Advances in Clinical Medicine
Vol. 13  No. 10 ( 2023 ), Article ID: 73832 , 8 pages
10.12677/ACM.2023.13102270

难治性自身免疫性脑炎的免疫治疗研究进展

梁鹏飞

西安医学院研究生工作部,陕西 西安

收稿日期:2023年9月17日;录用日期:2023年10月10日;发布日期:2023年10月17日

摘要

自身免疫性脑炎是一种由自身免疫反应介导的中枢神经系统疾病,早期开始免疫治疗已被证明可以改善临床结果并减少其复发。其免疫治疗有一线治疗,二线治疗,升级治疗,添加治疗,以及长程维持治疗。一线治疗包括静脉注射糖皮质激素、静脉注射免疫球蛋白和血浆置换,在比较严重的病例中可以联合使用。在无反应的病例中,可以采用二线免疫治疗如利妥昔单抗或者环磷酰胺。但少数患者仍然对其没有反应,因此这是一个重大的临床挑战,且治疗策略存在争议。现针对难治性自身免疫性脑炎提出了三种治疗方法,包括(1) 基于细胞因子的药物:托珠单抗、低剂量IL-2、巴利昔单抗、阿那白滞素和托法替尼;(2) 浆细胞耗竭剂:硼替佐米、达雷木单抗;(3) 针对鞘内免疫细胞或能通过血脑屏障的药物:鞘内注射甲氨蝶呤、那他珠单抗。这些药物的疗效证据大多来自于病例报告系列,很少有高质量的随机对照临床研究进行报道。所以对当前难治性自身免疫性脑炎的免疫治疗研究进展进行综述。

关键词

自身免疫性脑炎,难治性自身免疫性脑炎,免疫治疗

Advances in Immunotherapy of Refractory Autoimmune Encephalitis

Pengfei Liang

Department of Graduate Work, Xi’an Medical University, Xi’an Shaanxi

Received: Sep. 17th, 2023; accepted: Oct. 10th, 2023; published: Oct. 17th, 2023

ABSTRACT

Autoimmune encephalitis is a disease of the central nervous system mediated by an autoimmune response, and early initiation of immunotherapy has been shown to improve clinical outcomes and reduce its recurrence. Immunotherapy includes first-line therapy, second-line therapy, escalation therapy, add-on therapy, and long-term maintenance therapy. First-line treatment includes intravenous glucocorticoids, intravenous immunoglobulin, and plasma exchange, or a combination in more severe cases. In nonresponsive cases, second-line immunotherapy such as rituximab or cyclophosphamide can be used. However, a minority of patients still do not respond to it, making it a major clinical challenge and a therapeutic strategy controversial. Three approaches have been proposed for the treatment of refractory autoimmune encephalitis, including (1) Cytokine-based drugs: tocilizumab, low-dose IL-2, basiliximab, anakinra, and tofacitinib; (2) Plasma cell depleting agents: bortezomib and daratumumab; (3) Drugs that target intrathecal immune cells or can cross the blood-brain barrier: intrathecal methotrexate, natalizumab. Most evidence for the efficacy of these agents comes from case report series, and few high-quality randomized controlled clinical studies have been reported. Therefore, the current research progress of immunotherapy for refractory autoimmune encephalitis is reviewed.

Keywords:Autoimmune Encephalitis, Refractory Autoimmune Encephalitis, Immunotherapy

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

近年来,随着诊断和诊断分析的进步和对新型临床综合征的认识,自身免疫反应导致的神经疾病越来越多 [1] 。自身免疫性脑炎患者的临床表现有一定的神经精神症状,病情严重时可能危及患者的生命 [1] 。目前AE患病比例约占所有脑炎病例的10%~20%,以抗NMDAR脑炎最为常见,约占AE病例的54%~80% [2] 。早期开始免疫治疗已被证明可以改善临床结果并减少其复发 [3] [4] 。这种疾病的潜在发病机制与针对神经元细胞表面抗原的致病性抗体有关,或者与针对细胞内抗原与副肿瘤性疾病中的T细胞介导的免疫过程有关 [5] [6] [7] 。所以免疫治疗显得尤为重要。免疫治疗其中包括一线治疗和二线治疗,升级免疫治疗,添加免疫治疗以及慢性期的长程治疗 [8] 。其中有部分病人对二线免疫治疗没有反应,病情比较危重,需要收治重症监护室。尽管缺乏对这类患者的明确定义,我们称之为难治性自身免疫性脑炎。现在对难治性自身免疫性脑炎的治疗没有明确的指南,且治疗方案也存在一定的争议,大都是个案报道,缺乏高质量的随机对照临床研究,不同的发病机制衍生出了不同的治疗方案,针对于此,目前提出了三种治疗途径,即:(1) 基于细胞因子的药物:托珠单抗、低剂量的IL-2、巴利昔单抗、阿那白滞素和托法替尼;(2) 浆细胞耗竭剂:硼替佐米、达雷木单抗;(3) 针对鞘内免疫细胞或能通过血脑屏障的药物:鞘内注射甲氨蝶呤、那他珠单抗。所以本文对这三种治疗途径进行逐一描述。

2. 基于细胞因子的药物

2.1. 托珠单抗

托珠单抗是一种人源化单克隆抗体,它是针对IL-6的单克隆抗体,可阻断IL-6的信号转导,IL-6是参与T淋巴细胞和B淋巴细胞免疫反应的重要细胞因子。托珠单抗已成功用于视神经脊髓炎谱系疾病,最近在髓鞘少突胶质细胞糖蛋白相关疾病的患者中也取得了一定的疗效 [9] 。一项三期试验也证明了萨特利珠单抗(一种针对IL-6的另外一种单克隆抗体)在视神经脊髓炎谱系疾病中的功效 [10] 。在一项研究 [11] 包括血清抗体阴性(60例)、抗NMDAR (26例)、LGI1 (3例)和两性蛋白(2例)阳性病例中,实验组相对于对照组而言(包括接受利妥昔单抗或仅接受一线免疫治疗的患者),采用托珠单抗治疗在每个时间节点都有更好的临床结果,其改良mRs评分更低。在最后一次随访中,接受托珠单抗治疗的患者中有60%的患者mRs ≤ 2,而接受利妥昔单抗治疗或仅接受一线免疫治疗的患者mRs ≤ 2的比例分别为22%和20%。所以这项研究建议在使用利妥昔单抗治疗失败后1个月内升级至托珠单抗治疗。在这项研究中,托珠单抗的副作用主要有中性粒细胞减少(约10%),导致了1例患者停药,但没有发现感染的报告。另外有一项关于抗NMDAR脑炎患者的研究 [12] ,此研究分析了畸胎瘤切除、糖皮质激素、静脉注射免疫球蛋白、利妥昔单抗和托珠单抗快速升级的疗效。在1个月内完成托珠单抗升级治疗的患者有更好的临床改善。其常见相关副作用是中性粒细胞减少和尿路感染。在患有免疫介导的疾病(包括与链球菌感染相关的自身免疫性神经精神疾病、与风湿热相关的脑病以及与谷氨酸脱羧酶相关的共济失调伴认知障碍)的儿科患者中,即使在长期和严重的疾病之后,托珠单抗也能迅速的改善病情 [13] 。在接受托珠单抗作为前期治疗的2例抗CASPR2脑炎患者和1例抗GAD65脑炎患者中也观察到迅速且持续的临床反应,并伴有抗体滴度的降低 [14] [15] [16] 。

2.2. 低剂量的IL-2/巴利昔单抗

IL-2对于调节性T细胞和效应性T细胞有一定的调节作用,与它们维持正常的功能,存活和分化作用有关。与效应性T细胞相比,调节性T细胞的激活阈值较低,因此低剂量的IL-2可以在不刺激效应性T细胞的情况下选择性地作用于调节性T细胞 [17] 。在一项包括10例患者(4例抗NMDAR脑炎患者和6例血清阴性脑炎患者)的回顾性研究中,用了小剂量的IL-2皮下注射治疗,平均治疗周期为4个周期 [18] 。在这之前,所有这些患者都已经接受了利妥昔单抗和托珠单抗治疗。结果是6例患者病情有所改善,其中大多数在至少两个周期后才有所改善。其副作用很少发生,包括发热(1例)和中性粒细胞减少(1例)。所以低剂量的IL-2可能对难治性自身免疫性脑炎患者有一定的疗效。在一项静脉注射巴利昔单抗(一种针对IL-2受体α链的单克隆抗体)治疗抗GAD65相关性边缘脑炎患者的研究中 [19] ,证实了巴利昔单抗可以阻断效应性T细胞主导的免疫作用,从而对达到了治疗脑炎的效果。

2.3. 阿那白滞素

阿那白滞素是一种IL-1受体拮抗剂,它通过抑制对IL-1的反应来发挥作用,IL-1在全身炎症反应中起着重要的作用。阿那白滞素这种皮下注射的药物已经成功地用于治疗类风湿性关节炎、周期性发热和自身炎症类疾病。在1例以新发的难治性癫痫持续状态为特征的血清抗体阴性的边缘脑炎患者中,注射最后一剂阿那白滞素后不久就观察到了好转,并在接下来的两周内持续好转 [20] 。在急性播散性脑脊髓炎患者中也有明显的改善,但在1例血清阴性的自身免疫性脑炎中还没有得到证实 [21] [22] 。阿那白滞素在抗NMDAR脑炎的啮齿动物模型中也进行了测试,该模型的小鼠有癫痫发作和认知障碍 [23] 。在经治疗的小鼠癫痫发作迅速(24~48小时后)减少,记忆力也有所改善,同时小胶质细胞和星形胶质细胞增生的标记物也减少了。但在抗NMDAR脑炎患者中还未得到证实。

2.4. 托法替尼

JAK激酶1和3能调节1型和2型干扰素,以及白细胞介素族受体的表达。这些激酶能够被口服药物托法替尼抑制,此药能够透过血脑屏障。在一项8例患者的研究中 [24] ,其中抗NMDAR脑炎2例,抗GAD65脑炎1例,髓鞘少突胶质细胞糖蛋白相关疾病1例,血清抗体阴性4例。所有患者在接受托法替尼治疗前都接受了利妥昔单抗治疗,一些患者还接受了托珠单抗、英夫利昔单抗(一种针对肿瘤坏死因子的单抗)或IL-2的治疗。其中2例患者有良好的反应(1例难治性脑膜脑炎患者的改良mRS评分和CASE评分显著降低;1例与髓鞘少突胶质细胞糖蛋白抗体相关的新发难治性癫痫持续状态患者的癫痫停止发作),3例患者部分缓解,并且没有进一步进展加重,3例反应不明确。细胞因子系列也没有随治疗反应而产生变化。其副作用并不常见,有轻度恶心和中性粒细胞减少。在之前的研究中,出现了脱髓鞘病变 [25] 。

3. 浆细胞耗竭剂

3.1. 硼替佐米

26S蛋白酶体抑制剂硼替佐米是治疗多发性骨髓瘤的药物,它的作用是破坏长寿浆细胞 [26] 。对于自身免疫性脑炎患者,会存在长寿浆细胞,浆细胞表面不表达CD20,所以利妥昔单抗对其不产生作用。尽管利妥昔单抗能消灭B淋巴细胞,但是不能消灭浆细胞,所以长寿浆细胞能持续分泌致病性自身抗体,从而致病 [27] 。硼替佐米已成功用于其他自身免疫性疾病,例如系统性红斑狼疮 [28] 和视神经脊髓炎谱系疾病 [11] 。硼替佐米可以通过静脉注射或者皮下注射方式治疗。对于自身免疫性脑炎,硼替佐米几乎可以全部用于抗NMDAR脑炎患者,特别是需要长时间住在重症监护病房的严重残疾病例,以及抗CASPR2脑炎患者 [29] [30] 。在一些病例报道中,常规或非常规使用(如环磷酰胺、利妥昔单抗、IL-2或托珠单抗)失败后,再使用硼替佐米 [31] [32] [33] ,病情得到了改善。硼替佐米已被证明可以消除对利妥昔单抗不敏感的抗体分泌细胞 [32] 。尽管大多数研究证实了硼替佐米的疗效,但在一项前瞻性研究中,实验组与未治疗的对照历史队列相比,未能证明硼替佐米对疾病进程的影响 [34] 。这可以部分解释为硼替佐米对血脑屏障的渗透有限,而且大多数患者具有高滴度脑脊液抗NMDAR抗体,这也被认为是预后不良的因素。有系统综述报道,在使用硼替佐米中位数2个周期(1~6个周期)有55.2%的病人出现了临床改善。值得注意的是,其临床结果不受副肿瘤起源的影响,但受到脑脊液抗NMDAR抗体起始滴度较低和治疗后血清滴度下降的影响 [35] 。37.9%的患者出现了副作用,其中血液学副作用最常见,其次是感染和胃肠道副作用,还出现了一个可逆性神经病变的病例 [35] 。

3.2. 达雷木单抗

达雷木单抗是一种针对CD38的单克隆抗体,多用于治疗多发性骨髓瘤 [36] 。与其他浆细胞消耗药物相比,CD38在浆细胞和T淋巴细胞中的表达扩大了达雷木单抗的潜在益处。此外,达雷木单抗可能能够穿透血脑屏障 [37] 。有静脉注射达雷木单抗的报道,包括1例抗CASPR2脑炎患者 [29] 和2例抗NMDAR脑炎患者 [38] [39] 。尽管有部分改善,一名患者仍然严重残疾 [39] ,另一名患者改善缓慢,在治疗后18个月时疾病达到了完全改善 [38] 。值得注意的是,1例患者死于革兰阴性败血症,表示其可能增加了感染的风险 [29] 。另一项由难治性自身免疫性疾病患者组成的回顾性病例,包括2例抗CASPR2脑炎患者,1例抗NMDAR脑炎患者,2例未知表位的抗体脑炎患者 [40] 。所有这些患者之前均接受过利妥昔单抗治疗,其中1例患者还接受过硼替佐米治疗。尽管2例抗CASPR2脑炎患者随后死亡,但达雷木单抗治疗后病情持续改善。作者建议进行六到八个周期,并根据个人反应继续治疗。临床改善通常在2~4周内发生,但在更严重的情况下需要 > 2个月。至于其副作用,4/5的患者有感染,1/5的C反应蛋白升高但不发热。此外,需要每月静脉注射免疫球蛋白的低丙种球蛋白血症可能会使达雷木单抗的治疗复杂化。在难治性自身免疫性脑炎患者中,达雷木单抗使用后血清和脑脊液抗体滴度以及血清神经丝轻链浓度下降,表明其在减少活动性轴突丢失方面的有一定的效果 [12] 。有趣的是,CD38阳性的T淋巴细胞和自然杀伤T淋巴细胞也在治疗后减少,这表明其对这两种细胞也有作用。

4. 针对鞘内免疫细胞或能通过血脑屏障的药物

4.1. 鞘内注射甲氨蝶呤

甲氨蝶呤作用机制主要是抑制叶酸的合成,鞘内给药能使其在脑脊液中能有较高的浓度,且全身毒性较小,但甲氨蝶呤在脑实质内的渗透性很差 [41] 。虽然免疫细胞参与了自身免疫性脑炎的发病机制,但鞘内注射甲氨蝶呤的确切作用机制仍未阐述清楚。鞘内注射甲氨蝶呤的疗效已经在病例报道和一些难治性抗NMDAR脑炎患者的研究中得到了验证 [42] [43] [44] [45] [46] 。大多数报道的患者在注射后早期(通常在2至13天之间)就有显著的改善 [44] 。即使一些患者经历了延迟的改善 [42] [45] 。持续的抗体高滴度病情往往不能改善,但在鞘内注射后脑脊液抗体滴度下降 [46] 。在这些研究中没有重大副作用的报道,但鞘内注射甲氨蝶呤与严重的神经毒性有关,可能出现中风样症状、癫痫发作或脑病 [47] 。

4.2. 那他珠单抗

那他珠单抗通过α4β1整合素来阻断中枢神经系统免疫细胞的运输,通常用于多发性硬化症 [48] 。据报道,那他珠单抗对1例抗HU相关性边缘脑炎 [49] 和1例在接受癌症免疫治疗(分别为纳武单抗、易普利姆玛单抗和帕博利珠单抗)后出现抗胶质纤维酸性蛋白抗体脑膜脑炎的患者 [50] 有效。那他珠单抗治疗抗HU相关副肿瘤神经综合征的2期试验 [51] 最近发表,包括4例边缘性脑炎患者。在使用了三个疗程的那他珠单抗后3例患者病情稳定,1例患者病情改善。总体而言,那他珠单抗改善了病程,但并不优于其他治疗方法。即使在试验中没有发现不良事件,但在既往接受化疗的患者中,暴露于那他珠单抗后发生了进行性多灶性白质脑病。

4.3. 正在进行的临床试验

与在急性脑炎中使用免疫抑制剂有关的临床试验明显缺乏,而且,正如前面提到的,证据主要依赖于非对照研究。尽管最近发表了一项关于抗LGI1/CASPR2脑炎患者静脉注射免疫球蛋白的随机临床试验,但样本量小是难治性自身免疫性脑炎试验中的一个主要限制因素 [52] [53] 。关于二线治疗,ExTINGUISH试验(NCT04372615)是一项2期研究 [54] ,评估抗CD19单抗伊奈利珠单抗在抗NMDAR脑炎中的疗效。伊奈利珠单抗可以耗尽CD19阳性、CD20阴性的浆母细胞和浆细胞,显示出比利妥昔单抗的一些潜在优势。此外,抗新生儿Fc受体洛利昔珠单抗的II期试验(NCT04875975)目前正在招募抗LGI1脑炎患者,这些患者之前没有接触过免疫抑制剂。最后,一项包括抗体介导的对利妥昔单抗无效的成年自身免疫性脑炎患者的多中心随机试验目前正在招募患者来评估硼替佐米的疗效(NCT03993262) [55] 。

5. 总结

对于难治性自身免疫性脑炎患者,一线免疫治疗或者二线免疫治疗对其疗效欠佳,这时我们可以采取以上的治疗措施,针对不同的情况合理地采取对应的治疗措施。但以上的药物治疗大都来自于病例系列,缺乏高质量的随机对照临床研究来进一步证实其疗效,所以应该合理地使用以上药物,希望能对难治性自身免疫性脑炎患者的治疗提供一些参考,为大家借鉴。以上药物都来自于其他自身免疫性疾病的治疗,都属于一些免疫调节剂,未来可能有更多的免疫制剂来治疗难治性自身免疫性脑炎患者,需要我们进一步探索研究。相信在不久的将来能发现对难治性自身免疫性脑炎患者非常有效的药物,为他们带来福音。

文章引用

梁鹏飞. 难治性自身免疫性脑炎的免疫治疗研究进展
Advances in Immunotherapy of Refractory Autoimmune Encephalitis[J]. 临床医学进展, 2023, 13(10): 16237-16244. https://doi.org/10.12677/ACM.2023.13102270

参考文献

  1. 1. Dalmau, J. and Graus, F. (2023) Diagnostic Criteria for Autoimmune Encephalitis: Utility and Pitfalls for Anti-body-Negative Disease. The Lancet Neurology, 22, 529-540. https://doi.org/10.1016/S1474-4422(23)00083-2

  2. 2. Ren, H., Fan, S., Zhao, Y. and Guan, H.Z. (2021) The Changing Spectrum of Antibody-Mediated Encephalitis in China. Journal of Neuroimmunology, 361, Article ID: 577753. https://doi.org/10.1016/j.jneuroim.2021.577753

  3. 3. Titulaer, M.J., McCracken, L., Gabilondo, I., et al. (2013) Treatment and Prognostic Factors for Long-Term Outcome in Patients with Anti-NMDA Receptor Encephalitis: An Ob-servational Cohort Study. The Lancet Neurology, 12, 157-165. https://doi.org/10.1016/S1474-4422(12)70310-1

  4. 4. Nosadini, M., Eyre, M., Molteni, E., et al. (2021) Use and Safety of Immunotherapeutic Management of N-Methyl- d-Aspartate Receptor Antibody Encephalitis: A Meta-Analysis. JAMA Neurology, 78, 1333-1344. https://doi.org/10.1001/jamaneurol.2021.3188

  5. 5. Graus, F., Titulaer, M.J., Balu, R., et al. (2016) A Clinical Ap-proach to Diagnosis of Autoimmune Encephalitis. The Lancet Neurology, 15, 391-404. https://doi.org/10.1016/S1474-4422(15)00401-9

  6. 6. Dubey, D., Pittock, S.J., Kelly, C.R., et al. (2018) Autoim-mune Encephalitis Epidemiology and a Comparison to Infectious Encephalitis. Annals of Neurology, 83, 166-177. https://doi.org/10.1002/ana.25131

  7. 7. Gresa-Arribas, N., Planagumà, J., Petit-Pedrol, M., et al. (2016) Human Neurexin-3α Antibodies Associate with Encephalitis and Alter Synapse Development. Neurology, 86, 2235-2242. https://doi.org/10.1212/WNL.0000000000002775

  8. 8. 中华医学会神经病学分会神经感染性疾病与脑脊液细胞学学组. 中国自身免疫性脑炎诊治专家共识(2022年版) [J]. 中华神经科杂志, 2022, 55(9): 931-949.

  9. 9. Ringelstein, M., Ayzenberg, I., Lindenblatt, G., et al. (2022) Interleukin-6 Receptor Blockade in Treat-ment-Refractory MOG-IgG-Associated Disease and Neuromyelitis Optica Spectrum Disorders. Neurology Neuroim-munology & Neuroinflammation, 9, e1100. https://doi.org/10.1212/NXI.0000000000001100

  10. 10. Yamamura, T., Kleiter, I., Fujihara, K., et al. (2019) Trial of Satralizumab in Neuromyelitis Optica Spectrum Disorder. New England Journal of Medicine, 381, 2114-2124. https://doi.org/10.1056/NEJMoa1901747

  11. 11. Lee, W., Lee, S., Moon, J., et al. (2016) Tocilizumab in Autoimmune Encephalitis Refractory to Rituximab: An Institutional Cohort Study. Neurother-apeutics, 13, 824-832. https://doi.org/10.1007/s13311-016-0442-6

  12. 12. Lee, W., Lee, S., Shin, Y., et al. (2021) Teratoma Removal, Steroid, IVIG, Rituximab and Tocilizumab (T-SIRT) in Anti-NMDAR Encephalitis. Neurotherapeu-tics, 18, 474-487. https://doi.org/10.1007/s13311-020-00921-7

  13. 13. Randell, R.L., Adams, A.V. and Van Mater, H. (2018) Tocilizumab in Refractory Autoimmune Encephalitis: A Series of Pediatric Cases. Pediatric Neurology, 86, 66-68. https://doi.org/10.1016/j.pediatrneurol.2018.07.016

  14. 14. Benucci, M., Tramacere, L., Infantino, M., et al. (2020) Efficacy of Tocilizumab in Limbic Encephalitis with Anti-CASPR2 Antibodies. Case Reports in Neurological Medicine, 2020, Article ID: 5697670. https://doi.org/10.1155/2020/5697670

  15. 15. Jaafar, F., Haddad, L., Koleilat, N., et al. (2020) Super Refractory Sta-tus Epilepticus Secondary to Anti-GAD Antibody Encephalitis Successfully Treated with Aggressive Immunotherapy. Epilepsy & Behavior Reports, 14, Article ID: 100396. https://doi.org/10.1016/j.ebr.2020.100396

  16. 16. Krogias, C., Hoepner, R., Müller, A., et al. (2013) Successful Treatment of Anti-Caspr2 Syndrome by Interleukin 6 Receptor Block-ade through Tocilizumab. JAMA Neurology, 70, 1056-1059. https://doi.org/10.1001/jamaneurol.2013.143

  17. 17. Yu, A., Zhu, L., Altman, N.H. and Malek, T.R. (2009) A Low Interleukin-2 Receptor Signaling Threshold Supports the Development and Homeostasis of T Regulatory Cells. Immunity, 30, 204-217. https://doi.org/10.1016/j.immuni.2008.11.014

  18. 18. Lim, J., Lee, S., Moon, J., et al. (2016) New Feasible Treatment for Refractory Autoimmune Encephalitis: Low-Dose Interleukin-2. Journal of Neuroimmunology, 299, 107-111. https://doi.org/10.1016/j.jneuroim.2016.09.001

  19. 19. Widman, G., Golombeck, K., Hautzel, H., et al. (2015) Treat-ing a GAD65 Antibody-Associated Limbic Encephalitis with Basiliximab: A Case Study. Frontiers in Neurology, 6, Ar-ticle 167. https://doi.org/10.3389/fneur.2015.00167

  20. 20. Choi, C.H., Ma, S.H., Ma, K.K., et al. (2021) Su-per-Refractory Status Epilepticus in Autoimmune Encephalitis Treated with Interleukin-1 Receptor Antagonist, Anakinra. Epileptic Disorders, 23, 500-505. https://doi.org/10.1684/epd.2021.1283

  21. 21. Jang, Y., Woo, K.A., Lee, S.T., et al. (2018) Cerebral Autoinflamma-tory Disease Treated with Anakinra. Annals of Clinical and Translational Neurology, 5, 1428-1433. https://doi.org/10.1002/acn3.656

  22. 22. Jang, Y., Lee, W.J., Lee, H.S., et al. (2022) Anakinra Treatment for Refrac-tory Cerebral Autoinflammatory Responses. Annals of Clinical and Translational Neurology, 9, 91-97. https://doi.org/10.1002/acn3.51500

  23. 23. Taraschenko, O., Fox, H.S., Zekeridou, A., et al. (2021) Seizures and Memory Impairment Induced by Patient-Derived Anti-N-Methyl-D-Aspartate Receptor Antibodies in Mice Are Attenu-ated by Anakinra, an Interleukin-1 Receptor Antagonist. Epilepsia, 62, 671-682. https://doi.org/10.1111/epi.16838

  24. 24. Jang, Y., Lee, W.J., Lee, H.S., et al. (2021) Tofacitinib Treatment for Re-fractory Autoimmune Encephalitis. Epilepsia, 62, e53-e59. https://doi.org/10.1111/epi.16848

  25. 25. Massoud, F., Ismail, I.I., Al-Hashel, J.Y. and Abboud, H. (2020) CNS Demyelination during Tofacitinib Therapy: First Report. Multi-ple Sclerosis and Related Disorders, 46, Article ID: 102568. https://doi.org/10.1016/j.msard.2020.102568

  26. 26. Ito, S. (2020) Proteasome Inhibitors for the Treatment of Multiple Myeloma. Cancers, 12, Article 265. https://doi.org/10.3390/cancers12020265

  27. 27. Sun, B., Ramberger, M., O’Connor, K.C., et al. (2020) The B Cell Immunobiology That Underlies CNS Autoantibody-Mediated Diseases. Nature Reviews Neurology, 16, 481-492. https://doi.org/10.1038/s41582-020-0381-z

  28. 28. Alexander, T., Sarfert, R., Klotsche, J., et al. (2015) The Pro-teasome Inhibitior Bortezomib Depletes Plasma Cells and Ameliorates Clinical Manifestations of Refractory Systemic Lupus Erythematosus. Annals of the Rheumatic Diseases, 74, 1474-1478. https://doi.org/10.1136/annrheumdis-2014-206016

  29. 29. Scheibe, F., Ostendorf, L., Reincke, S.M., Prüss, H., et al. (2020) Daratumumab Treatment for Therapy-Refractory Anti-CASPR2 Encephalitis. Journal of Neurology, 267, 317-323. https://doi.org/10.1007/s00415-019-09585-6

  30. 30. Scheibe, F., Prüss, H., Mengel, A.M., et al. (2017) Bortezomib for Treatment of Therapy-Refractory Anti-NMDA Receptor Encephalitis. Neurology, 88, 366-370. https://doi.org/10.1212/WNL.0000000000003536

  31. 31. Behrendt, V., Krogias, C., Reinacher-Schick, A., et al. (2016) Bortezomib Treatment for Patients with Anti-N-Methyl- d-Aspartate Receptor Encephalitis. JAMA Neurology, 73, 1251-1253. https://doi.org/10.1001/jamaneurol.2016.2588

  32. 32. Wang, T., Wang, B., Zeng, Z., et al. (2021) Efficacy and Safety of Bortezomib in Rituximab-Resistant Anti-N-Methyl- d-Aspartate Receptor (Anti-NMDAR) Encephalitis as Well as the Clinical Characteristics: An Observational Study. Journal of Neuroimmunology, 354, Article ID: 577527. https://doi.org/10.1016/j.jneuroim.2021.577527

  33. 33. Govil-Dalela, T., Datta, I. and Williams, M. (2021) Refractory NMDA-Receptor Encephalitis in a Teenager: A Novel Use of Bortezomib. Journal of Neuroimmunology, 355, Article ID: 577565. https://doi.org/10.1016/j.jneuroim.2021.577565

  34. 34. Shin, Y.W., Lee, S.T., Kim, T.J., et al. (2018) Bortezomib Treatment for Severe Refractory Anti-NMDA Receptor Encephalitis. Annals of Clinical and Translational Neurology, 5, 598-605. https://doi.org/10.1002/acn3.557

  35. 35. Dinoto, A., Cheli, M., Bratina, A., Sartori, A. and Manganotti, P. (2021) Bortezomib in Anti-N-Methyl-d-Aspartate- Receptor (NMDA-R) Encephalitis: A Systematic Review. Journal of Neuroimmunology, 356, Article ID: 577586. https://doi.org/10.1016/j.jneuroim.2021.577586

  36. 36. Lokhorst, H.M., Plesner, T., Laubach, J.P., et al. (2015) Tar-geting CD38 with Daratumumab Monotherapy in Multiple Myeloma. New England Journal of Medicine, 373, 1207-1219. https://doi.org/10.1056/NEJMoa1506348

  37. 37. Vercruyssen, M., El Hachem, G. and Maerevoet, M. (2018) The Daratumumab Crosses the Blood Brain Barrier. Clinical Lymphoma, Myeloma and Leukemia, 18, S289. https://doi.org/10.1016/j.clml.2018.07.229

  38. 38. Ratuszny, D., Skripuletz, T., Wegner, F., et al. (2020) Case Report: Daratumumab in a Patient with Severe Refractory Anti-NMDA Receptor Encephalitis. Frontiers in Neurology, 11, Arti-cle 602102. https://doi.org/10.3389/fneur.2020.602102

  39. 39. Lazzarin, S.M., Vabanesi, M., Cecchetti, G., et al. (2020) Refrac-tory Anti-NMDAR Encephalitis Successfully Treated with Bortezomib and Associated Movements Disorders Controlled with Tramadol: A Case Report with Literature Review. Journal of Neurology, 267, 2462-2468. https://doi.org/10.1007/s00415-020-09988-w

  40. 40. Scheibe, F., Ostendorf, L., Prüss, H., et al. (2022) Daratu-mumab for Treatment-Refractory Antibody-Mediated Diseases in Neurology. European Journal of Neurology, 29, 1847-1854. https://doi.org/10.1111/ene.15266

  41. 41. Berg, S.L. and Chamberlain, M.C. (2003) Systemic Chemo-therapy, Intrathecal Chemotherapy, and Symptom Management in the Treatment of Leptomeningeal Metastasis. Current Oncology Reports, 5, 29-40. https://doi.org/10.1007/s11912-003-0084-9

  42. 42. Tatencloux, S., Chretien, P., Rogemond, V., et al. (2015) In-trathecal Treatment of Anti-N-Methyl-d-Aspartate Receptor Encephalitis in Children. Developmental Medicine and Child Neurology, 57, 95-99. https://doi.org/10.1111/dmcn.12545

  43. 43. Wang, D., Wu, Y., Ji, Z., et al. (2020) A Refractory Anti-NMDA Re-ceptor Encephalitis Successfully Treated by Bilateral Salpingo-Oophorectomy and Intrathecal Injection of Methotrexate and Dexamethasone: A Case Report. Journal of International Medical Research, 48, No. 10. https://doi.org/10.1177/0300060520925666

  44. 44. Eaton, J.E., Kleinholz-Owens, P., Sriram, S. and Pawate, S. (2021) Intrathecal Methotrexate—Another Tool for the Treatment of Refractory Autoimmune Encephalitis-Single Institution Cohort and Literature Review. Journal of the Neurological Sciences, 431, Article ID: 120042. https://doi.org/10.1016/j.jns.2021.120042

  45. 45. Liba, Z., Sebronova, V., Komarek, V., Sediva, A. and Sedlacek, P. (2013) Prevalence and Treatment of Anti-NMDA Receptor Encephalitis. The Lancet Neurology, 12, 424-425. https://doi.org/10.1016/S1474-4422(13)70070-X

  46. 46. Yang, X., Zhu, H., Ren, H., et al. (2018) Utility and Safety of Intrathecal Methotrexate Treatment in Severe Anti-N-Methyl-D-Aspartate Receptor Encephalitis: A Pilot Study. Chi-nese Medical Journal, 131, 156-160. https://doi.org/10.4103/0366-6999.222327

  47. 47. Bhojwani, D., Sabin, N.D., Howard, S.C., et al. (2014) Metho-trexate-Induced Neurotoxicity and Leukoencephalopathy in Childhood Acute Lymphoblastic Leukemia. Journal of Clini-cal Oncology, 32, 949-959. https://doi.org/10.1200/JCO.2013.53.0808

  48. 48. Polman, C.H., O’Connor, P.W., Havrdova, E., et al. (2006) A Randomized, Placebo-Controlled Trial of Natalizumab for Relapsing Multiple Sclerosis. The New England Journal of Medicine, 354, 899-910. https://doi.org/10.1056/NEJMoa044397

  49. 49. Hottinger, A.F., de Micheli, R., Guido, V., Karampera, A., et al. (2018) Natalizumab May Control Immune Checkpoint Inhibitor-Induced Limbic Encephalitis. Neurology Neuroim-munology & Neuroinflammation, 5, e439. https://doi.org/10.1212/NXI.0000000000000439

  50. 50. Basin, S., Perrin, J., Michot, J.M., Lambotte, O. and Cauquil, C. (2021) Severe Anti-PD1-Related Meningoencephalomyelitis Successfully Treated with Anti-Integrin α4 Therapy. Eu-ropean Journal of Cancer, 145, 230-233. https://doi.org/10.1016/j.ejca.2020.12.014

  51. 51. Bastiaansen, A., de Jongste, A., de Bruijn, M., et al. (2021) Phase II Trial of Natalizumab for the Treatment of Anti-Hu Associated Paraneoplastic Neurological Syndromes. Neu-ro-Oncology Advances, 3, vdab145. https://doi.org/10.1093/noajnl/vdab145

  52. 52. Blackburn, K.M., Denney, D.A., Hopkins, S.C. and Vernino S.A., (2022) Low Recruitment in a Double-Blind, Placebo-Controlled Trial of Ocrelizumab for Autoimmune Encephalitis: A Case Series and Review of Lessons Learned. Neurology and Therapy, 11, 893-903. https://doi.org/10.1007/s40120-022-00327-x

  53. 53. Dubey, D., Britton, J., McKeon, A., et al. (2020) Randomized Placebo-Controlled Trial of Intravenous Immunoglobulin in Autoimmune LGI1/CASPR2 Epilepsy. Annals of Neurology, 87, 313-323. https://doi.org/10.1002/ana.25655

  54. 54. Wong, K.H., Cudkowicz, M., Singleton, J., et al. (2022) The ExTINGUISH Trial: A Phase-2B Randomized Placebo-Controlled Trial of Inebilizumab in Anti-NMDA Receptor En-cephalitis. Neuorology, 99, s39.

  55. 55. Wickel, J., Chung, H., Platzer, S., et al. (2020) Generate-Boost: Study Protocol for a Prospective, Multicenter, Randomized Controlled, Double-Blinded Phase II Trial to Evaluate Efficacy and Safety of Bortezomib in Patients with Severe Autoimmune Encephalitis. Current Controlled Trials in Cardiovascular Medicine, 21, Article No. 625. https://doi.org/10.1186/s13063-020-04516-7

期刊菜单