Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62640 , 8 pages
10.12677/ACM.2023.133549

氯吡格雷抵抗相关基因的研究进展

李倩倩1,谷秀娟2*

1延安大学医学院,陕西 延安

2延安大学附属医院心脑血管病医院,陕西 延安

收稿日期:2023年2月15日;录用日期:2023年3月10日;发布日期:2023年3月17日

摘要

氯吡格雷是一种临床常用的抗血小板药物,其临床疗效存在广泛的个体间差异,一些患者对氯吡格雷表现出耐药性,这种现象被称为氯吡格雷抵抗(CR)。CR受多种因素的影响,个体的基因差异在CR的发生中扮演着至关重要的角色。目前的研究发现基因ABCB1、CYP2C19、PON1、PXR、P2RY12、GCK、PER3和KDR均与CR相关,其中CYP2C19基因多态性研究最多。

关键词

氯吡格雷,氯吡格雷抵抗,基因多态性

Research Progress on Related Genes of Clopidogrel Resistance

Qianqian Li1, Xiujuan Gu2*

1School of Medicine, Yan’an University, Yan’an Shaanxi

2Cardiovascular and Cerebrovascular Disease Hospital of the Affiliated Hospital of Yan’an University, Yan’an Shaanxi

Received: Feb. 15th, 2023; accepted: Mar. 10th, 2023; published: Mar. 17th, 2023

ABSTRACT

Clopidogrel is a clinically commonly used antiplatelet drug with wide inter-individual differences in clinical efficacy, and some patients show resistance to clopidogrel, a phenomenon known as clopidogrel resistance (CR). CR is affected by many factors, and individual genetic differences play a crucial role in the occurrence of CR. The current study found that the genes ABCB1, CYP2C19, PON1, PXR, P2RY12, GCK, PER3 and KDR are all associated with CR, among which CYP2C19 gene polymorphisms are the most studied.

Keywords:Clopidogrel, Clopidogrel Resistance, Gene Polymorphisms

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

氯吡格雷是一种临床常用的P2Y12受体抑制剂,在血小板糖蛋白GPIIb/IIIa复合物活化的过程中,通过其活性代谢物不可逆地结合P2Y12受体,发挥抗血小板作用。它是一种安全有效的药物,可用于心血管事件(CVE)的二级预防 [1] 。双重抗血小板治疗(DAPT)即P2Y12受体抑制剂和阿司匹林联合用药,可抑制血小板活化和聚集,一直是急性冠脉综合征(acute coronary syndrome, ACS)患者在经皮冠状动脉介入(percotaneous coronary intervention, PCI)术后的基础治疗。氯吡格雷是DAPT中最常用的一种P2Y12受体抑制剂,也是全球最常用的处方药之一 [2] 。然而,接受PCI的患者对氯吡格雷的反应差异很大,大约40%的患者出现了不良心血管事件(major adverse cardiovascular events, MACE) [3] 。这种现象被称为氯吡格雷抵抗(CR),是由于氯吡格雷在抑制血小板的过程中治疗反应失败 [4] ,这种失败的发生与多种因素相关,本综述主要探讨基因多样性对CR的影响。

2. 与氯吡格雷吸收和代谢相关的基因

2.1. 氯吡格雷的吸收和代谢

氯吡格雷是一种噻吩吡啶前体药物,需要被肠道吸收并通过肝脏中各种酶的代谢转化为活性成分后才能发挥其血小板抗聚集作用 [5] 。氯吡格雷的吸收主要受Pglycoprotein (P-gp)的限制,它是一种由ABCB1基因编码的ATP依赖性转运蛋白,位于肠道的上皮细胞中,可将肠道中的药物吸收入血 [6] 。入血后的氯吡格雷通过血液循环进入肝脏,被肝脏中丰富的酶所代谢。大多数母体药物(约85%)在肝脏中被羧基酯酶(CES)-1代谢成无活性的羧酸,最后在尿液或粪便中排泄 [7] 。其余的药物(15%)经历2个连续的氧化阶段,通过肝脏中的几种细胞色素P450 (CYP)酶代谢形成活性产物 [7] 。第一个氧化过程是CYP2C19、CYP2B6和CYP1A2亚型将氯吡格雷转化为2-氧代氯吡格雷;第二个氧化过程是CYP3A4、CYP3A5、CYP2B6、CYP2C9、CYP2C19和对氧磷酶(PON)-1将2-氧代氯吡格雷转化为其活性形式 [8] 。氧化过程中形成的2-氧代氯吡格雷有50%被CES1代谢为非活性化合物,这就限制了最终产生的活性代谢物的量 [9] 。氯吡格雷的活性代谢物含有一个硫醇基,可以与血小板上的P2Y12受体不可逆地结合,此结合位点可以阻断ADP介导的纤维蛋白原与其受体糖蛋白IIb/IIIa的结合,从而抑制血小板活化和聚集,发挥抗血小板作用 [10] 。

2.2. ABCB1

ABCB1也称多药耐药性蛋白1 (MDR1),可编码ATP依赖性外排泵P-糖蛋白(P-gp)。P-gp是一种跨膜蛋白,其主要功能是将肠道中的药物吸收入血液循环 [7] 。ABCB1在肠上皮细胞上表达,其过度表达或功能增强有可能改变药物生物利用度 [11] 。ABCB1基因是由许多单核苷酸多态性(SNPs)组成的高度多态性基因。据报道,在ABCB1的许多单核苷酸多态性中,C3435T可能与P-糖蛋白的缺陷有关 [12] 。C3435T单核苷酸位点可通过替换密码子来调节翻译速度,最终导致P-gp局部的细微结构变化,从而影响其对各种底物的亲和力 [13] 。已有研究表明,携带C3435T纯合子TT的个体氯吡格雷活性代谢物的含量显著低于携带CT/CC的个体,且使用氯吡格雷后MACE的发生率与CT/CC携带者相比更高 [14] [15] 。所以,携带C3435T纯合子TT的个体中P-糖蛋白的表达更微弱。由此可见,ABCB1基因多态性可以通过影响P-糖蛋白的表达来改变氯吡格雷活性代谢物的量,从而使氯吡格雷的临床疗效产生个体差异。因此,ABCB1基因多态性与氯吡格雷抵抗相关 [11] 。

2.3. CYP2C19

CYP450同工酶(CYP1A2、CYP2B6、CYP2C9、CYP2C19和CYP3A4)基因的遗传变异,特别是CYP2C19酶的遗传变异,可参与氯吡格雷的药物代谢并影响其药效学反应 [16] 。CYP2C19在氯吡格雷转化为活性代谢物的两个氧化步骤中都起主要作用。由于不同个体之间CYP2C19的遗传多态性表达不同,因而氯吡格雷的治疗效果也存在差异 [17] 。目前研究发现,CYP2C19基因至少包括33个等位基因,其中研究最多的三个等位基因为CYP2C19*2 (rs4244285)、CYP2C19*3 (rs4986893)和CYP2C19*17 (rs12248560) [18] 。CYP2C19*2和CYP2C19*3被称为功能丧失等位基因(LOF),它们会表达无活性的CYP2C19酶,使氯吡格雷活性代谢物的浓度降低,最终导致氯吡格雷的血小板聚集抑制作用减弱。CYP2C19*17等位基因可表达更活跃的CYP2C19酶,因此被称为功能增强等位基因(GOF) [19] 。有多项已发表的临床研究显示携带CYP2C19*2或CYP2C19*3等位基因的个体氯吡格雷抑制血小板效果不佳,并伴有明显的MACE [20] [21] 。携带CYP2C19*17等位基因的个体使用氯吡格雷后具有较好的临床疗效,发生心血管事件的风险较低,同时出血风险则较高 [22] 。有研究发现基于CYP2C19基因型的个体化抗血小板治疗可在不增加出血风险的前提下降低MACE的发生率 [23] 。这表明CYP2C19基因引导的个体化治疗在最大限度发挥药物抗血小板作用的同时减少了药物不良反应的发生,最终降低CR和MACE的发生率。因此,这是一项可以切实服务于临床的检查手段,目前越来约多的医疗机构已经开展了该项目。

2.4. PON1

对氧磷酶1(PON1)参与高密度脂蛋白(HDL)的抗氧化活性,是HDL相关酶(如血小板激活因子乙酰水解酶和卵磷脂胆固醇酰基转移酶)的一部分 [24] 。它可以水解被氧化的低密度脂蛋白(LDL),生成磷脂过氧化合物,具有潜在的抗动脉粥样硬化和细胞保护作用 [25] 。除此之外,PON1还参与氯吡格雷的酯化及后续的失活过程 [26] 。Bouman等人 [8] 进行的一项体外实验表明,PON1是氯吡格雷第二个氧化步骤的限速酶,故PON1的活性可以显著影响氯吡格雷的代谢。对氧磷酶1 (PON1)基因位于7号染色体长臂的21区3带,由9个外显子和8个内含子组成 [27] 。PON1基因的Q192R多态性(rs662)被认为可以调节氯吡格雷活性代谢物的形成,可能与CR相关 [8] 。有研究发现,对于使用氯吡格进行抗血小板治疗的患者来说,携带PON1基因Q192R多态性QQ基因型的个体与携带QR/RR基因型的个体相比PON1血浆活性明显降低,而复发性支架血栓形成风险显著增加 [28] 。这是因为不同个体携带的PON1基因型不同,造成PON1的活性有差异,在服用氯吡格雷后对其代谢能力也有所不同,最终出现CR。由于PON1基因与CR的出现相关,故在服用氯吡格雷前对PON1基因型进行检测,选择合适的抗血小板药物即可减少MACE的发生,对临床抗血小板治疗是有益的。

2.5. PXR

孕烷X受体(PXR,也称为NR1I2)是核受体亚科1 (NR1)的成员之一,可以保护机体免受内源性和外源性物质的损伤 [29] 。PXR也是ABCB1、CYP2C19、CYP3A4/5基因的上游调节基因,可以调节这些基因mRNA的表达 [30] 。由于ABCB1、CYP2C19、CYP3A4/5基因与氯吡格雷的生物活化途径直接相关,故PXR基因多态性与氯吡格雷代谢显著相关 [31] 。Wu等人 [32] 研究了rs1523130、rs3814055、rs1523127、rs2276706、rs1464603、rs1464602、rs3814057、rs3814058、rs7643645和rs6785049这些在亚洲人中基因频率很高的PXR等位基因,结果表明,PXR基因多态性中的rs3814057A>C、rs3814058T>C和rs6785049A>G与MACE显著相关,且具有纯合子突变体(PXRrsrs3814057CC、rs3814058CC或6785049GG)的患者有更高的MACE风险。这说明PXR基因通过调节ABCB1、CYP2C19、CYP3A4/5基因可以影响氯吡格雷的代谢过程,使不同个体对氯吡格雷的代谢产生差异,最终使其抗血小板效果有所不同。因此PXR基因与CR的出现相关,且会影响MACE的发生率。

3. 其他基因

3.1. P2RY12

P2RY12是血小板中的二磷酸腺苷(ADP)受体,在血小板激活过程起着相当重要的作用 [33] 。ADP通过刺激P2RY12,可使活化的血小板从致密颗粒中被释放出来,引起血小板的持续聚集和分泌 [33] 。氯吡格雷可以通过抑制P2RY12受体起到抗血小板聚集的作用,是噻吩并吡啶类的血小板抑制剂。P2RY12基因的突变可使P2RY12受体产生变异,从而影响药物–受体结合亲和力和改变药物的疗效 [34] 。已有研究证实P2RY12的rs2046934T>C多态性和血小板活化增加相关 [35] ,这是因为基因突变改变了受体的分子结构从而影响到了血小板的活化和聚集。P2RY12基因多态性也与ACS患者PCI后MACE的发生相关,Li等人 [34] 的一项研究表明携带P2RY12的rs2046934T>C、rs6785930C>T或rs6809699G>T多态性的患者与非携带者相比,发生MACE的风险较高。由于P2RY12基因突变改变了P2RY12受体的结构,从而影响了氯吡格雷与该受体的亲和力和抗血小板疗效,最终使MACE的发生风险增加。由此可见,P2RY12基因多态性与CR和MACE的发生是相关的。

3.2. GCK

氯吡格雷通过抑制P2Y12受体,可以预防ADP诱导的血小板聚集并降低ACS患者PCI后MACE的发生率 [36] 。但不同个体对氯吡格雷的反应不同,许多外在因素可能会影响服用氯吡格雷后的血小板活性,例如合并症、药物相互作用和吸烟等。在这些因素中,糖尿病(DM)可能是与血小板功能障碍相关的一个重要的临床因素 [37] 。已有研究证实,糖尿病是CR主要的独立预测因素之一 [38] 。DM患者出现CR的机制目前考虑是胰岛素缺乏、高血糖、代谢紊乱和细胞异常 [39] 。葡萄糖激酶基因(GCK)可编码葡萄糖酶,它通过催化胰岛素分泌的限速步骤,可调节糖原合成使葡萄糖水平保持稳定状态 [40] 。Li等人 [34] 的一项研究发现,在没有DM但患有血脂异常的男性患者中,GCK基因的cg18492943甲基化与CR的发生有关。这可能是由于cg18492943处的DNA甲基化程度较高使GCK mRNA的表达降低,最终导致CR的发生。总体来说,目前关于GCK与CR相关性的研究很少,我们仍需要大量的临床研究来证实以上研究结论。

3.3. PER3

昼夜节律是决定个体身体生理功能状态的关键因素。昼夜节律的变化与各种疾病有关,如免疫系统疾病和心血管疾病。哺乳动物的生物钟机制与PER1、PER2、PER3、Clock、Bmal1、Cry1和Cry2组成的一组时钟基因相关 [41] ,时钟基因通过调节昼夜节律可控制数百个下游基因有节奏表达。PER3基因已被证明是人体非常重要的时钟基因之一,它可以编码参与睡眠调节的蛋白质,通过调节睡眠节律而影响下游的生理活动 [42] 。PER3不仅可以调节睡眠,也在炎症性疾病和心血管疾病的发生发展中起着至关重要的作用。有研究表明昼夜节律紊乱会使血压和炎症标志物升高 [43] ,而血压的昼夜节律则会影响心血管系统疾病的发病率 [44] 。Li等人 [34] 评估了PER3 rs228729 (T/C)和rs2797685 (T/C)多态性对氯吡格雷耐药的影响,结果发现在白蛋白和降钙素原均升高的患者中rs228729与CR的出现相关,在仅有降钙素原升高患者中rs2797685与的CR的出现相关。由于目前关于PER3基因多态性与CR的研究仍较少,故具体发生机制目前尚不明确。

3.4. KDR

最近有研究发现动脉粥样硬化和心血管疾病(CAD)的发生与一种激酶功能区受体(KDR)基因的基因变异相关 [45] 。KDR负责血管内皮细胞中血管内皮生长因子2 (VEGFR2)受体的转录,VEGFR2在CAD的发生和血小板聚集中扮演重要的角色 [45] 。目前已有研究表明,KDR基因外显子11的1719位置上的胸腺嘧啶(T)被腺嘌呤(A)替换后,会导致rs1870377变异的出现,随后氨基酸发生改变,最终使VEGFR2受体功能障碍 [5] 。Awaida等人 [5] 近期的一项临床试验研究了KDR rs1870377基因型与伊拉克阿拉伯裔CAD患者CR的关系,结果显示在经皮冠状动脉介入手术后,伊拉克阿拉伯裔CAD患者的KDR rs1870377基因型与CR密切相关。然而,Zhang等人研究了中国CAD患者KDR rs1870377基因型与使用氯吡格雷效果的关系,并没有发现KDR rs1870377基因型与CR的关联 [46] 。这样的差异可能与地域和种族有关,故仍需要大量的临床试验来证实KDR rs1870377基因型与CR的相关性。

4. 小结

对于PCI术后病人,氯吡格雷联合阿司匹林是目前使用最多的抗血小板方案。但是由于个体差异,不同患者对氯吡格雷的反应不同,即会产生CR。氯吡格雷抵抗受多种因素的影响,以上内容对影响CR的基因多态性做了总结。药物代谢对CR的影响是十分重要的,ABCB1、CYP2C19、PON1和PXR是目前已知的可以影响氯吡格雷代谢的基因。ABCB1、CYP2C19和PON1通过直接影响氯吡格雷代谢的某个环节来决定氯吡格雷最终的临床抗血小板疗效,而PXR则是ABCB1和CYP2C19的上游调节基因,通过调节它们mRNA的表达间接影响氯吡格雷的代谢。目前对CYP2C19基因多态性的研究最多,ABCB1、PON1和PXR基因则相对较少。不仅如此,CYP2C19基因多态性对CR影响是明确,甚至有研究表明其基因多态性可以预测MACE。除了药物代谢,氯吡格雷作用位点的变异、临床合并症的存在、昼夜节律的影响、血小板聚集作用的改变都可以影响氯吡格雷的临床疗效,与之相对应的基因分别是P2RY12、GCK、PER3、KDR。但是目前对于这些基因的研究仍然很少,我们需要更多的临床试验来进一步深入研究这些基因与CR的关系。总的来说,个体的基因突变对氯吡格雷的疗效影响为临床抗血小板治疗提供了新思路。通过基因检测制定的个体化抗血小板治疗方案可以在不增加出血的前提下最大程度地发挥其抗血小板效果,这对于临床抗血小板治疗是十分有意义的进步。

文章引用

李倩倩,谷秀娟. 氯吡格雷抵抗相关基因的研究进展
Research Progress on Related Genes of Clopidogrel Resistance[J]. 临床医学进展, 2023, 13(03): 3828-3835. https://doi.org/10.12677/ACM.2023.133549

参考文献

  1. 1. Roffifi, M., Patrono, C., et al. (2016) ESC Guidelines for the Management of Acute Coronary Sindrome in Patients Pre-senting without Persistent ST-Segment Elevation. European Heart Journal, 37, 267-315. https://doi.org/10.1093/eurheartj/ehv320

  2. 2. Roe, M.T., Armstrong, P.W., Fox, K.A., et al. (2012) Prasugrel ver-sus Clopidogrel for Acute Coronary Syndromes without Revascularization. The New England Journal of Medicine, 367, 1297-1309.

  3. 3. Podda, G.M., Grossi, E., Palmerini, T., et al. (2017) Prediction of High On-Treatment Platelet Reactiv-ity in Clopidogrel-Treated Patients with Acute Coronary Syndromes. International Journal of Cardiology, 240, 60-65. https://doi.org/10.1016/j.ijcard.2017.03.074

  4. 4. Hochholzer, W., Trenk, D., Bestehorn, H.P., et al. (2006) Impact of the Degree of Peri-Interventional Platelet Inhibition after Loading with Clopidogrel on Early Clinical Outcome of Elec-tive Coronary Stent Placement. Journal of the American College of Cardiology, 48, 1742-1750. https://doi.org/10.1016/j.jacc.2006.06.065

  5. 5. Al Awaida, W., Ahmed, A.A., Hamza, A.A., et al. (2021) Associa-tion of KDR rs1870377 Genotype with Clopidogrel Resistance in Patients with Post Percutaneous Coronary Intervention. Heliyon, 7, e06251. https://doi.org/10.1016/j.heliyon.2021.e06251

  6. 6. Wang, T., Li, H., Wang, F., et al. (2021) The Effects of Poly-morphisms in CYP2C19, ATP-Binding Cassette Transporter B1, and Paraoxonase-1 on Clopidogrel Treatment of Uygur Patients Following Percutaneous Coronary Intervention. European Journal of Clinical Pharmacology, 77, 1679-1686. https://doi.org/10.1007/s00228-021-03176-z

  7. 7. Akkaif, M.A., Daud, N.A.A., Sha’aban, A., et al. (2021) The Role of Genetic Polymorphism and Other Factors on Clopidogrel Resistance (CR) in an Asian Population with Coronary Heart Disease (CHD). Molecules, 26, 1987. https://doi.org/10.3390/molecules26071987

  8. 8. Bouman, H.J., Schomig, E., van Werkum, J.W., et al. (2011) Paraoxonase-1 Is a Major Determinant of Clopidogrel Efficacy. Nature Medicine, 17, 110-116. https://doi.org/10.1038/nm.2281

  9. 9. Su, J., Li, J., Yu, Q., et al. (2019) Association of PON1 Gene Promoter DNA Methylation with the Risk of Clopidogrel Resistance in Patients with Coronary Artery Disease. Journal of Clinical Laboratory Analysis, 33, e22867. https://doi.org/10.1002/jcla.22867

  10. 10. Sun, Y., Lu, Q., Tao, X., et al. (2020) Cyp2C19∗2 Polymorphism Related to Clopidogrel Resistance in Patients with Coronary Heart Disease, Especially in the Asian Population: A Systematic Re-view and Meta-Analysis. Frontiers in Genetics, 11, Article ID: 576046. https://doi.org/10.3389/fgene.2020.576046

  11. 11. Galeazzi, R., Olivieri, F., Spazzafumo, L., et al. (2018) Clustering of ABCB1 and CYP2C19 Genetic Variants Predicts Risk of Major Bleeding and Thrombotic Events in Elderly Patients with Acute Coronary Syndrome Receiving Dual Antiplatelet Therapy with Aspirin and Clopidogrel. Drugs Aging, 35, 649-656. https://doi.org/10.1007/s40266-018-0555-1

  12. 12. Zhang, J., Dong, Z.F., Bian, C.X., et al. (2022) The Correlation between MDR1 Gene Polymorphism and Clopidogrel Resistance in People of the Hui and Han Nationalities. Clinical and Applied Thrombosis/Hemostasis, 28. https://doi.org/10.1177/10760296211073272

  13. 13. Wang, K., Yuan, Y., Cho, J.H., et al. (2012) Comparing the Mi-croRNA Spectrum between Serum and Plasma. PLOS ONE, 7, e41561. https://doi.org/10.1371/journal.pone.0041561

  14. 14. Stokanovic, D., Nikolic, V.N., Konstantinovic, S.S., et al. (2016) Pglycoprotein Polymorphism C3435T Is Associated with Dose-Adjusted Clopidogrel and 2-Oxo-Clopidogrel Concen-tration. Pharmacology, 97, 101-106. https://doi.org/10.1159/000442712

  15. 15. Su, Q., Li, J., Tang, Z., et al. (2019) Association of CYP2C19 Polymor-phism with Clopidogrel Resistance in Patients with Acute Coronary Syndrome in China. Medical Science Monitor, 25, 7138-7148. https://doi.org/10.12659/MSM.915971

  16. 16. Zhang, Y., Shi, X.-J., Peng, W.-X., et al. (2021) Impact of Imple-menting CYP2C19 Genotype-Guided Antiplatelet Therapy on P2Y12 Inhibitor Selection and Clinical Outcomes in Acute Coronary Syndrome Patients after Percutaneous Coronary Intervention: A Real-World Study in China. Frontiers in Pharmacology, 11, Article ID: 582929. https://doi.org/10.3389/fphar.2020.582929

  17. 17. Brown, S.-A. and Pereira, N. (2018) Pharmacogenomic Impact of CYP2C19 Variation on Clopidogrel Therapy in Precision Cardiovascular Medicine. Journal of Personalized Medicine, 8, 8. https://doi.org/10.3390/jpm8010008

  18. 18. Tabari, R.G., Marjani, A., Ataby, O.A., et al. (2013) Genetic Poly-morphism of Cytochrome p450 (2C19) Enzyme in Iranian Turkman Ethnic Group. Oman Medical Journal, 28, 237-244. https://doi.org/10.5001/omj.2013.69

  19. 19. Alhazzani, A.A., Munisamy, M., Karunakaran, G., et al. (2017) Phar-macogenetics of CYP2C19 Genetic Olymorphism on Clopidogrel Response in Patients with Ischemic Stroke from Saudi Arabia. Neurosciences (Riyadh), 22, 31-37. https://doi.org/10.17712/nsj.2017.1.20160303

  20. 20. Tang, X.F., Wang, J., Zhang, J.H., et al. (2013) Effect of the CYP2C19 2 and 3 Genotypes, ABCB1 C3435T and PON1 Q192R Alleles on the Pharmacodynamics and Adverse Clinical Events of Clopidogrel in Chinese People after Percutaneous Coronary Intervention. European Journal of Clinical Pharmacology, 69, 1103-1112. https://doi.org/10.1007/s00228-012-1446-8

  21. 21. Zou, J.J., Xie, H.G., Chen, S.L., et al. (2013) Influence of CYP2C19 Loss-of-Function Variants on the Antiplatelet Effects and Cardiovascular Events in Clopidogrel-Treated Chi-nese Patients Undergoing Percutaneous Coronary Intervention. European Journal of Clinical Pharmacology, 69, 771-777. https://doi.org/10.1007/s00228-012-1392-5

  22. 22. Zheng, L., Yang, C., Xiang, L. and Hao, Z. (2019) Gen-otype-Guided Antiplatelet Therapy Compared with Conventional Therapy for Patients with Acute Coronary Syndromes: A Systematic Review and Meta-Analysis. Biomarkers, 24, 517-523. https://doi.org/10.1080/1354750X.2019.1634764

  23. 23. Zhang, M., Wang, J.R., Zhang, Y., et al. (2020) Effects of Individualized Antiplatelet Therapy Based on CYP2C19 Genotype and Platelet Function on the Prognosis of Patients af-ter PCI. European Review for Medical and Pharmacological Sciences, 24, 10753-10768. https://doi.org/10.1177/0267659120978584

  24. 24. Soran, H., Schofield, J.D., Liu, Y. and Durrington, P.N. (2015) How HDL Protects LDL against Atherogenic Modification: Paraoxonase 1 and Other Dramatis Personae. Current Opinion in Lipidology, 26, 247-256. https://doi.org/10.1097/MOL.0000000000000194

  25. 25. Chistiakov, D.A., Melnichenko, A.A., Orekhov, A.N. and Bobryshev, Y.V. (2017) Paraoxonase and Atherosclerosis-Related Cardiovascular Diseases. Biochimie, 132, 19-27. https://doi.org/10.1016/j.biochi.2016.10.010

  26. 26. Farid, N.A., Kurihara, A. and Wrighton, S.A. (2010) Metabolism and Disposition of the Thienopyridine Antiplatelet Drugs Ticlopidine, Clopidogrel, and Prasugrel in Humans. The Jour-nal of Clinical Pharmacology, 50, 126-142. https://doi.org/10.1177/0091270009343005

  27. 27. Primo-Parmo, S.L., Sorenson, R.C., Teiber, J. and La Du, B.N. (1996) The Human Serum Paraoxonase/Arylesterase Gene (PON1) Is One Member of a Multigene Family. Genomics, 33, 498-507. https://doi.org/10.1006/geno.1996.0225

  28. 28. Ohmori, T., Yano, Y., Sakata, A., et al. (2012) Lack of Association between Serum Paraoxonase-1 Activity and Residual Platelet Aggregation during Dual Anti-Platelet Therapy. Thrombosis Research, 129, e36-e40. https://doi.org/10.1016/j.thromres.2011.10.033

  29. 29. Mbatchi, L.C., Gassiot, M., Pourquier, P., Goberna, A., Ma-hammedi, H., Mourey, L., Joly, F., Lumbroso, S., Evrard, A. and Houede, N. (2017) Association of NR1I2, CYP3A5 and ABCB1 Genetic Polymorphisms with Variability of Temsirolimus Pharmacokinetics and Toxicity in Patients with Metastatic Bladder Cancer. Cancer Chemotherapy and Pharmacology, 8, 1-7. https://doi.org/10.1007/s00280-017-3379-5

  30. 30. Ghosh, C., Hossain, M., Solanki, J., Najm, I.M., Marchi, N. and Janigro, D. (2017) Overexpression of Pregnane X and Glucocorticoid Receptors and the Regulation of Cytochrome P450 in Human Epileptic Brain Endothelial Cells. Epilepsia, 58, 576-585. https://doi.org/10.1111/epi.13703

  31. 31. Castaño, G., Burgueño, A., Fernández Gianotti, T., Pirola, C.J. and Sookoian, S. (2010) The Influence of Common Gene Variants of the Xenobiotic Receptor (PXR) in Genetic Susceptibility to Intrahepatic Cholestasis of Pregnancy. Aliment. Pharma-cology & Therapeutics 31, 583-592. https://doi.org/10.1111/j.1365-2036.2009.04210.x

  32. 32. Wu, Y., Yu, H., Tang, H.Q., et al. (2018) PXR Polymorphisms Have Impact on the Clinical Efficacy of Clopidogrel in Patients Undergoing Percutaneous Coronary Intervention. Gene, 653, 22-28. https://doi.org/10.1016/j.gene.2018.02.022

  33. 33. Hechler, B. and Gachet, C. (2015) Purinergic Receptors in Thrombosis and Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 2307-2315. https://doi.org/10.1161/ATVBAHA.115.303395

  34. 34. Li, J.L., Fu, Y., Qin, S.B., et al. (2018) Association between P2RY12 Gene Polymorphisms and Adverse Clinical Events in Coronary Artery Disease Patients Treated with Clopidogrel: A Systematic Review and Meta-Analysis. Gene, 657, 69-80. https://doi.org/10.1016/j.gene.2018.03.007

  35. 35. Zoheir, N., Abd Elhamid, S., Abulata, N., et al. (2013) P2Y12 Receptor Gene Polymorphism and Antiplatelet Effect of Clopidogrel in Patients with Coronary Artery Disease after Cor-onary Stenting. Blood Coagulation & Fibrinolysis, 24, 525-531. https://doi.org/10.1097/MBC.0b013e32835e98bf

  36. 36. Jneid, H., Addison, D., Bhatt, D.L., et al. (2017) 2017 AHA/ACC Clinical per Formance and Quality Measures for Adults with ST-Elevation and Non-ST-Elevation Myocardi-al Infarction: A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures. Journal of the American College of Cardiology, 70, 2048-2090. https://doi.org/10.1161/HCQ.0000000000000032

  37. 37. Faggioni, M., Baber, U., Chandrasekhar, J., et al. (2019) Use of Prasugrel vs Clopidogrel and Outcomes in Patients with and without Diabetes Mellitus Presenting with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. International Journal of Cardiology, 275, 31-35. https://doi.org/10.1016/j.ijcard.2018.10.071

  38. 38. Yaseen, I.F., Farhan, H.A. and Abbas, H.M. (2019) Clopidogrel Non-Responsiveness in Patients Undergoing Percutaneous Coronary Intervention Using the Verify Now Test: Frequen-cy and Predictors. European Journal of Hospital Pharmacy, 26, 113-116.

  39. 39. Ferreiro, J.L. and Angiolillo, D.J. (2011) Diabetes and Antiplatelet Therapy in Acute Coronary Syndrome. Circulation, 123, 798-813. https://doi.org/10.1161/CIRCULATIONAHA.109.913376

  40. 40. Sternisha, S.M. and Miller, B.G. (2019) Molecular and Cellular Regulation of Human Glucokinase. Archives of Biochemistry and Biophysics, 663, 199-213. https://doi.org/10.1016/j.abb.2019.01.011

  41. 41. Mohawk, J.A., Green, C.B. and Takahashi, J.S. (2012) Central and Peripheral Circadian Clocks in Mammals. Annual Review of Neuroscience, 35, 445-462. https://doi.org/10.1146/annurev-neuro-060909-153128

  42. 42. Laing, E.E., Johnston, J.D., Moller-Levet, C.S., et al. (2015) Exploiting Human and Mouse Transcriptomic Data: Identification of Circadian Genes and Pathways Influencing Health. BioEssays, 37, 544-556. https://doi.org/10.1002/bies.201400193

  43. 43. Morris, C.J., Purvis, T.E., Hu, K. and Scheer, F.A. (2016) Circadian Misalignment Increases Cardiovascular Disease Risk Factors in Humans. Proceedings of the National Academy of Sci-ences of the United States of America, 113, E1402-E1411. https://doi.org/10.1073/pnas.1516953113

  44. 44. Hermida, R.C., Ayala, D.E., Mojón, A. and Fernández, J.R. (2010) Influence of Circadian Time of Hypertension Treatment on Cardiovascular Risk: Results of the MAPEC Study. Chronobiology International, 27, 1629-1651. https://doi.org/10.3109/07420528.2010.510230

  45. 45. Liu, D., Song, J., Ji, X., et al. (2016) Association of Genetic Polymorphisms on VEGFA and VEGFR2 with Risk of Coronary Heart Disease. Medicine, 95, e3413. https://doi.org/10.1097/MD.0000000000003413

  46. 46. Zhang, L.-J., Zhang, Y.-Q., Han, X., et al. (2016) Associa-tion of VEGFR-2 Gene Polymorphisms with Clopidogrel Resistance in Patients with Coronary Heart Disease. American Journal of Therapeutics, 23, e1663-e1670. https://doi.org/10.1097/MJT.0000000000000231

  47. NOTES

    *通讯作者。

期刊菜单