Advances in Clinical Medicine
Vol. 12  No. 05 ( 2022 ), Article ID: 51989 , 6 pages
10.12677/ACM.2022.125684

ELABELA/APJ与妊娠期疾病的关系

赵晨园,孙方圆*

大连医科大学,辽宁 大连

收稿日期:2022年4月27日;录用日期:2022年5月21日;发布日期:2022年5月31日

摘要

ELABELA是最近发现的一种与心脏发育相关的肽,与APELIN共同受体为APLNR。近年来发现,ELABELA及其受体除在心血管疾病等方面具有生理调节作用外,其还在胚胎和心血管发育、子痫前期、妊娠期糖尿病及卵巢癌等方面,也具有重要的病理生理学功能,由ELABELA、Apelin及Apelin受体组成的ELA-Apelin-APJ系统(Apelinergic系统)广泛表达于机体不同器官组织,参与许多病理生理过程中。因此本文将简述ELABELA及其在子痫前期和妊娠期糖尿病的研究进展做一综述,以期为临床上治疗提供新的途径和方法。

关键词

ELABELA,APJ,子痫前期,妊娠期糖尿病

Relationship between ELABELA/APJ and Pregnancy Disorders

Chenyuan Zhao, Fangyuan Sun*

Qingdao Municipal Hospital, Dalian Liaoning

Received: Apr. 27th, 2022; accepted: May 21st, 2022; published: May 31st, 2022

ABSTRACT

ELABELA is a recently discovered peptide related to cardiac development, and its co-receptor with APELIN is APLNR. In recent years, ELABELA and its receptors have been found to have important pathophysiological functions in embryonic and cardiovascular development, preeclampsia, gestational diabetes, and ovarian cancer, in addition to their physiological regulatory roles in cardiovascular diseases. The ELA-Apelin-APJ system (Apelinergic system) composed of ELABELA, Apelin and Apelin receptors is widely expressed in different organs and tissues of the body and participates in many pathophysiological processes. Therefore, this article will briefly describe ELABELA and its research progress in preeclampsia and gestational diabetes mellitus, in order to provide new approaches and methods for clinical treatment.

Keywords:ELABELA, APJ, Preeclampsia, Gestational Diabetes

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

ELABELA (ELA;也称为Apela和Toddler)是最近发现的APELIN受体(APLNR,也称为APJ)的两种内源性肽配体(APELIN和ELA)中的一种配体 [1]。ELA与Apelin具有紧密的联系,二者共享相同的受体,并产生着相类似的生物学作用,ELA是一种分泌肽,最初在胚胎干细胞中检测到,位于高尔基体,其全长由54个氨基酸组成,被认为是APJ的新型内源性配体。主要表达于胚胎干细胞(ESC)、多能干细胞、肾、前列腺及血管内皮细胞。ELA可以加工成不同的活性肽,每一种都与APLNR结合 [1]。ELA诱导的信号传导在多种生物过程中发挥着至关重要的作用,包括通过减少怀孕期间发生先兆子痫的机会来形成胚胎心血管系统。在怀孕期间,ELA参与葡萄糖代谢 [2]。APJ为G蛋白偶联受体,由380个氨基酸构成,虽然不与血管紧张素II相结合,但是与血管紧张素II的1型受体具有一定的同源性及跨膜结构的序列相似性 [3]。APJ和ELABELA在胚胎发育初期就表达,而在原肠胚形成结束时观察到Apelin的表达 [4] [5] [6]。ELA-APJ受体轴的激活发挥了广泛的生理作用,包括降压反应、正性肌力作用、利尿、抗炎、抗纤维化和抗重塑。ELA-APJ轴可用于调节体液稳态、参与细胞分化、细胞凋亡和血管的生成与舒张 [7]。ELA-APJ在早期胚胎发育过程中通过调节中内胚层细胞的迁移和分化在血管发生中发挥重要作用,还参与调节循环系统及胚胎发育 [8]。其他研究表明,Apelin-APJ与血管生成密切相关,因为它对胚胎后期发育过程中的内皮细胞增殖和组装有重要影响 [9]。因此,一个由ELA、Apelin及APJ组成的apelinergic系统具有强心、利尿、降压剂、保护心肾以及调节胚胎发育的作用。

怀孕是一个动态的时期,包括许多对胎儿正常发育至关重要的过程。从受精开始,通过胚胎植入子宫壁,再到胎盘等独特结构的发育,最后是分娩本身,女性的身体发生了许多变化。它们受细胞水平上发生的许多过程的制约,例如增殖、凋亡、血管生成以及激素分泌 [10]。最近的研究表明,这些过程中的无数异常均可导致妊娠病理。包括先兆子痫(preeclampsia,下称PE)、宫内生长受限(intrauterine growth retardation,下称IUGR)或妊娠期糖尿病(gestational diabetes,下称GDM) [11]。ELA参与胚胎心血管系统的形成和胎盘的早期发育,在子痫前期的发病中发挥关键作用。越来越多的研究关注到ELA/APJ在妊娠相关疾病的作用,因此本文将就ELA/APJ与子痫前期及妊娠期糖尿病的关系进行阐述,以致力于利用ELA/APJ对子痫前期及妊娠期糖尿病的早期诊断进行指导。

2. ELA与子痫前期

子痫前期(PE)是一种妊娠状况,占所有妊娠的5%~8%,如果不及时治疗,会增加胎儿和母体的发病率和死亡率。作为妊娠期最常见的并发症之一,PE也是导致胎儿和母亲发病的关键原因 [12]。其病因是多因素的,环境因素、健康和疾病状况、母体或胎儿营养不良是主要的原因 [13]。PE尚未被完全了解,仍然有许多研究在寻找该疾病的机制、生物标志物和治疗方案。早发性PE主要与子宫动脉的异常重塑有关,而晚发性PE是母体疾病而不是胎盘疾病,其潜在的病理生理学比早发性类型更多样化。其中后一种形式的PE更为常见,占所有病例的90% [14] [15] [16]。ELA在PE发病机制中作为独立的血管生成因子起作用。

APELIN-APJ与血管生成密切相关,因为胎盘灌注是通过在妊娠早期对子宫螺旋动脉进行充分的重塑,导致绒毛外滋养细胞侵入而实现的 [17]。在既往研究中,母体螺旋动脉中滋养层细胞增殖不足被认为会导致胎盘灌注受损 [18]。伴随胎盘低灌注和缺血性损伤的再灌注导致循环抗血管生成因子的释放,这些因子与母体血管功能障碍有关 [19]。它在胚胎发育晚期对内皮细胞增殖和组装有重要影响 [9]。此外,ELABELA-APJ在早期胚胎发育过程中通过调节中内胚层细胞的迁移和分化在血管发生中发挥重要作用。ELA可能对离体滋养层的增殖表现出抑制作用,增加其侵袭性,并且该作用并非通过与APJ的相互作用而发生 [17]。

ELA通过诱导MMP2和MMP9表达上调,参与HTR8/SVneo细胞中早发先兆子痫发病机制相关的侵袭和迁移 [20]。ELA在胚胎心血管系统和疾病的发育中起保护作用。ELA信号在心血管系统中广泛分布,参与胎儿心脏和血管的发育以及成人血管张力的调节。此外,ELA介导的信号传导参与改善细胞活力、迁移和管形成 [1]。Zhou等人。评估了PE和健康孕妇的母体血清、尿液和胎盘组织ELA水平。与对照组相比,晚发性PE的ELA水平显着降低 [18]。这一发现表明ELA可能在迟发性PE的发病机制中起主要作用。母体血液中ELA的水平,在妊娠期高血压患者的血液中,妊娠晚期较妊娠早期和中期升高;然而,ELA水平与妊娠任何阶段的PE均无显着相关性。在非孕妇中检测到ELA提示ELA不是妊娠特异性激素 [21]。然而,与非孕妇相比,孕妇的ELA水平升高可归因于胚胎和滋养细胞释放ELA。每个孕期的ELA水平都会增加,尽管这种增加并不显着 [22]。在他们的研究中,Deniz等人比较了PE组和健康对照组以及PE组和严重PE组之间的母体血清ELA、Apelin和NO水平 [23]。他们发现,与严重PE病例相比,PE组的平均母体血液ELA水平显着降低。该研究中ELA水平的降低可能与妊娠36周时血清样本收集较晚有关。

识别PE的高危患者以启动靶向治疗至关重要。Ho等人发现在ELA敲除小鼠中,被敲除的小鼠,不仅细胞增殖减少,合体滋养细胞分化受到延迟,更是出现胎盘血管化不良,迷宫变薄 [24]。胎盘ELA水平降低是PE和母体全身血管损伤的预测因素 [24]。外源性ELA给药可以通过其保护作用抑制血管紧张素转换酶系统来逆转破坏作用。

目前认为ELA在妊娠期间维持胎盘的正常发育上有重要的作用,其机制可能是通过刺激滋养细胞迁移和侵袭来促进胎盘形成,另外也可能是对母体内皮产生直接作用。ELA的血清学变化与外源性补充可能为PE的预测和治疗提供了一个新的思路 [25]。

3. ELA与妊娠期糖尿病的关系

妊娠期糖尿病(GDM)是妊娠期间最常见的代谢紊乱,对15%的孕妇产生影响 [26] [27]。目前其诊断标准已经在许多国家中普遍使用,并且大部分国家已经开始实施标准化的筛查程序。在可以及时诊断后,妊娠期糖尿病的危害程度逐渐显现出水面。妊娠期糖尿病包含代谢紊乱的各个方面,包括高血糖、高脂血症和高胰岛素血症,尽管其通过治疗可以受到有效的控制,且在分娩后通常会恢复如常,但是它不仅仅是一种短暂的妊娠期特异性病理 [28]。不论是短期影响,还是从长期角度看,其对孕妇及后代负面作用极大。孕妇血糖的控制水平与孕妇未来的产后血糖、胰岛功能的恢复情况均有不同程度的影响 [29],甚至是在分娩过程中产伤的程度也会不尽相同 [30],从而影响产后的生活质量水平。针对其后代,目前有学者针对母体血糖的波动情况与儿童大脑发育、自主神经系统的正常形成之间是否存在关联进行研究,以了解母体的代谢情况对胎儿神经元发育造成的影响 [28]。但是因为目前在全球范围内,关注GDM母子群体的数量仍然较少,故仍无明确的结果。随着目前学者们对于研究的不断深入,针对妊娠期糖尿病治疗方案也在不断更新,近年来甚至新兴出现了一日门诊管理模式。许多临床和实验证据表明,APLN/APJ (Apelin/Apelin受体)系统参与糖脂代谢 [9] [31] [32] [33]。

新的研究还表明,与对照相比,母体血清ELA下调,并与出生体重呈正相关 [34]。在最近的研究中,与对照组相比,在GDM患者中观察到更高的Apelin和更低的ELA水平 [35]。总体而言,研究还显示GDM妊娠期间Apelin/ELABELA水平发生显着变化。尽管与水平变化缺乏明确的关系 [36],但与健康妊娠相比,GDM中的apelinergic系统具有不同的参数。有趣的是,据观察,个体组织中的不同关系可能与Apelin的特定亚型直接相关。综上所述,Apelin/ELABELA系统似乎与GDM的病理生理机制有关,但需要进一步的临床证据和实验研究来阐明这些机制。

与妊娠中期的健康对照组相比,GDM患者的ELA水平显着降低 [2]。在糖尿病小鼠模型中,ELA与糖尿病肾功能不全有关 [37]。GDM和对照组之间ELA水平的比较可能提供ELA与GDM发病机制的直接联系。妊娠中期GDM患者ELA水平降低可能表明ELA分泌受损与GDM发病机制之间存在关联。且在孕中期,ELA的循环水平与健康对照组的FPG水平呈正相关,提示ELA可能与正常妊娠期孕妇的糖代谢有关。与孕中期相比,孕晚期健康组和GDM组的循环ELA水平显著降低。在小鼠研究中,ELA是一种妊娠相关激素,由发育中的孕体和胎盘分泌,在妊娠中期达到峰值 [24]。目前研究倾向于将ELA的较高表达视为增加心血管负担的生理需求以及在妊娠早期和中期妊娠伴随的心血管系统重建的需求。重要的是,人们普遍认为GDM会引起多种血管疾病 [38],我们研究中GDM组中较低水平的ELA可能是与GDM相关的血管系统受损的原因,这需要进一步的证据来阐明。

Elabela的发现解释了apelin基因敲除的小鼠与APJ基因敲除的小鼠在早期胚胎发育、表型和心血管疾病的发病机制上表现出显着的差异性。另外近些年来关于Elabela在胚胎发育和组织器官中发挥的重要作用的结论日益涌现出来。但是关于Elabela在不同病理生理事件中的具体分子机制和精确性功能了解甚少。因此,关于Elabela全面系统的生物学研究仍需继续推进。

基金项目

青岛市民生科技计划(Elabela对子痫前期发病的早期预测及其参与子痫前期发病的机制 项目编号:19-6-1-56-nsh)。

文章引用

赵晨园,孙方圆. ELABELA/APJ与妊娠期疾病的关系
Relationship between ELABELA/APJ and Pregnancy Disorders[J]. 临床医学进展, 2022, 12(05): 4723-4728. https://doi.org/10.12677/ACM.2022.125684

参考文献

  1. 1. Dagamajalu, S., Rex, D., Suchitha, G., et al. (2022) The Network Map of Elabela Signaling Pathway in Physiological and Pathological Conditions. Journal of Cell Communication and Signaling, 16, 145-154. https://doi.org/10.1007/s12079-021-00640-4

  2. 2. Guo, Y., Li, T., Liu, H., et al. (2020) Circulating Levels of Ela-bela and Apelin in the Second and Third Trimesters of Pregnancies with Gestational Diabetes Mellitus. Gynecological Endocrinology, 36, 890-894. https://doi.org/10.1080/09513590.2020.1739264

  3. 3. 宋佳玮, 陈临溪, 钟久昌. Elabela-Apelin-APJ系统在血管重构稳态与血管疾病中的调控作用及相关药物研发进展[J]. 药学进展, 2020, 44(12): 894-905.

  4. 4. Chng, S., Ho, L., Tian, J., et al. (2013) ELABELA: A Hormone Essential for Heart Development Signals via the Apelin Receptor. De-velopmental Cell, 27, 672-680. https://doi.org/10.1016/j.devcel.2013.11.002

  5. 5. Devic, E., Paquereau, L., Vernier, P., et al. (1996) Expression of a New G Protein-Coupled Receptor X-msr Is Associated with an Endothelial Lineage in Xenopus laevis. Mechanisms of Development, 59, 129-140. https://doi.org/10.1016/0925-4773(96)00585-0

  6. 6. Zeng, X., Wilm, T., Sepich, D., et al. (2007) Apelin and Its Receptor Control Heart Field Formation during Zebrafish Gastrulation. Developmental Cell, 12, 391-402. https://doi.org/10.1016/j.devcel.2007.01.011

  7. 7. Ma, Z., Song, J., Martin, S., et al. (2021) The Elabela-APJ Axis: A Promising Therapeutic Target for Heart Failure. Heart Failure Reviews, 26, 1249-1258. https://doi.org/10.1007/s10741-020-09957-5

  8. 8. Zhong, J., Zhang, Z., Wang, W., et al. (2017) Targeting the Ape-lin Pathway as a Novel Therapeutic Approach for Cardiovascular Diseases. Biochimica et Biophysica acta Molecular Ba-sis of Disease, 1863, 1942-1950. https://doi.org/10.1016/j.bbadis.2016.11.007

  9. 9. Eberlé, D., Marousez, L., Hanssens, S., et al. (2019) Elabela and Apelin Actions in Healthy and Pathological Pregnancies. Cytokine & Growth Factor Reviews, 46, 45-53. https://doi.org/10.1016/j.cytogfr.2019.03.003

  10. 10. Erlebacher, A., Fisher, S. (2017) Baby’s First Organ. Scientific American, 317, 46-53. https://doi.org/10.1038/scientificamerican1017-46

  11. 11. Tsai, K., Tullis, B., Jensen, T., et al. (2021) Differential Ex-pression of mTOR Related Molecules in the Placenta from Gestational Diabetes Mellitus (GDM), Intrauterine Growth Restriction (IUGR) and Preeclampsia Patients. Reproductive Biology, 21, Article ID: 100503. https://doi.org/10.1016/j.repbio.2021.100503

  12. 12. Tomimatsu, T., Mimura, K., Endo, M., et al. (2017) Pathophysi-ology of Preeclampsia: An Angiogenic Imbalance and Long-Lasting Systemic Vascular Dysfunction. Hypertension re-search, 40, 305-310. https://doi.org/10.1038/hr.2016.152

  13. 13. Paauw, N., Luijken, K., Franx, A., et al. (2016) Long-Term Renal and Cardiovascular Risk after Preeclampsia: Towards Screening and Prevention. Clinical science, 130, 239-246. https://doi.org/10.1042/CS20150567

  14. 14. Brosens, I., Puttemans, P., Benagiano, G. (2019) Placental Bed Research: I. The Placental Bed: From Spiral Arteries Remodeling to the Great Obstetrical Syndromes. American Journal of Obstet-rics and Gynecology, 221, 437-456. https://doi.org/10.1016/j.ajog.2019.05.044

  15. 15. Burton, G., Redman, C., Roberts, J., et al. (2019) Pre-Eclampsia: Pathophysiology and Clinical Implications. BMJ, 366, Article No. l2381. https://doi.org/10.1136/bmj.l2381

  16. 16. Valensise, H., Vasapollo, B., Gagliardi, G., et al. (2008) Early and Late Preeclampsia: Two Different Maternal Hemodynamic States in the Latent Phase of the Disease. Hypertension, 52, 873-880. https://doi.org/10.1161/HYPERTENSIONAHA.108.117358

  17. 17. Georgiadou, D., Boussata, S., Ranzijn, W., et al. (2019) Peptide Hormone ELABELA Enhances Extravillous trophoblast Differentiation, but Placenta Is Not the Major Source of Circulating ELABELA in Pregnancy. Scientific Reports, 9, Article No. 19077. https://doi.org/10.1038/s41598-019-55650-5

  18. 18. Zhou, L., Sun, H., Cheng, R., et al. (2019) ELABELA, as a Po-tential Diagnostic Biomarker of Preeclampsia, Regulates Abnormally Shallow Placentation via APJ. American Journal of Physiology: Endocrinology and Metabolism, 316, E773-E781. https://doi.org/10.1152/ajpendo.00383.2018

  19. 19. Ozgen, G., Aydin, G. and Ayvaci, H. (2021) Predictive Role of First-Trimester ELABELA Levels for Late-Onset Preeclampsia. Journal of the College of Physicians and Surgeons Paki-stan, 31, 916-920. https://doi.org/10.29271/jcpsp.2021.08.916

  20. 20. Wang, L., Zhang, Y., Qu, H., et al. (2019) Reduced ELABELA Expression Attenuates Trophoblast Invasion through the PI3K/AKT/mTOR Pathway in Early Onset Preeclampsia. Pla-centa, 87, 38-45. https://doi.org/10.1016/j.placenta.2019.08.077

  21. 21. Yang, P., Read, C., Kuc, R., et al. (2017) Elabela/Toddler Is an Endogenous Agonist of the Apelin APJ Receptor in the Adult Cardiovascular System, and Exogenous Administration of the Peptide Compensates for the Downregulation of Its Expression in Pulmonary Arterial Hypertension. Circulation, 135, 1160-1173. https://doi.org/10.1161/CIRCULATIONAHA.116.023218

  22. 22. Huang, R., Zhu, J., Zhang, L., et al. (2019) Is ELABELA a Reliable Biomarker for Hypertensive Disorders Of Pregnancy? Pregnancy Hypertension, 17, 226-232. https://doi.org/10.1016/j.preghy.2019.06.007

  23. 23. Deniz, R., Baykus, Y., Ustebay, S., et al. (2019) Evaluation of Elabela, Apelin and Nitric Oxide Findings in Maternal Blood of Normal Pregnant Women, Pregnant Women with Pre-Eclampsia, Severe Pre-Eclampsia and Umbilical Arteries and Venules of Newborns. Journal of Obstetrics and Gy-naecology, 39, 907-912. https://doi.org/10.1080/01443615.2019.1572727

  24. 24. Ho, L., Van Dijk, M., Chye, S., et al. (2017) ELABELA Deficiency Promotes Preeclampsia and Cardiovascular Malformations in Mice. Science, 357, 707-713. https://doi.org/10.1126/science.aam6607

  25. 25. 张琼芳. Elabela在子痫前期发病中的作用及其潜在血压调控机制[D]: [硕士学位论文]. 天津: 天津医科大学, 2020.

  26. 26. Johns, E., Denison, F., Norman, J., et al. (2018) Gestational Diabetes Mellitus: Mechanisms, Treatment, and Complications. Trends in Endocrinology and Metabolism, 29, 743-754. https://doi.org/10.1016/j.tem.2018.09.004

  27. 27. Guariguata, L., Linnenkamp, U., Beagley, J., et al. (2014) Global Estimates of the Prevalence of Hyperglycaemia in Pregnancy. Diabetes Research and Clinical Practice, 103, 176-185. https://doi.org/10.1016/j.diabres.2013.11.003

  28. 28. Fritsche, L., Hummel, J., Wagner, R., et al. (2022) The German Gestational Diabetes Study (PREG), a Prospective Multicentre Cohort Study: Rationale, Methodology and Design. BMJ Open, 12, Article ID: e058268. https://doi.org/10.1136/bmjopen-2021-058268

  29. 29. Wang, W., Cao, Y., Cai, N., et al. (2022) Influence of One-Day Diabetes Mellitus Clinic Management on Blood Glucose Control and Prognosis in Patients with Gestational Diabetes Mellitus. Gynecological endocrinology, 35, 324-328. https://doi.org/10.1080/09513590.2022.2040474

  30. 30. Peltokorpi, A., Irina, L., Liisa, V., et al. (2022) Preconceptu-al Leptin Levels in Gestational Diabetes and Hypertensive Pregnancy. Hypertension in Pregnancy, 41, 70-77. https://doi.org/10.1080/10641955.2022.2033763

  31. 31. Bellos, I., Fitrou, G., Pergialiotis, V., et al. (2019) Serum Levels of Adipokines in Gestational Diabetes: A Systematic Review. Journal of Endocrinological Investigation, 42, 621-631. https://doi.org/10.1007/s40618-018-0973-2

  32. 32. Bao, W., Baecker, A., Song, Y., et al. (2015) Adipokine Levels during the First or Early Second Trimester of Pregnancy and Subsequent Risk of Gestational Diabetes Mellitus: A Systematic Review. Metabolism, 64, 756-764. https://doi.org/10.1016/j.metabol.2015.01.013

  33. 33. Elsehmawy, A., El-Toukhy, S., Seliem, N., et al. (2019) Apelin and Chemerin as Promising Adipokines in Children with Type 1 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity, 12, 383-389. https://doi.org/10.2147/DMSO.S189264

  34. 34. Behram, M., Oğlak, S. and Dağ, İ. (2021) Circulating Levels of Ela-bela in Pregnant Women Complicated with Intrauterine Growth Restriction. Journal of Gynecology Obstetrics and Hu-man Reproduction, 50, Article ID: 102127. https://doi.org/10.1016/j.jogoh.2021.102127

  35. 35. Dawid, M., Mlyczyńska, E., Jurek, M., et al. (2021) Apelin, APJ, and ELABELA: Role in Placental Function, Pregnancy, and Foetal Development—An Overview. Cells, 11, Article No. 99. https://doi.org/10.3390/cells11010099

  36. 36. Telejko, B., Kuzmicki, M., Wawrusiewicz-Kurylonek, N., et al. (2010) Plasma Apelin Levels and Apelin/APJ mRNA Expression in Patients with Gestational Diabetes Mellitus. Diabe-tes Research and Clinical Practice, 87, 176-183. https://doi.org/10.1016/j.diabres.2009.10.018

  37. 37. Zhang, Y., Wang, Y., Luo, M., et al. (2019) Elabela Protects against Podocyte Injury in Mice with Streptozocin-induced Diabetes by Associating with the PI3K/Akt/mTOR Pathway. Peptides, 114, 29-37. https://doi.org/10.1016/j.peptides.2019.04.005

  38. 38. Sáez, T., Salsoso, R., Leiva, A., et al. (2018) Human Umbilical Vein Endothelium-Derived Exosomes Play a Role in Foetoplacental Endothelial Dysfunction in Gestational Diabetes Mellitus. Biochimica et Biophysica Acta-Molecular Basis of Disease, 1864, 499-508. https://doi.org/10.1016/j.bbadis.2017.11.010

  39. NOTES

    *通讯作者。

期刊菜单