Advances in Clinical Medicine
Vol. 14  No. 05 ( 2024 ), Article ID: 86963 , 7 pages
10.12677/acm.2024.1451534

姜黄素介导TLR4/NF-κB信号通路对重症急性胰腺炎的作用及机制研究

李家涛1,杜敏2,李畅2,姜英健2,王江2,张佃良2*

1青岛大学医学部,山东 青岛

2青岛市市立医院胃肠外科,山东 青岛

收稿日期:2024年4月19日;录用日期:2024年5月12日;发布日期:2024年5月20日

摘要

目的:观察姜黄素(CUR)对重症急性胰腺炎(SAP)的影响,并基于Toll样受体4 (TLR4)/核因子κB (NF-κB)信号转导通路探究其可能的作用机制。方法:选取40只成年雄性Sprague-Dawley大鼠随机把其分为4组,分别为:假手术组(SO)、重症急性胰腺炎组(SAP)、SAP + CUR预处理组(SAP + CUR)、SAP + CUR预处理 + TLR4受体激活剂脂多糖(LPS)组(SAP + CUR + LPS)。SAP + CUR组、SAP + CUR + LPS组的大鼠分别CUR (200 mg/kg)灌胃,SAP + CUR + LPS组在CUR灌胃干预前30 min腹腔注射TLR4受体激活剂LPS (0.1 mg/kg),SO组和SAP组分别给予相同剂量的无菌生理盐水溶液灌胃及腹腔内注射。各组均给药1次/天,连续4周。采用胆胰管逆行注射5%牛磺胆酸钠的方法建立SAP大鼠模型,术后24 h采集胰腺组织以及下腔静脉血液以供后续分析。使用自动生化分析仪以检测大鼠血清中淀粉酶(AMY)、脂肪酶(LIPA)的活性水平;酶联免疫吸附试验(ELISA)检测血清肿瘤坏死因子-α (TNF-α)、白细胞介素6 (IL-6)的表达水平;苏木素-伊红(HE)染色用以观察胰腺的组织病理变化;实时荧光定量逆转录聚合酶链式反应(RT-qPCR)测定胰腺组织中TLR4、NF-κB的mRNA表达水平。结果:相较于SO组,SAP组大鼠的血清中AMY、LIPA、TNF-α、IL-6的表达水平显著升高(均P < 0.05);表现出较严重的胰腺病理损伤;胰腺组织中TLR4/NF-κB信号通路相应mRNA水平显著升高(均P < 0.05)。相反,SAP + CUR组与SAP组相比AMY、LIPA、TNF-α、IL-6的表达水平显著降低(均P < 0.05);大鼠胰腺组织表现出较轻的病理损伤;胰腺组织中TLR4/NF-κB信号通路相应mRNA水平显著降低(均P < 0.05)。而与SAP + CUR组相比,LPS进一步处理后则能够显著逆转CUR对SAP大鼠各检测指标的调控作用(均P < 0.05)。结论:CUR能够通过下调TLR4/NF-κB信号传导通路抑制炎症反应减轻SAP相关损伤。

关键词

重症急性胰腺炎,姜黄素,TLR4/NF-κB,炎症因子

Effect and Mechanism of Curcumin-Mediated TLR4/NF-κB Signaling Pathway on Severe Acute Pancreatitis

Jiatao Li1, Min Du2, Chang Li2, Yingjian Jiang2, Jiang Wang2, Dianliang Zhang2*

1Medical College, Qingdao University, Qingdao Shandong

2Department of Gastrointestinal Surgery, Qingdao Municipal Hospital, Qingdao Shandong

Received: Apr. 19th, 2024; accepted: May 12th, 2024; published: May 20th, 2024

ABSTRACT

Objective: To observe the effects of curcumin (CUR) on severe acute pancreatitis (SAP) and explore its potential mechanism of action based on the Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB) signaling pathway. Methods: Forty adult male Sprague-Dawley rats were divided into four groups: sham operation group (SO), severe acute pancreatitis group (SAP), SAP + CUR pretreatment group (SAP + CUR), SAP + CUR pretreatment + TLR4 receptor agonist lipopolysaccharide (LPS) group (SAP + CUR + LPS). The rats in the SAP + CUR group and SAP + CUR + LPS group were administered CUR (200 mg/kg) by gavage. The SAP + CUR + LPS group was injected intraperitoneally with the TLR4 receptor agonist LPS (0.1 mg/kg) 30 minutes before CUR gavage intervention. The SO group and SAP group were given the same dose of 0.9% sodium chloride solution by gavage and intraperitoneal injection, respectively. All groups were administered once a day for 4 consecutive weeks. The SAP rat model was established by retrograde injection of 5% sodium taurocholate into the pancreatic duct, and pancreatic tissue and inferior vena cava blood were collected 24 hours postoperatively for subsequent analysis. An automatic biochemical analyzer was used to detect the activity levels of amylase (AMY) and lipase (LIPA) in rat serum; enzyme-linked immunosorbent assay (ELISA) was used to detect the expression levels of serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6); hematoxylin-eosin (HE) staining was used to observe the histopathological changes of the pancreas and perform pathological damage scoring; real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to determine the changes in mRNA expression levels of TLR4 and NF-κB in pancreatic tissue. Results: Compared with the SO group, the expression levels of AMY, LIPA, TNF-α, and IL-6 in the serum of the SAP group were significantly increased (all P < 0.05); the rats showed more severe pancreatic pathological damage and significantly increased pathological scores (all P < 0.05); the mRNA levels of the TLR4/NF-κB signaling pathway in pancreatic tissue were significantly increased (all P < 0.05). In contrast, compared with the SAP group, the expression levels of AMY, LIPA, TNF-α, and IL-6 in the SAP + CUR group were significantly decreased (all P < 0.05); the rats showed less severe pathological damage and lower pathological scores in the pancreatic tissue (all P < 0.05); the mRNA levels of the TLR4/NF-κB signaling pathway in pancreatic tissue were significantly decreased (all P < 0.05). Compared with the SAP + CUR group, further treatment with LPS was able to significantly reverse the regulatory effects of CUR on the measured indicators in SAP rats (all P < 0.05). Conclusion: CUR can inhibit the inflammatory response and alleviate SAP-related damage by down regulating the TLR4/NF-κB signaling pathway.

Keywords:Severe Acute Pancreatitis, Curcumin, TLR4/NF-κB, Inflammatory Factors

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

重症急性胰腺炎(Severe acute pancreatitis, SAP)是以持续性器官衰竭为特征的临床急腹症,具有起病急、进展快、预后差的特点 [1] 。然而对SAP的具体致病机制仍不清楚,因此寻求能够有效改善SAP的药物及明确SAP中胰腺损伤机制对于提高SAP的临床疗效尤为重要。

SAP中炎症的级联反应导致的炎症介质的过度释放是引起多器官衰竭的主要因素 [2] ,因此抗炎剂可能具有治疗SAP胰腺损伤的潜力。姜黄素(Curcumin, CUR)是从姜科、天南星科等植物根茎中提取的天然酚类化合物 [3] ,能够抑制炎症调节因子NF-κB的表达,减少中性粒细胞浸润,对急慢性炎症均有抑制能力 [4] 。Toll样受体4 (toll⁃like receptor4, TLR4)激活其下游参与炎症调节的核心转录因子——核因子κB (nuclear factor-κB, NF-κB),进而触发炎症的级联反应,造成大量炎症因子如IL-6、IL-1β、TNF-α的瀑布式释放 [5] 。TLR4/NF-κB信号通路是经典的炎症反应通路 [6] ,而TLR4/NF-κB信号通路是否参与CUR对SAP的影响尚不清楚。因此,我们推测CUR可能介导TLR4/NF-κB信号通路抑制炎症反应进而缓解SAP相关损伤。

2. 材料和方法

2.1. 动物和模型

于青岛大学动物中心选购40只健康清洁级雄性Sprague-Dawley大鼠,体重在250~300 g之间,约8周龄。实验开始前,所有大鼠喂养于暗/光循环各12 h,室温20~24℃之间,有充足食水的实验动物房中适应性饲养2周。实验中涉及动物的程序均获得青岛大学动物实验委员会的批准,并严格遵守了《实验动物管理条例》中的规定。将40只健康的雄性大鼠随机分配到4个组别中,具体为:假手术组(SO)、重症急性胰腺炎组(SAP)、SAP + CUR预处理组(SAP + CUR)、SAP + CUR预处理 + TLR4受体激活剂LPS组(SAP + CUR + LPS),每组10只。

通过灌胃的方式对SAP + CUR组、SAP + CUR + LPS组的大鼠按照200 mg/kg剂量给予CUR预处理,SAP + CUR + LPS组大鼠在CUR灌胃干预前30 min腹腔注射TLR4受体激活剂LPS (0.1 mg/kg) [7] 。SO组和SAP组按照灌胃及腹腔注射的方法给予等体积无菌生理盐水。各组均连续给药4周,每天1次。大鼠术前禁食12 h后称重,用3%戊巴比妥钠(20 mg/kg)腹腔注射麻醉。参照文献方法制备 SAP模型 [8] :腹壁切开2 cm即可进入腹膜腔,在肝门附近临时夹闭胆胰管,然后用导管穿刺十二指肠,向胆胰管内缓慢注射5%牛磺胆酸钠(1.5 mL/kg)诱导SAP。SO组大鼠接受了与SAP组相同的手术操作,但胰胆管内注入等体积的无菌生理盐水,手术结束,各组所有大鼠均皮下注射无菌生理盐水(0.2 mL/kg),以补充缺失的液体。

2.2. 标本收集

建模术后24 h,对各组大鼠使用上述方法再次麻醉 [9] 。使用静脉采血针穿刺大鼠下腔静脉采取血液样本,血液样本在室温下静置2 h,然后在高速离心机中以3000 r/min、4℃下离心15 min以获得血清,并存储于−20℃冰箱供后续血清学分析。分离并获取胰腺组织,部分于4%多聚甲醛中固定并常温保存,以备制作组织切片;剩余组织直接保存于−80℃低温冰箱中,供后续检测分析。

2.3. 血清分析

采用自动生化分析仪检测待测血清中AMY和LIPA活性水平。

采用Elisa标准诊断试剂盒并严格参照产品说明书,按步骤操作后采用酶标仪检测在450 nm处各组血清TNF-α、IL-6的光密度值(OD值),绘制检测样品标准曲线后换算相应浓度。

2.4. 苏木精–伊红染色观察胰腺病理变化

将4%多聚甲醛固定好的胰腺组织脱水并包埋于石蜡。石蜡标本切片,脱蜡至水。使用苏木精浸染,随后进行伊红染色浸染,二甲苯及无水乙醇脱水,中性树胶封片。在普通光镜下观察胰腺病理变化。

2.5. RT-qPCR分析

RT-qPCR方法检测胰腺组织中TLR4、NF-κB mRNA的表达水平变化。根据制造商的说明,使用TRIzol试剂从胰腺组织中提取总RNA,并使用寡核苷酸(dT)引物(SunShine Biotechnology,南京,中国)和M-MLV逆转录酶将其逆转录成互补DNA。制备20 µL PCR反应混合物,其中含有2 µL cDNA,10 µL Power SYBR-Green PCR Supermix (Bio-Rad Laboratories, Inc., Hercules, CA, USA),每种引物各1 µL,加DEPC水至20 µL。使用SYBR-Green I染料(Bio-Rad Laboratories, Inc)在以下反应条件下进行RT-qPCR分析:95℃下1分钟,95℃下40个循环15秒,60℃下1分钟。使用的引物如下:TLR4引物:正向:ATGCCCCGCTTTCAGCTTT反向:TGCCAGAGCGGCTACTCAA;p-NF-κBp65引物:正向:TTAGCCAGCGCATCCAGACC反向:TTGAGCTCGGCAGTGTTGG;ACTIN引物:正向:TGAACGGGAAGCTCACTGG反向:TCCACCACCCTGTTGCTGTA。采用比较2-ΔΔCt法分析相对基因表达水平,以ACTIN为内阳性对照。

2.6. 统计分析

所有数据均来自三个及以上独立实验,连续数据以均数 ± 标准差表示。使用GraphPad Prism 11.0 (GraphPad Prism Software, CA, USA)进行数据分析。组间差异采用方差分析进行统计学分析,认为P < 0.05有统计学意义。

3. 结果

3.1. 各组大鼠血清中TNF-α、IL-6水平比较

SAP组与SO组相比血清TNF-α、IL-6的水平显著增高(P < 0.05)。经过CUR预处理之后,SAP + CUR组TNF-α、IL-6水平较SAP组显著降低(P < 0.05)。与SAP + CUR组相比,SAP + CUR + LPS组血清中TNF-α、IL-6水平显著升高(P < 0.05),见表1

Table 1. Comparison of TNF-α and IL-6 levels of rats in each group (n = 10, x ¯ ± s )

表1. 各组大鼠血清TNF-α、IL-6水平比较(n = 10, x ¯ ± s )

注:TNF-α示肿瘤坏死因子-α;IL-6示白细胞介素-6;SO组示假手术组;SAP组示重症急性胰腺炎组;SAP + CUR 组示姜黄素预处理组;SAP + CUR + LPS 组示TLR4受体激活剂组。*P < 0.05 vs SO组,#P < 0.05 vs SAP组,&P < 0.05 vs CUR + SAP组。

3.2. 各组大鼠血清中AMY、LIPA的活性比较

相较于SO组,SAP组的血清中AMY、LIPA的活性水平显著提高(P < 0.05)。CUR预处理后,SAP + CUR组较SAP组血清中以上两种酶的活性水平显著降低(P < 0.05)。SAP + CUR + LPS组血清AMY、LIPA 活性水平显著高于SAP + CUR组(P < 0.05),见表2

Table 2. Comparison of AMY and LIPA levels of rats in each group (n = 10, x ¯ ± s )

表2. 各组大鼠AMY、LIPA水平比较(n = 10, x ¯ ± s )

注:AMY示淀粉酶;LIPA示脂肪酶;SO组示假手术组;SAP组示重症急性胰腺炎组;SAP + CUR组示姜黄素预处理组;SAP + CUR + LPS组示TLR4受体激活剂组。*P < 0.05 vs SO组,#P < 0.05 vs SAP组,&P < 0.05 vs CUR + SAP组。

3.3. 各组大鼠胰腺组织病理变化

SO组胰腺组织(a)病理学未见明显变化。SAP大鼠胰腺组织(b)出现小叶结构模糊,炎性细胞浸润、间质水肿、胰腺腺泡细胞坏死等病理学改变;与SAP组相比,SAP + CUR组胰腺组织(c)小叶结构尚清楚,间质水肿减轻,胰腺腺泡坏死减少;然而,SAP + CUR + LPS组与SAP + CUR组相比胰腺(d)则表现出小叶结构模糊加重、间质水肿加重、胰腺腺泡细胞坏死增加等病理变化。具有代表性的胰腺组织病理损伤见图1

Figure 1. Representative images of rat pancreas tissues in different groups after hematoxylin and eosin staining (original magnification, 200×). (a)~(d) Pancreatic tissues of SO group, SAP group, SAP + CUR group, SAP + CUR + LPS group. SO group showed sham operation group; SAP group showed severe acute pancreatitis group; SAP + CUR group showed curcumin pretreatment group, SAP + CUR + LPS group showed TLR4 receptor agonist lipopolysaccharide (LPS) group

图1. 各组大鼠胰腺组织苏木精–伊红染色后的代表性图像(原始图像,200×)。(a)~(d)分别表示SO组、SAP组、SAP + CUR组、SAP + CU + LPS组胰腺组织;SO组示假手术组;SAP组示重症急性胰腺炎组;SAP + CUR组示姜黄素预处理组;SAP + CUR + LPS组示TLR4受体激活剂组

3.4. 各组大鼠胰腺组织内TLR4及NF-κB转录水平比较

SAP组中TLR4和NF-κB mRNA在肝脏组织的表达水平与SO组相比显著升高(P < 0.05)。相反,SAP + CUR组肝脏组织中NF-κB和TLR-4的mRNA水平与SAP组相比显著下降(P < 0.05)。SAP + CUR + LPS组与SAP + CUR组相比TLR4及NF-κB蛋白表达显著升高(P < 0.05),见表3

Table 3. Comparison of TLR4 and NF-κB transcription levels in pancreatic tissues of rats in each group (n = 10, x ¯ ± s )

表3. 各组大鼠胰腺组织内TLR4及NF-κB转录水平比较(n = 10, x ¯ ± s )

注:TLR4示Toll样受体4;p-NF-κB p65示磷酸化核因子κB的片段p65片段;SO组示假手术组;SAP组示重症急性胰腺炎组;SAP + CUR组示姜黄素预处理组;SAP + CUR + LPS组示TLR4受体激活剂组。*P < 0.05 vs SO组,#P < 0.05 vs SAP组,&P < 0.05 vs CUR + SAP组。

4. 讨论

重症急性胰腺炎(SAP)是常伴发严重感染和全身多器官功能衰竭的一种临床急腹症,具有高死亡率 [10] 。因此探究SAP相关损伤的具体机制及缓解方法至关重要。研究表明,姜黄素可通过介导包括经典的TLR4/NF-κB炎症信号通路在内的多种信号通路减轻炎症反应,如MAPK、JAK2/STAT3及PI3K/Akt等 [11] 。但,在SAP相关损伤的中治疗潜力及具体机制尚未作深入研究。因此,我们提出“CUR通过下调TLR4/NF-κB信号通路抑制炎症反应减轻SAP相关损伤”的假说,目的是明确CUR对SAP胰腺损伤所具有的保护作用及其中潜在机制。

本实验通过胆胰管逆行注射牛黄胆酸钠的方法建立大鼠SAP模型,并在模型建立成功后24小时取样 [9] ,采用HE染色、RT-PCR及Elisa等检测技术发现CUR可减轻SAP大鼠胰腺损伤,LPS减弱CUR对SAP大鼠胰腺病理损伤的保护作用以及对炎症反应的抑制作用。从上述结果可知:CUR通过下调TLR4/NF-κB信号通路减轻SAP胰腺损伤,并且部分作用跟抑制炎症反应有关。

TLR4/NF-κB信号通路是CUR缓解SAP相关损伤的关键分子机制。Toll样受体是机体固有免疫应答的关键调节因子 [12] 。NF-κB与TLR4具有上下游关系,与胰腺炎症反应的发生发展密切相关 [13] [14] 。我们的研究探讨了TLR4/NF-κB信号通路其在SAP相关损伤中的作用。实验结果提示,SAP大鼠胰腺组织中TLR4/NF-κB信号通路mRNA的表达升高,CUR预处理后显著下调SAP大鼠胰腺组织中TLR4和NF-κB mRNA的表达水平,表明CUR减轻SAP大鼠胰腺组织中TLR4/NF-κB信号上调,提示TLR4/NF-κB信号传导通路参与了CUR对SAP相关损伤的保护作用。

炎症反应是SAP诱导相关损伤的关键因素。研究证明,CUR可减轻牛磺胆酸钠诱导的大鼠SAP的胰腺病理性损伤,并抑制IL-6、TNF-α及IL-1β等炎性细胞因子的分泌 [15] 。本实验中,CUR 预处理降低了SAP大鼠血清中炎性细胞因子TNF-α、IL-6的表达水平。TLR4/NF-κB信号通路激活剂LPS减弱了CUR对SAP炎症反应的抑制作用。这些结果表明CUR通过下调TLR4/NF-κB信号传导通路进而抑制炎症反应减轻SAP相关损伤。

综上所述,我们发现CUR通过抑制炎症反应从而改善SAP相关损伤,其机制与下调TLR4/NF-κB信号通路有关。我们的发现为CUR对SAP的保护机制提供了一种新的见解,并为CUR在SAP中的临床应用提供理论基础。尽管CUR的药理安全性和有效性已经被广泛证实,但由于其生物利用度的限制尚未被批准作为一线治疗药物。纳米颗粒、脂质体、胶束和磷脂复合物等的应用有助于CUR生物利用度的提高,未来还需要我们进一步加强这方面的研究。

声明

所有动物实验均按照伦理标准进行,并经过青岛大学伦理委员会批准。

基金项目

国家自然科学基金面上项目(81270448, 81470890)。

利益冲突

作者宣称没有利益冲突。

文章引用

李家涛,杜 敏,李 畅,姜英健,王 江,张佃良. 姜黄素介导TLR4/NF-κB信号通路对重症急性胰腺炎的作用及机制研究
Effect and Mechanism of Curcumin-Mediated TLR4/NF-κB Signaling Pathway on Severe Acute Pancreatitis[J]. 临床医学进展, 2024, 14(05): 1125-1131. https://doi.org/10.12677/acm.2024.1451534

参考文献

  1. 1. Banks, P.A., Bollen, T.L., Dervenis, C., et al. (2013) Classification of Acute Pancreatitis—2012: Revision of the Atlanta Classification and Definitions by International Consensus. Gut, 62, 102-111.https://doi.org/10.1136/gutjnl-2012-302779

  2. 2. Portelli, M. and Jones, C.D. (2017) Severe Acute Pancreatitis: Pathogenesis, Diagnosis and Surgical Management. Hepatobiliary & Pancreatic Diseases International, 16, 155-159. https://doi.org/10.1016/S1499-3872(16)60163-7

  3. 3. Nelson, K.M., Dahlin, J.L., Bisson, J., et al. (2017) The Essential Medicinal Chemistry of Curcumin. Journal of Medicinal Chemistry, 60, 1620-1637. https://doi.org/10.1021/acs.jmedchem.6b00975

  4. 4. Shehzad, A., Rehman, G. and Lee, Y.S. (2013) Curcumin in Inflammatory Diseases. BioFactors, 39, 69-77.https://doi.org/10.1002/biof.1066

  5. 5. Thoms, H.C. and Stark, L.A. (2021) The NF-κB Nucleolar Stress Response Pathway. Biomedicines, 9, 1082.https://doi.org/10.3390/biomedicines9091082

  6. 6. Mitchell, S., Vargas, J. and Hoffmann, A. (2016) Signaling via the NFκB System. WIREs Systems Biology and Medicine, 8, 227-241. https://doi.org/10.1002/wsbm.1331

  7. 7. 班努·库肯, 严金龙, 王敏敏, 等. Toll样受体4激动剂LPS腹腔注射对大鼠心肌缺血再灌注损伤的预防作用及其作用机制[J]. 山东医药, 2024, 64(3): 39-43.

  8. 8. 刘冠达, 刘锐娜, 刘偲翔, 等. 金银花提取物对重症急性胰腺炎肺损伤大鼠的保护作用及机制研究[J]. 现代生物医学进展, 2021, 21(13): 2437-2441.

  9. 9. Ma, D., Jiang, P., Jiang, Y., et al. (2021) Effects of Lipid Peroxidation-Mediated Ferroptosis on Severe Acute Pancreatitis-Induced Intestinal Barrier Injury and Bacterial Translocation. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 6644576. https://doi.org/10.1155/2021/6644576

  10. 10. Petrov, M.S., Shanbhag, S., Chakraborty, M., et al. (2010) Organ Failure and Infection of Pancreatic Necrosis as Determinants of Mortality in Patients with Acute Pancreatitis. Gastroenterology, 139, 813-820.https://doi.org/10.1053/j.gastro.2010.06.010

  11. 11. iriviriyakul, P., Chingchit, T., Klaikeaw, N., et al. (2019) Effects of Curcumin on Oxidative Stress, Inflammation and Apoptosis in L-Arginine Induced Acute Pancreatitis in Mice. Heliyon, 5, e02222.https://doi.org/10.1016/j.heliyon.2019.e02222

  12. 12. Barak, B., Feldman, N. and Okun, E. (2014) Toll-Like Receptors as Developmental Tools That Regulate Neurogenesis during Development: An Update. Frontiers in neuroscience, 8, 272. https://doi.org/10.3389/fnins.2014.00272

  13. 13. Bhatia, M., Brady, M., Shokuhi, S., et al. (2000) Inflammatory Mediators in Acute Pancreatitis. The Journal of Pathology, 190, 117-125. https://doi.org/10.1002/(SICI)1096-9896(200002)190:2<117::AID-PATH494>3.3.CO;2-B

  14. 14. Wullaert, A., Bonnet, M.C. and Pasparakis, M. (2011) NF-κB in the Regulation of Epithelial Homeostasis and Inflammation. Cell Research, 21, 146-158. https://doi.org/10.1038/cr.2010.175

  15. 15. Gulcubuk, A., Haktanir, D., Cakiris, A., et al. (2013) Effects of Curcumin on Proinflammatory Cytokines and Tissue Injury in the Early and Late Phases of Experimental Acute Pancreatitis. Pancreatology, 13, 347-354.https://doi.org/10.1016/j.pan.2013.05.005

  16. NOTES

    *通讯作者Email: qdsurg@qdu.edu.cn

期刊菜单