Advances in Clinical Medicine
Vol. 13  No. 01 ( 2023 ), Article ID: 60917 , 6 pages
10.12677/ACM.2023.131148

血清IL-33在胃癌中的研究进展

王庆庆1,刘丹平2*,陈思言1

1西安医学院,陕西 西安

2陕西省人民医院,陕西 西安

收稿日期:2022年12月28日;录用日期:2023年1月21日;发布日期:2023年1月31日

摘要

IL-33被认为是机体的“警报素”,在人类肿瘤组织内皮细胞的细胞核中大量表达,激活多种炎症介质,通过细胞传导途径促进或抑制肿瘤发生。越来越多的证据表明IL-33参与了肿瘤的发展进程。文章通过IL-33的作用机制、与炎症细胞之间的联系和肿瘤浸润、增殖、耐药、预后等方面阐述了IL-33在胃癌方面的影响,为胃癌的潜在靶点提供理论基础。

关键词

白介素-33,胃癌,抑制致瘤性2受体

Research Progress of Serum IL-33 in Gastric Cancer

Qingqing Wang1, Danping Liu2*, Siyan Chen1

1Xi’an Medical University, Xi’an Shaanxi

2Shaanxi Provincial People’s Hospital, Xi’an Shaanxi

Received: Dec. 28th, 2022; accepted: Jan. 21st, 2023; published: Jan. 31st, 2023

ABSTRACT

IL-33 is considered to be the “alarm sign” of the body and is expressed in substantial amounts in the nuclei of human tumor tissue endothelial cells, activating a variety of inflammatory mediators that promote or inhibit tumorigenesis through cellular transduction pathways. There is growing evidence that IL-33 plays a role in the development of tumors. The article illustrates the impact of IL-33 in gastric cancer by examining the mechanism of action, the connection with inflammatory cells, as well as tumor infiltration, proliferation, drug resistance, and prognosis, serving theoretical basis for targeted treatment of gastric cancer.

Keywords:Interleukin-33, Suppression of Tumorigenicity 2

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

胃癌(Gastric Cancer, GC)位于我国第二大常见肿瘤,病死率处于我国第三 [1],有广泛的局部浸润、远处转移和预后差的特点。尽管近年来GC发病率和死亡率呈下降趋势,但中国疾病的负担仍很重,需要进一步的防控 [2]。GC的发展经历多个阶段,包括黏膜萎缩、肿瘤前化生(上皮内瘤变和肠上皮化生)、不典型增生和癌症 [3]。肿瘤的发现常较为隐秘,早期筛查尤为重要,虽然近年来我国胃癌的死亡率较前降低,但总体已然很低,死亡率占恶性肿瘤相关的7.7% [4]。而炎症因子对GC的进展起着双向作用,免疫治疗在临床辅助治疗上起着不可忽视的作用。

2. IL-33概况

2005年白介素-33白介素(Interleukin, IL)-33被列入IL-1超家族成员和ST2 [5],经过caspase处理后最终导致IL-33的失活。除此之外,本身也可释放的炎症蛋白酶可以增强自身生物活性 [6],其中N端部分可被炎症小体复合体和caspase-3和caspase-7切割 [7]。IL-33正常情况下储存在细胞核中,主要由内皮细胞、上皮细胞、成纤维细胞样细胞和肌成纤维细胞产生,在受到刺激时由坏死的上皮细胞或激活的免疫细胞释放到细胞外,当作“警报素”,向抑制致瘤性2受体(Suppression of Tumorigenicity 2, ST2)的免疫细胞发出警报 [8]。IL-33可在人类肿瘤组织内皮细胞的细胞核中大量表达 [9],通过激活多种免疫细胞发挥作用促进肿瘤发展。如2型固有淋巴样细胞(ILC2),成纤维细胞,Tregs,肿瘤相关巨噬细胞,骨髓源性抑制细胞,肥大细胞(Mast Cell, MC),其他的免疫细胞如NK细胞,嗜酸性粒细胞,CD8+ T细胞,Th9和树突状细胞从而重塑肿瘤微环境,影响肿瘤的发展 [6]。

3. IL-33传导通路

IL-33及其受体ST2的异常表达常常预示着GC患者的不良预后 [10] [11]。一项研究中发现,在人的结肠肿瘤中ST2L的表达较邻近非肿瘤组织低,且肿瘤分级越高,可溶性的ST2表达越低 [12]。在GC细胞中,实验发现IL-33/ST轴通过ST2-ERK1/2通路刺激MMP-3 (金属蛋白酶-3)、IL-6的分泌、JNK和p38的激活促进GC细胞的增殖、细胞周期进展、凋亡抑制、侵袭和迁徙 [13] [14],并上调CDK4、CDK6和细胞周期蛋白D1的表达水平 [15]。IL-33可通过与MyD88结合,转导激活蛋白激酶(MAPK)和NF-κB转录因子 [16]。活化的核因子NF-κB和MAPK诱导Th2细胞产生,影响细胞旁分泌信号转导 [17] [18],并诱导IgE、IgA、IL-4、IL-5、IL-13的表达,导致粘膜器官发生严重的病理改变 [5] [19] [20]。

4. IL-33与常见的下游靶点细胞

4.1. IL-33与肥大细胞

在炎症过程中,IL-33激活的MC的炎症蛋白酶在中央激活区域处理IL-33, [21] 可释放的丝氨酸蛋白酶将全长的IL-33的中心结构域裂解为高活性的成熟IL-33,从而有效激活2组固有淋巴样细胞(Type 2 Innate Iymphocytes, ILC2s) [22]。被IL-33激活后的MC后会释放大量的因子,招募免疫细胞进入肿瘤微环境,并影响它们增殖以及激活、分化和极化状态 [23]。炎症与肿瘤的进展弥补可分。杨敬端等人在对40例幽门螺旋杆菌的胃黏膜活检标本和20例为感染的志愿者的胃黏膜活检标本对比,通过胰蛋白酶染色后,电镜下发现在感染的胃黏膜中发现MC的数量显著增加 [24]。

4.2. IL-33与巨噬细胞

Eissmann MF等人 [25] 的研究中通过基因消融和灭活MC可以抑制肿瘤相关巨噬细胞的积累,减少肿瘤细胞的增殖和血管生成。巨噬细胞分为经典激活的M1型和交替激活的M2型。M1型巨噬细胞具有刺激免疫反应和抗肿瘤功能的功能。M2型巨噬细胞可通过限制免疫反应来抑制肿瘤的发展。交替激活的巨噬细胞(M2)与胃黏膜化生的进展相关 [26]。IL-33诱导巨噬细胞快速代谢的重组,导致呼吸链的解耦和代谢产物衣脂酸盐增加,引发GATA3介导的M2极化 [27]。IL-33在晚期SPEM相关巨噬细胞中表达明显上调而壁细胞损失化生诱导和巨噬细胞极化是通过IL-33和IL-13的细胞因子信号网络协调的,连接了固有粘膜机制和浸润的M2巨噬细胞对损伤的联合反应 [28]。IL-33将巨噬细胞招募到肿瘤微环境中,刺激巨噬细胞产生前列腺素E2,支持结肠癌干细胞生长和肿瘤生长,证明了IL-33通过激活肿瘤细胞中的c-Jun信号通路激活核心干细胞基因,并通过PGE2通路招募和改变巨噬细胞来增强结肠癌的发生 [9]。

4.3. IL-33与嗜酸性粒细胞

嗜酸性粒细胞在肿瘤的进展中也是一把双刃剑。IL-33可通过Th2途径诱导嗜酸性粒细胞导致解痉挛多肽表达化生(Spasmolytic Polypeptide Expressing Metaplasia, SPEM),促进了肿瘤的发展。有研究发现IL-33可以产生与IL-3、IL-5和eotaxin-1一样强的嗜酸性粒细胞激活 [7]。在Schmitz J等人 [5] 的研究中,在给每天给小鼠腹腔内注射0.4或4 mg的IL-33治疗,7天后小鼠出现食管上皮明显增生,食管上皮和固有层可见嗜酸性粒细胞、中性粒细胞和单核细胞的炎性浸润,小肠和大肠中出现杯状细胞肥大、增生。嗜酸性粒细胞减少导致小鼠胃黏膜中局部产生IL-33的M2巨噬细胞和胃黏膜的化生显著减少,证明了IL-33的M2巨噬细胞依赖于嗜酸性粒细胞的下游浸润导致胃黏膜化生 [29]。嗜酸性粒细胞聚集可能会通过黏附依赖性脱颗粒直接杀死肿瘤细胞 [30]。相反的是,在Minton K的研究中,通过DPP4抑制剂刺激小鼠的肿瘤模型中,建立了IL-33-CCL11-嗜酸性粒细胞抗肿瘤轴,发现了嗜酸性粒细胞的浸润和脱颗粒可以反过来导致肿瘤细胞的细胞毒性和降低肿瘤生长,这可能是嗜酸性粒细胞可增强抗肿瘤作用的原因 [31]。

4.4. IL-33与ILC2细胞

固有淋巴细胞,被认为在组织损伤修复和再生中起到关键的位置,其中包括炎症ILC2和自然ILC2 [32]。一项研究中发现浸润性肿瘤中的ILC2表达程序性细胞死亡蛋白-1 (PD-1),限制其肿瘤内部的增殖和抗肿瘤功能。研究中使用IL-33联合PD-1阻断增加了ILC2和嗜酸性粒细胞的招募,增强了抗肿瘤反应 [33]。而另一项研究通过使用黑色素瘤作为模型发现IL-33/ILC2/嗜酸性粒细胞轴抑制肿瘤生长 [34]。通过对小鼠浸润性胰腺导管腺癌的小鼠研究,发现抗体介导的PD-1封锁解除ILC2细胞固有的PD-1抑制作用,提出建议联合靶向抗癌ILC2和T细胞的免疫治疗策略 [35]。

5. IL-33与GC的治疗

IL-33在肿瘤中的双重作用导致了其本身在应用的治疗过程中的不确定性因素较多。目前在国内外还没将IL-33应用于临床当中治疗。但是其作用机制给与了指导了很多相应的临床指导。

5.1. 抗肿瘤作用

在不同的细胞生长周期中IL-33所发挥的作用并不完全相同。Pisani LF用rhIL-33刺激GC细胞细胞系和组织样本,发现IL-33对癌细胞有抗增殖和促凋亡作用,而对正常上皮细胞有促进增殖和减少凋亡作用,通过两者之间的对比,提出了IL-33可能在GC晚期可能具有抗肿瘤活性的假设 [36]。IL-33参与了胃黏膜损伤的愈合。研究发现在幽门螺杆菌感染过程中,胃屏障细胞的恢复可能与幽门螺杆菌下调IL-33促再生活性有关 [37]。IL-33的mRNA和蛋白在幽门螺杆菌感染的患者和小鼠中显著升高,证明了胃炎的严重程度和IL-33的表达呈正相关性 [24],可促进CD8+、NK细胞、CD103+、树突状细胞促进抗肿瘤作用 [38]。恶唑罗[4,5-c]喹诺酮模拟物7c可结合到IL-33和IL-33受体(ST2)的界面区域,以剂量依赖性方式有效抑制人MCs中IL-6的生成,有希望作为开发有效的低分子量IL-33抑制剂的靶向化合物 [39]。令人意外的一项研究是,一项COX模型中实验中发现肿瘤组织中IL-33水平明显低于癌旁组织,IL-33的表达与GC患者的年龄和侵袭深度相关,这并不是导致预后不良的独立危险因素,说明IL-33与GC患者总生存期并无显著相关性 [40]。

5.2. 耐药

IL-33通过激活JNK通路降低了铂类化疗药物对GC细胞株的细胞毒性作用,提出了在GC治疗过程中,尤其是使用铂类化疗药物时,应监测IL-33的水平 [13]。而受否在胃癌治疗过程中加用IL-33抑制剂的治疗仍需进一步的研究指导。IL-33可促进巨噬细胞转化生长因子β (TGF-β)的释放,产生侵袭性和耐药性,并进一步上调肿瘤细胞的IL-33表达 [41]。IL-33可能增加免疫检查点抑制剂的治疗效果,IL-33似乎增加了某些免疫细胞上PD-1/PD-L1和CTLA-4分子的表达,并在某些癌症模型中提高检查点封锁的免疫治疗效果 [30]。通过诱导小鼠乳腺癌和结肠癌的模型中发现,同时阻断IL-33/ST2轴和PD-L/PD-1轴比单独阻断任一轴更能有效地阻止肿瘤进展 [42]。胃炎的严重程度和IL-33的表达呈正相关 [24]。肿瘤可能劫持IL-33/ST2轴,以逃避免疫监视,逃避抗肿瘤免疫 [43]。在机制上,IL-33刺激ST2轴信号通路激活核心干细胞基因,诱导c-Jun的N末端激酶(JNK)磷酸化活化,增强c-Jun与核心干细胞基因启动子的结合,刺激细胞球形成,抑制化疗过程中诱导的肿瘤凋亡 [9]。

6. 总结

IL-33与肿瘤的浸润、转移、耐药等相关,通过多种炎症级联反应促进和抑制肿瘤的发展,这高度取决于肿瘤微环境的平衡。虽然我们对IL-33在肿瘤中的具体发病机制不太清楚,对于IL-33在癌症方面的研究是很有必要的,我们可以以IL-33机制可以促进或抑制癌症方面为切入点,通过阻断IL-33与ST2的连接,解决更多肿瘤上的临床问题成为可能。基于前人的研究基础,通过免疫调节阻断IL-33的级联反应,或直接阻断IL-33有希望成为GC新的治疗方法之一,但安全性及有效性仍需进一步的研究。

7. 展望

目前IL-33在临床上的应用仍较少,IL-33既有促癌也有抑癌作用,临床应用导致的副作用很多,靶点还不明确,仍有很长的路要走。IL-33对这些和其他检查点分子的调节作用以及每种癌症的免疫靶点仍有待完全阐明。未来的研究方向应该是评估靶向IL-33及其下游靶点通路是否可能改善对GC免疫治疗效应靶点通路。

文章引用

王庆庆,刘丹平,陈思言. 血清IL-33在胃癌中的研究进展
Research Progress of Serum IL-33 in Gastric Cancer[J]. 临床医学进展, 2023, 13(01): 1067-1072. https://doi.org/10.12677/ACM.2023.131148

参考文献

  1. 1. Cao, M., Li, H., Sun, D., et al. (2020) Cancer Burden of Major Cancers in China: A Need for Sustainable Actions. Can-cer Communications (London), 40, 205-210. https://doi.org/10.1002/cac2.12025

  2. 2. Zhou, J., Zheng, R., Zhang, S., et al. (2022) Gastric and Esophageal Cancer in China 2000 to 2030: Recent Trends and Short-Term Predictions of the Future Burden. Cancer Medicine, 11, 1902-1912. https://doi.org/10.1002/cam4.4586

  3. 3. 中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会胃癌临床诊疗指南(2021版) [J]. 中华医学杂志, 2022, 102(16): 1169-1189.

  4. 4. 赫捷, 陈万青, 李兆申, 等. 中国胃癌筛查与早诊早治指南(2022, 北京) [J]. 中华肿瘤杂志, 2022, 44(7): 634-666.

  5. 5. Schmitz, J., Owyang, A., Oldham, E., et al. (2005) IL-33, an Interleukin-1-Like Cytokine That Signals via the IL-1 Receptor-Related Protein ST2 and Induces T Helper Type 2-Associated Cytokines. Immunity, 23, 479-490. https://doi.org/10.1016/j.immuni.2005.09.015

  6. 6. Jiang, W., Lian, J., Yue, Y., et al. (2021) IL-33/ST2 as a Poten-tial Target for Tumor Immunotherapy. European Journal of Immunology, 51, 1943-1955. https://doi.org/10.1002/eji.202149175

  7. 7. Angulo, E.L., Mckernan, E.M., Fichtinger, P.S., et al. (2019) Compar-ison of IL-33 and IL-5 Family Mediated Activation of Human Eosinophils. PLOS ONE, 14, e0217807. https://doi.org/10.1371/journal.pone.0217807

  8. 8. Cayrol, C. and Girard, J.P. (2014) IL-33: An Alarmin Cytokine with Crucial Roles in Innate Immunity, Inflammation and Allergy. Current Opinion in Immunology, 31, 31-37. https://doi.org/10.1016/j.coi.2014.09.004

  9. 9. Fang, M., Li, Y., Huang, K., et al. (2017) IL33 Promotes Colon Cancer Cell Stemness via JNK Activation and Macrophage Recruitment. Cancer Research, 77, 2735-2745. https://doi.org/10.1158/0008-5472.CAN-16-1602

  10. 10. Zhou, Q., Wu, X., Wang, X., et al. (2020) The Reciprocal Interaction between Tumor Cells and Activated Fibroblasts Mediated by TNF-α/IL-33/ST2L Signaling Promotes Gastric Cancer Metastasis. Oncogene, 39, 1414-1428. https://doi.org/10.1038/s41388-019-1078-x

  11. 11. Tong, X., Barbour, M., Hou, K., et al. (2016) Interleukin-33 Pre-dicts Poor Prognosis and Promotes Ovarian Cancer Cell Growth and Metastasis through Regulating ERK and JNK Sig-naling Pathways. Molecular Oncology, 10, 113-125. https://doi.org/10.1016/j.molonc.2015.06.004

  12. 12. O'donnell, C., Mahmoud, A., Keane, J., et al. (2016) An Anti-tumorigenic Role for the IL-33 Receptor, ST2L, in Colon Cancer. British Journal of Cancer, 114, 37-43. https://doi.org/10.1038/bjc.2015.433

  13. 13. Ye, X.L., Zhao, Y.R., Weng, G.B., et al. (2015) IL-33-Induced JNK Pathway Activation Confers Gastric Cancer Chemotherapy Resistance. Oncology Reports, 33, 2746-2752. https://doi.org/10.3892/or.2015.3898

  14. 14. Yu, X.X., Hu, Z., Shen, X., et al. (2015) IL-33 Promotes Gastric Cancer Cell Invasion and Migration via ST2-ERK1/2 Pathway. Digestive Diseases and Sciences, 60, 1265-1272. https://doi.org/10.1007/s10620-014-3463-1

  15. 15. Huang, N., Cui, X., Li, W., et al. (2021) IL-33/ST2 Promotes the Malignant Progression of Gastric Cancer via the MAPK Pathway. Molecular Medicine Reports, 23, Article No. 361. https://doi.org/10.3892/mmr.2021.12000

  16. 16. Cayrol, C. and Girard, J.P. (2018) Interleukin-33 (IL-33): A Nuclear Cytokine from the IL-1 Family. Immunological Reviews, 281, 154-168. https://doi.org/10.1111/imr.12619

  17. 17. Taniguchi, S., Elhance, A., Van Duzer, A., et al. (2021) Response to Com-ment on “Tumor-Initiating Cells Establish an IL-33-TGF-β Niche Signaling Loop to Promote Cancer Progression”. Sci-ence, 372, eabf3316. https://doi.org/10.1126/science.abf3316

  18. 18. Kakkar, R., Hei, H., Dobner, S., et al. (2012) Interleukin 33 as a Me-chanically Responsive Cytokine Secreted by Living Cells. Journal of Biological Chemistry, 287, 6941-6948. https://doi.org/10.1074/jbc.M111.298703

  19. 19. Uchida, A.M., Lenehan, P.J., Vimalathas, P., et al. (2022) Tissue Eosinophils Express the IL-33 Receptor ST2 and Type 2 Cytokines in Patients with Eosinophilic Esophagitis. Allergy, 77, 656-660. https://doi.org/10.1111/all.15127

  20. 20. Rasheed, K., Moens, U., Policastro, B., Johnsen, J.I., et al. (2022) The Merkel Cell Polyomavirus T-Antigens and IL-33/ST2-IL1RAcP Axis: Possible Role in Merkel Cell Carcinoma. In-ternational Journal of Molecular Sciences, 23, 3702. https://doi.org/10.3390/ijms23073702

  21. 21. Lefrançais, E., Roga, S., Gautier, V., et al. (2012) IL-33 Is Processed into Mature Bioactive Forms by Neutrophil Elastase and Cathep-sin G. Proceedings of the National Academy of Sciences of the United States of America, 109, 1673-1678. https://doi.org/10.1073/pnas.1115884109

  22. 22. Lefrançais, E., Duval, A., Mirey, E., et al. (2014) Central Domain of IL-33 Is Cleaved by Mast Cell Proteases for Potent Activation of Group-2 Innate Lymphoid Cells. Proceedings of the National Academy of Sciences of the United States of America, 111, 15502-15507. https://doi.org/10.1073/pnas.1410700111

  23. 23. Eissmann, M.F., Buchert, M. and Ernst, M. (2020) IL33 and Mast Cells—The Key Regulators of Immune Responses in Gastrointestinal Cancers? Frontiers in Immunology, 11, 1389. https://doi.org/10.3389/fimmu.2020.01389

  24. 24. 杨敬端, 何明, 吴品. 炎症因子IL-33通过mTOR/Akt信号通路调节肥大细胞反应抑制萎缩性胃炎[J]. 免疫学杂志, 2022, 38(4): 324-331.

  25. 25. Eissmann, M.F., Dijkstra, C., Jarnicki, A., et al. (2019) IL-33-Mediated Mast Cell Activation Promotes Gastric Cancer through Macrophage Mobiliza-tion. Nature Communications, 10, 2735. https://doi.org/10.1038/s41467-019-10676-1

  26. 26. Faas, M., Ipseiz, N., Ackermann, J., et al. (2021) IL-33-Induced Metabolic Reprogramming Controls the Differentiation of Alternatively Ac-tivated Macrophages and the Resolution of Inflammation. Immunity, 54, 2531-2546.e5. https://doi.org/10.1016/j.immuni.2021.09.010

  27. 27. Aasarød, K.M., Mosti, M.P., Stunes, A.K., et al. (2016) Im-paired Skeletal Health in Patients with Chronic Atrophic Gastritis. Scandinavian Journal of Gastroenterology, 51, 774-781. https://doi.org/10.3109/00365521.2016.1141317

  28. 28. Petersen, C.P., Meyer, A.R., De Salvo, C., et al. (2018) A Signalling Cascade of IL-33 to IL-13 Regulates Metaplasia in the Mouse Stomach. Gut, 67, 805-817. https://doi.org/10.1136/gutjnl-2016-312779

  29. 29. De Salvo, C., Pastorelli, L., Petersen, C.P., et al. (2021) Interleu-kin 33 Triggers Early Eosinophil-Dependent Events Leading to Metaplasia in a Chronic Model of Gastritis-Prone Mice. Gastroenterology, 160, 302-316.e7. https://doi.org/10.1053/j.gastro.2020.09.040

  30. 30. Andreone, S., Gambardella, A.R., Mancini, J., et al. (2020) An-ti-Tumorigenic Activities of IL-33: A Mechanistic Insight. Frontiers in Immunology, 11, Article ID: 571593. https://doi.org/10.3389/fimmu.2020.571593

  31. 31. Minton, K. (2019) Enhancing Antitumour Eosinophils. Nature Reviews Immunology, 19, 202-203. https://doi.org/10.1038/s41577-019-0142-7

  32. 32. 汤洁莹, 李薇薇, 杨建民. IL-33/ILC2通路在组织损伤修复及纤维化中的作用机制研究进展[J]. 中华整形外科杂志, 2022, 38(8): 951-955.

  33. 33. Jacquelot, N., Seillet, C., Wang, M., Pizzolla, A., et al. (2021) Blockade of the Co-Inhibitory Molecule PD-1 Unleashes ILC2-Dependent Antitumor Im-munity in Melanoma. Nature Immunology, 22, 851-864. https://doi.org/10.1038/s41590-021-00943-z

  34. 34. Wagner, M., Ealey, K.N., Tetsu, H., et al. (2020) Tumor-Derived Lactic Acid Contributes to the Paucity of Intratumoral ILC2s. Cell Reports, 30, 2743-2757.e5. https://doi.org/10.1016/j.celrep.2020.01.103

  35. 35. Moral, J.A., Leung, J., Rojas, L.A., et al. (2020) ILC2s Amplify PD-1 Blockade by Activating Tissue-Specific Cancer Immunity. Nature, 579, 130-135. https://doi.org/10.1038/s41586-020-2015-4

  36. 36. Pisani, L.F., Tontini, G.E., Gentile, C., et al. (2021) Proinflam-matory Interleukin-33 Induces Dichotomic Effects on Cell Proliferation in Normal Gastric Epithelium and Gastric Cancer. International Journal of Molecular Sciences, 22, 5792. https://doi.org/10.20944/preprints202012.0682.v2

  37. 37. Gonciarz, W., Krupa, A., Moran, A.P., et al. (2021) Inter-ference of LPS H. pylori with IL-33-Driven Regeneration of Caviae porcellus Primary Gastric Epithelial Cells and Fi-broblasts. Cells, 10, 1385. https://doi.org/10.3390/cells10061385

  38. 38. Chen, L., Sun, R., Xu, J., et al. (2020) Tumor-Derived IL33 Promotes Tissue-Resident CD8(+) T Cells and Is Required for Checkpoint Blockade Tumor Immunotherapy. Cancer Immunology Research, 8, 1381-1392. https://doi.org/10.1158/2326-6066.CIR-19-1024

  39. 39. Kim, Y., Ma, C., Park, S., et al. (2021) Rational Design, Synthesis and Evaluation of Oxazolo[4,5-c]-quinolinone Analogs as Novel Interleukin-33 Inhibitors. Chemistry—An Asian Journal, 16, 3702-3712. https://doi.org/10.1002/asia.202100896

  40. 40. Hu, W., Li, X., Li, Q., et al. (2017) Interleukin-33 Expression Does Not Correlate with Survival of Gastric Cancer Patients. Pathology and Oncology Research, 23, 615-619. https://doi.org/10.1007/s12253-016-0167-1

  41. 41. Taniguchi, S., Elhance, A., Van Duzer, A., et al. (2020) Tu-mor-Initiating Cells Establish an IL-33-TGF-β Niche Signaling Loop to Promote Cancer Progression. Science, 369, eaay1813. https://doi.org/10.1126/science.aay1813

  42. 42. Jovanovic, M.Z., Geller, D.A., Gajovic, N.M., et al. (2022) Dual Blockage of PD-L/PD-1 and IL33/ST2 Axes Slows Tumor Growth and Improves Antitumor Immunity by Boost-ing NK Cells. Life Sciences, 289, Article ID: 120214. https://doi.org/10.1016/j.lfs.2021.120214

  43. 43. Mizuno, S., Matsui, D., Watanabe, I., et al. (2015) Serologically Determined Gastric Mucosal Condition Is a Predictive Factor for Osteoporosis in Japanese Men. Digestive Diseases and Sciences, 60, 2063-2069. https://doi.org/10.1007/s10620-015-3576-1

  44. NOTES

    *通讯作者。

期刊菜单