuleger, N., Piehl, C., Wiesner, B., Krause, G. and Blasig, I.E. (2008) Formation of Tight Junction: Determinants of Homophilic In-teraction between Classic Claudins. The FASEB Journal, 22, 146-158. https://doi.org/10.1096/fj.07-8319com

  8. 8. Huo, L., Wen, W., Wang, R., Kam, C., Xia, J., Feng, W. and Zhang, M. (2011) Cdc42-Dependent Formation of the ZO-1/MRCKβ Complex at the Leading Edge Controls Cell Migration. The EMBO Journal, 30, 665-678. https://doi.org/10.1038/emboj.2010.353

  9. 9. Van Itallie, C.M., Tietgens, A.J., LoGrande, K., Aponte, A., Gucek, M. and Anderson, J.M. (2012) Phosphorylation of Claudin-2 on Serine 208 Promotes Membrane Retention and Reduces Trafficking to Lysosomes. Journal of Cell Science, 125, 4902-4912. https://doi.org/10.1242/jcs.111237

  10. 10. Singh, P., Toom, S. and Huang, Y. (2017) Anti-Claudin 18.2 Antibody as New Targeted Therapy for Advanced Gastric Cancer. Journal of Hematology & Oncology, 10, Article No.105. https://doi.org/10.1186/s13045-017-0473-4

  11. 11. Ding, L., Lu, Z., Lu, Q. and Chen, Y.H. (2013) The Claudin Family of Proteins in Human Malignancy: A Clinical Perspective. Cancer Management and Research, 5, 367-375. https://doi.org/10.2147/CMAR.S38294

  12. 12. Hu, Y.J., Wang, Y.D., Tan, F.Q. and Yang, W.X. (2013) Regulation of Paracellular Permeability: Factors and Mechanisms. Cancer Management and Research, 40, 6123-6142. https://doi.org/10.1007/s11033-013-2724-y

  13. 13. Gyõrffy, H., Holczbauer, A., Nagy, P., Szabó, Z., Kupcsulik, P., Páska, C., Papp, J., Schaff, Z. and Kiss, A. (2005) Claudin Expression in Barrett’s Esophagus and Adenocarcinoma. Virchows Archiv, 447, 961-968. https://doi.org/10.1007/s00428-005-0045-9

  14. 14. D’Souza, T., Agarwal, R. and Morin, P.J. (2005) Phosphoryla-tion of Claudin-3 at Threonine 192 by CAMP-Dependent Protein Kinase Regulates Tight Junction Barrier Function in Ovarian Cancer Cells. Journal of Biological Chemistry, 280, 26233-26240. https://doi.org/10.1074/jbc.M502003200

  15. 15. Tanaka, M., Kamata, R. and Sakai, R. (2005) EphA2 Phosphory-lates the Cytoplasmic Tail of Claudin-4 and Mediates Paracellular Permeability. Journal of Biological Chemistry, 280, 42375-42382. https://doi.org/10.1074/jbc.M503786200

  16. 16. Turner, J.R., Buschmann, M.M., Romero-Calvo, I., Sailer, A. and Shen, L. (2014) The Role of Molecular Remodeling in Differential Regulation of Tight Junction Permeability. Seminars in Cell & Developmental Biology, 36, 204-212. https://doi.org/10.1016/j.semcdb.2014.09.022

  17. 17. Tabariès, S. and Siegel, P.M. (2017) The Role of Claudins in Cancer Metastasis. Oncogene, 36, 1176-1190. https://doi.org/10.1038/onc.2016.289

  18. 18. Yao, F., Kausalya, J.P., Sia, Y.Y., Teo, A.S., Lee, W.H., Ong, A.G., Zhang, Z., Tan, J.H., Li, G., Bertrand, D., Liu, X., Poh, H.M., Guan, P., Zhu, F., Pathiraja, T.N., Ariyaratne, P.N., Rao, J., Woo, X.Y., Cai, S., Mulawadi, F.H., Poh, W.T., Veeravalli, L., Chan, C.S., Lim, S.S., Leong, S.T., Neo, S.C., Choi, P.S., Chew, E.G., Nagarajan, N., Jacques, P.E., So, J.B., Ruan, X., Yeoh, K.G., Tan, P., Sung, W.K., Hunziker, W., Ruan, Y. and Hillmer, A.M. (2015) Recurrent Fusion Genes in Gastric Cancer: Cldn18-Arhgap26 Induces Loss of Epi-thelial Integrity. Cell Reports, 12, 272-285. https://doi.org/10.1016/j.celrep.2015.06.020

  19. 19. Baek, J.H., Park, D.J., Kim, G.Y., et al. (2019) Clinical Implica-tions of Claudin18.2 Expression in Patients with Gastric Cancer. Anticancer Research, 39, 6973-6979. https://doi.org/10.21873/anticanres.13919

  20. 20. Tanaka, A., Ishikawa, S., Ushiku, T., Yamazawa, S., Katoh, H., Hayashi, A., Kunita, A. and Fukayama, M. (2018) Frequent Cldn18-Arhgap Fusion in Highly Metastatic Diffuse-Type Gastric Cancer with Relatively Early Onset. Oncotarget, 9, 29336-29350. https://doi.org/10.18632/oncotarget.25464

  21. 21. Khokha, R., Murthy A. and Weiss, A. (2013) Metalloproteinases and Their Natural Inhibitors in Inflammation and Immunity. Nature Reviews Immunology, 13, 649-665. https://doi.org/10.1038/nri3499

  22. 22. Klein, T. and Bischoff, R. (2011) Physiology and Pathophysiology of Matrix Metalloproteases. Amino Acids, 41, 271-290. https://doi.org/10.1007/s00726-010-0689-x

  23. 23. Bonnans, C., Chou, J. and Werb, Z. (2014) Remodeling the Extracellular Matrix in Development and Disease. Nature Reviews Molecular Cell Biology, 15, 786-801. https://doi.org/10.1038/nrm3904

  24. 24. Butler, G.S. and Overall, C.M. (2009) Proteomic Identification of Multitasking Proteins in Unexpected Locations Complicates Drug Targeting. Nature Reviews Drug Dis-covery, 8, 935-948. https://doi.org/10.1038/nrd2945

  25. 25. Khokha, R., Murthy A. and Weiss, A. (2013) Metallo-proteinases and Their Natural Inhibitors in Inflammation and Immunity. Nature Reviews Immunology, 13, 649-665. https://doi.org/10.1038/nri3499

  26. 26. Overall, C.M. (2001) Matrix Metalloproteinase Substrate Binding Domains, Modules and Exosites. Overview and Experimental Strategies. Methods in Molecular Biology, 151, 79-120.

  27. 27. Overall, C.M. and Butler, G.S. (2007) Protease Yoga: Extreme Flexibility of a Matrix Metalloproteinase. Structure, 15, 1159-1161. https://doi.org/10.1016/j.str.2007.10.001

  28. 28. Jobin, P.G., Butler, G.S. and Overall, C.M. (2017) New Intracellular Activities of Matrix Metalloproteinases Shine in the Moonlight. Biochimica et Biophysica Acta—Molecular Cell Research, 1864, 2043-2055. https://doi.org/10.1016/j.bbamcr.2017.05.013

  29. 29. Huang, H. (2018) Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent Advances. Sensors, 18, Article No. 3249. https://doi.org/10.3390/s18103249

  30. 30. Hou, H., Zhang, G., Wang, H., Gong, H., Wang, C. and Zhang, X. (2014) High Matrix Metalloproteinase-9 Expression Induces Angiogenesis and Basement Membrane Degradation in Stroke-Prone Spontaneously Hypertensive Rats after Cerebral Infarction. Neural Regeneration Research, 9, 1154-1162. https://doi.org/10.4103/1673-5374.135318

  31. 31. 董刚强, 王永占, 蒲红, 岳光平. 基质金属蛋白酶MMP-9在胃癌中的表达及其临床意义[J]. 肿瘤预防与治疗, 2012, 25(4): 240-242.

  32. 32. Chu, D., Zhang, Z., Li, Y., et al. (2011) Matrix Metalloproteinase-9 Is Associated with Disease-Free Survival and Overall Survival in Patients with Gas-tric Cancer. International Journal of Cancer, 129, 887-895. https://doi.org/10.1002/ijc.25734

  33. NOTES

    *通讯作者。

期刊菜单