Advances in Clinical Medicine
Vol. 13  No. 12 ( 2023 ), Article ID: 77755 , 7 pages
10.12677/ACM.2023.13122752

粪肠球菌在难治性根尖周炎炎症反应中的研究进展

关镕1,赵莉2*,马依热·阿布都赛麦提2

1新疆医科大学研究生院,新疆 乌鲁木齐

2新疆维吾尔自治区人民医院口腔科,新疆 乌鲁木齐

收稿日期:2023年11月21日;录用日期:2023年12月14日;发布日期:2023年12月22日

摘要

粪肠球菌作为难治性根尖周炎的主要致病菌,能够在恶劣环境中形成粘附力极强的生物膜而长期生存,对氢氧化钙等根管消毒药物和机械清理具有抵抗性,是感染根管治疗失败的主要原因。因此,粪肠球菌已成为牙髓病学领域最近的研究重点。粪肠球菌的致病性主要表现在细菌侵入根尖周组织后激活机体免疫反应,激活RIPK3/MLKL信号通路并诱导巨噬细胞凋亡从而分泌细胞因子发挥抗炎和抑炎作用,造成根尖周组织的持续炎症,也会引发全身多种器官感染。本文就粪肠球菌在难治性根尖周炎中的致病性相关机制做一综述。

关键词

粪肠球菌,难治性根尖周炎,持续性根尖周炎,脂磷壁酸,巨噬细胞,IL-1,IL-1β,Treg细胞

Research Progress of Enterococcus faecalis in Inflammatory Response in Refractory Apical Periodontitis

Rong Guan1, Li Zhao2*, Ma Yire Abdul Saimedi2

1School of Graduate, Xinjiang Medical University, Urumqi Xinjiang

2Department of Stomatology, Xinjiang Uygur Autonomous Region People’s Hospital, Urumqi Xinjiang

Received: Nov. 21st, 2023; accepted: Dec. 14th, 2023; published: Dec. 22nd, 2023

ABSTRACT

As the main pathogenic bacteria in the root canal of refractory apical periodontitis, Enterococcus faecalis can survive for a long time in harsh environments to form biofilms with strong adhesion, and is resistant to root canal disinfection drugs such as calcium hydroxide and mechanical cleaning, which is the main reason for the failure of infection root canal treatment. The pathogenicity of Enterococcus faecalis is mainly manifested in the activation of the body’s immune response after the bacteria invade the periapical tissue, initiating the Th17/Treg cell pathway and inducing apoptosis of macrophages to secrete cytokines to exert anti-inflammatory and anti-inflammatory effects, resulting in continuous inflammation of periapical tissues, and eventually causing multiple organ infections throughout the body. This article reviews the pathogenicity-related mechanism of Enterococcus faecalis in refractory apical periodontitis.

Keywords:Enterococcus faecalis, Refractory Apical Periodontitis, Persistent Apical Periodontitis, Lipoteichoic Acid, Macrophages, IL-1, IL-1β, Treg Cells

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

粪肠球菌(Enterococcus faecalis),属于革兰氏阳性兼性厌氧菌,存在于人类、哺乳动物、爬行动物和昆虫的胃肠道中 [1] 。粪肠球菌是一种机会致病菌,且具有多重耐药性,是医院耐药菌获得性感染的主要致病菌 [2] 。在许多感染中都能检测到粪肠球菌生物膜,包括泌尿道、伤口、心内膜炎等,其中25%的粪肠球菌可在伤口中被分离出来 [3] 。粪肠球菌通过粘附、聚集和形成生物膜的机制来定植在宿主体内,其通过生物膜可以逃避机体的免疫监测和吞噬作用,此外,粪肠球菌在极端温度、PH值变化、低氧低营养等极端条件下也可以持续存活,进一步增强粪肠球菌在宿主中的持久活性及侵害作用 [4] 。

2. 粪肠球菌在难治性根尖周炎中的表达

难治性根尖周炎(Refractory apical periodontitis, RAP)是根尖周病变在经过规范的根管治疗后,炎症仍持续存在,牙槽骨进行性破坏并且愈合缓慢的慢性根尖周炎,又称持续性根尖周炎(Persistent apical periodontitis, PAP) [5] 。

2.1. 粪肠球菌存在于持续炎症的根管中

在口腔医学研究中,粪肠球菌通常在难治性根尖周炎患者的根管中分离出来,被认为是难治性根尖周炎的主要病原菌 [6] 。目前研究认为根管治疗术(Root canal therapy, RCT)是控制根管内炎症及细菌感染的最有效治疗手段。但根管治疗的5年成功率也仅为81.4% [7] 。Siqueira等人评估了36例常规根管治疗后持续性根尖周炎患者的根管内相关微生物,在所有样本中均检测到粪肠球菌,其中有20%的样本中粪肠球菌占99.6% [8] 。感染根管内存在大量粪肠球菌的原因可能是由于口服摄入抗生素和根管内炎症环境消除了其他种类的细菌,导致粪肠球菌过度繁殖。由于粪肠球菌会侵入牙本质小管并黏附在胶原蛋白上,利用牙本质小管渗出液获得营养,从而抵抗根管机械预备和抗生素作用,在RCT期间不可能完全消除这种微生物,降低了RCT的成功率。

2.2. 粪肠球菌的致病能力

粪肠球菌具有多种复杂的毒力因子,包括脂磷壁酸(lipoteichoic acids, LTA)、粪肠球菌胶原蛋白黏附素(adhesion to collagen of Enterococcus faecalis, Ace)、细胞外表面蛋白(extracellular surface protein, ESP)、溶细胞素(cytolysin)、明胶酶(gelatinase)、丝氨酸蛋白酶及胞外超氧化物等 [9] ,这些毒力因子促进了粪肠球菌的黏附聚集,有助于粪肠球菌生物膜形成,从而增强粪肠球菌抵抗根管内的高碱性环境的能力 [10] 。粪肠球菌也会激活树突状细胞和巨噬细胞,启动T细胞介导的针对入侵病原体的免疫反应,粪肠球菌诱导的树突状细胞中IL-1b、TNF-α、IL-12蛋白水平上调,从而发挥促炎效应 [11] 。

脂磷壁酸(LTA)参与细菌生物膜的形成,对牙齿和骨组织的主要成分–羟基磷灰石具有黏附作用,并通过TLR2信号通路刺激多种炎症因子的释放。LTA正向调节根尖周组织中核因子κB配体受体激活剂(RANKL)和骨保护素(OPG)的表达,诱导成骨细胞凋亡,促进IL-1b、IL-6和TNF-α的分泌,调控根尖周病变 [12] 。研究表明,IL-1和IL-6可以通过JAK2-STAT3信号通路上调RANKL的表达。Lina [13] 等人证实了LTA通过JAK2-STAT3信号通路参与诱导小鼠单核巨噬细胞白血病细胞(RAW264.7细胞)向破骨细胞分化,在大鼠根尖周骨破坏中起重要作用。在本实验中还发现LTA水平与根尖周病变大小呈正相关,LTA水平越高,根尖周病变面积越大。粪肠球菌LTA和热灭活抗原都能触发M1巨噬细胞抗菌细胞因子TNF-α和一氧化氮的释放,从而加剧炎症反应和组织破坏 [14] 。

粪肠球菌分泌的胶原蛋白黏附素(Ace)通过黏附到宿主细胞的细胞外基质上实现附着和定植。牙本质有机物成分的90%是I型胶原蛋白,Ace与I型胶原蛋白结合介导粪肠球菌和牙本质结合 [15] 。Guneser等人用XTT比色法比较了不同根管冲洗剂对产生明胶酶和缺乏明胶酶的粪肠球菌菌株对牙本质粘附的影响,结果表明产生明胶酶的粪肠球菌比缺乏明胶酶的粪肠球菌更容易粘附在牙本质上 [16] 。

表面蛋白(Esp)以葡萄糖依赖性的调节方式,加强细菌表面的疏水性和附着,提高粪肠球菌生物膜的形成能力。郭惠杰 [17] 等人建立了粪肠球菌感染根管的体外模型,扫描电镜下可观察到粪肠球菌定植于根尖1/3并且不依赖于其他细菌而形成生物膜,证明了粪肠球菌能在低氧低营养的根管中长期存活,难以清理。

3. 粪肠球菌启动机体免疫防御的机制

持续性的炎症是导致RAP经久不愈的重要因素。骨破坏是根尖周病变的典型表现。轻度或中度炎症可触发宿主对侵袭性病原体的防御反应,维持组织内环境稳定,粪肠球菌而炎症持续存在可能导致新骨形成能力显著下降等严重的组织损伤进一步促进RAP的进展。

3.1. 粪肠球菌诱导巨噬细胞凋亡促进PAP进展

巨噬细胞能够吞噬并杀伤多种入侵的病原微生物,同时激活淋巴细胞和其他免疫细胞,激活机体的免疫反应,在调节根尖周炎症反应中发挥着重要作用 [18] 。粪肠球菌能诱导巨噬细胞坏死性凋亡激活后引发炎症反应和组织破坏,加剧根尖周组织损害 [19] 。粪肠球菌感染促进巨噬细胞中受体相互作用蛋白激酶3 (RIPK3)的磷酸化,进一步招募磷酸化坏死性凋亡的执行者—混合谱系激酶结构域样蛋白(MLKL)。磷酸化的MLKL寡聚化并转移到巨噬细胞胞膜上,导致细胞膜破裂和细胞内免疫原性内容物的释放 [20] 。Dai [21] 等人调查了RIPK3/MLKL信号通路是否在难治性根尖周炎患者获得的根尖周病变标本中被激活,然后使用RIPK3基因缺陷小鼠来确定坏死性凋亡在小鼠体内的表达。研究发现RAP患者的根尖周病变标本中RIPK3和MLKL的磷酸化水平升高。此外,在粪肠球菌感染的小鼠难治性根尖周炎模型中通过RIPK3抑制剂抑制巨噬细胞坏死性凋亡可以显著减轻炎症范围和骨破坏。粪肠球菌也可诱导成骨细胞坏死,成骨细胞数量减少可能会抑制根尖周组织的修复效率 [22] 。

研究证明粪肠球菌LTA通过抑制p-Akt和p-mTOR信号通路激活巨噬细胞自噬。自噬是由溶酶体介导的降解过程,无用的细胞器和大分子被自噬小泡输送到溶酶体后被降解回收,以维持细胞生物能量稳态并支持应激条件下的生物合成过程 [23] 。LIN [24] 等人通过建立稳定表达自噬双标腺病毒mRFP-GFP-LC3-HBLV-PURO的细胞系,体外观察巨噬细胞自噬,并敲除巨噬细胞中Beclin1基因后观察到LTA诱导的自噬受到了抑制,证明了巨噬细胞自噬也依赖于Beclin1基因调节。之后建立了诱导根尖周炎的大鼠模型,发现辛伐他汀可能通过促进巨噬细胞自噬保护成骨细胞免于凋亡来缓解根尖周炎的进展。翟 [25] 等也证实了选择性抑制PI3K/Akt/mTOR通路可以调节巨噬细胞自噬。

3.2. 粪肠球菌诱导IL-1β分泌促进根尖周骨吸收

白细胞介素-1 (Interleukin-1, IL-1)由活化的巨噬细胞产生,主要诱导破骨细胞形成和激活,也可通过激活先天性免疫反应来抵抗细菌感染。IL-1通过诱导成骨细胞表面NF-κB受体活化因子配体激活剂(RANKL)的表达,与破骨细胞前体结合,促进破骨细胞分化,减少破骨细胞凋亡,从而增强骨吸收 [26] 。因此,通过IL-1受体拮抗剂(IL-1RA)抑制其信号传导可以减小根尖周病变范围 [27] 。白细胞介素-1β (Interleukin-1β, IL-1β)参与机体炎症反应,在宿主防御许多病原体的过程中起着关键作用。然而IL-1β的过度分泌会加剧炎症反应并导致组织损伤。IL-1β通过在感染部位诱导中性粒细胞集落刺激因子并促进急性粒细胞生成,对于病原体清除至关重要,因此可以抵抗感染。IL-1β是在根尖肉芽组织及其渗出液中最常检测到的炎症细胞因子,其蛋白质水平是IL-1α的两倍。但是经过完善的根管治疗后,根尖周渗出液中可以检测到IL-1β的蛋白质水平降低,而IL-1α的蛋白质水平升高 [28] 。Eislmayr [29] 等人观察到IL-1β基因缺乏小鼠感染细菌后器官中仍有较高的细菌负荷,并迅速播散到远处器官,中性粒细胞浸润范围减少,证明了IL-1β基因缺乏导致病原体清除能力减弱。

IL-1β合成包括两个过程:IL-1β前体蛋白(pro-IL-1β)诱导IL-1β合成和IL-1β成熟。其中,pro-IL-1β的表达依赖于Toll样受体(Toll-like receptor, TLR)触发的核因子-κB (NF-κB)信号通路,在caspase-1的介导下转化为成熟的活化成分:IL-1β。caspase-1由pro-caspase-1、凋亡相关斑点样蛋白(ASC)和Nod样受体(NLR)或AIM2家族成员组成的炎性复合体激活 [30] 。激活后的capsase-1促进IL-1β和IL-18的成熟和分泌。Ran等人 [31] 使用粪肠球菌感染THP-1巨噬细胞,表明粪肠球菌以MOI(病毒感染复数)和时间依赖性方式诱诱导IL-1β分泌的机制。研究人员使用caspase-1抑制剂Z-YVAD-FMK和Ac-YVAD-CHO预处理细胞后显示粪肠球菌诱导的IL-1β分泌和LDH释放明显减少。这表明caspase-1是粪肠球菌诱导的IL-1β成熟LDH释放所必需的。Lu等人在大鼠模型中比较了溶细胞性和非溶细胞性粪肠球菌感染的难治性根尖周炎中IL-1β的表达,显示两种粪肠球菌菌株均可诱导局部IL-1β表达,而且细胞溶解性粪肠球菌可能在RAP中引起更严重的局部炎症和组织破坏 [32] 。

3.3. 粪肠球菌抑制Treg细胞发挥作用

研究发现细菌侵入根尖周组织后CD4+辅助性T细胞(T helper,Th细胞)在趋化因子的作用下活化、增殖分化成不同的细胞亚群并发挥抗炎或促炎作用 [33] 。Treg细胞的分化是由胸腺和周围的T细胞抗原受体(TCR)信号触发和控制的,当分化的CD4-SP细胞收到强TCR信号时,它们会上调CD25的表达,成为Treg的前体。如果这些前体细胞在一段时间内继续接收持续的TCR信号,它们将启动Foxp3转录并分化成为Treg细胞 [34] 。

难治性根尖周炎作为口腔常见的一种溶骨性疾病,其主要病理特征是对入侵细菌的免疫炎性反应和牙槽骨吸收。Foxp3特异性高表达于调节性T细胞,对活化的T细胞和破骨细胞有抑制作用。李梦菲 [35] 等人建立的大鼠模型中,封入粪肠球菌悬液的难治性根尖周炎模型中Foxp3的表达量明显低于普通根尖周炎模型,进而推测粪肠球抑制Foxp3+Treg细胞增殖,导致了Foxp3+Treg和Th17的失衡,影响T细胞发挥自身免疫抗炎作用,从而造成难治性根尖周炎持续性的骨破坏。当Treg细胞密度降低时,粪肠球菌也会产生活性氧(ROS)并激活炎症细胞因子,促进ROS介导的miR-21表达并减少磷酸酶与张力蛋白同源物(PTEN)的表达,实现肿瘤细胞的免疫逃逸 [36] 。

4. 小结

粪肠球菌由于其在恶劣环境下生存的能力以及耐药性形成的生物膜常常不容易被清理,使得根管治疗不能达到理想的效果。此外,粪肠球菌的多种毒力因子对抗机体免疫反应并逐渐掌握主动权,造成根尖周炎经久不愈。同时,粪肠球菌也会引起胃肠道和尿路感染等全身多处累及。因此,深入了解粪肠球菌在口腔炎症中的致病机制,针对粪肠球菌诱发炎症所涉及的信号通路,使用坏死性凋亡的抑制剂或脂磷壁酸拮抗剂可能成为治疗难治性根尖周炎的合理策略。巨噬细胞自噬和清除病原体的炎症反应均参与难治性根尖周炎的机制,关于巨噬细胞坏死对粪肠球菌清除的影响也值得进一步研究。

基金项目

新疆维吾尔自治区自然科学基金(2020D01C125)。

文章引用

关 镕,赵 莉,马依热·阿布都赛麦提. 粪肠球菌在难治性根尖周炎炎症反应中的研究进展
Research Progress of Enterococcus faecalis in Inflammatory Response in Refractory Apical Periodontitis[J]. 临床医学进展, 2023, 13(12): 19547-19553. https://doi.org/10.12677/ACM.2023.13122752

参考文献

  1. 1. Ali, I.A.A., Cheung, G.S.P. and Neelakantan, P. (2022) Transition Metals and Enterococcus faecalis: Homeostasis, Vir-ulence and Perspectives. Molecular Oral Microbiology, 37, 276-291. https://doi.org/10.1111/omi.12391

  2. 2. Gaca, A.O. and Lemos, J.A. (2019) Adaptation to Adversity: The Intermingling of Stress Tolerance and Pathogenesis in Enter-ococci. Microbiology and Molecular Biology Reviews, 83, e00008-19. https://doi.org/10.1128/MMBR.00008-19

  3. 3. Da, S.R., Tay, W.H., Ho, F.K., et al. (2022) Enterococcus faecalis Alters Endo-Lysosomal Trafficking to Replicate and Persist within Mammalian Cells. PLOS Pathogens, 18, e1010434. https://doi.org/10.1371/journal.ppat.1010434

  4. 4. Ch’Ng, J.H., Chong, K., Lam, L.N., et al. (2019) Bio-film-Associated Infection by Enterococci. Nature Reviews Microbiology, 17, 82-94. https://doi.org/10.1038/s41579-018-0107-z

  5. 5. Deng, Z., Lin, B., Liu, F., et al. (2023) Role of Enterococcus fae-calis in Refractory Apical Periodontitis: From Pathogenicity to Host Cell Response. Journal of Oral Microbiology, 15, Article ID: 2184924. https://doi.org/10.1080/20002297.2023.2184924

  6. 6. Wu, S., Liu, Y., Zhang, H., et al. (2020) Nano-Graphene Oxide with Antisense walR RNA Inhibits the Pathogenicity of Enterococcus faecalis in Periapical Periodontitis. Journal of Dental Sciences, 15, 65-74. https://doi.org/10.1016/j.jds.2019.09.006

  7. 7. Jia, G., Yu, M., Shang, X.H., et al. (2021) A Five-Year Experience for Treating Patients with Chronic Apical Periodontitis with Root Canal Treatment: A Retrospective Cohort Study. Shanghai Journal of Stomatology, 30, 124-128.

  8. 8. Siqueira, J.F., Antunes, H.S., Pérez, A.R., et al. (2020) The Apical Root Canal System of Teeth with Posttreatment Apical Periodontitis: Correlating Microbiologic, Tomographic, and His-topathologic Findings. Journal of Endodontics, 46, 1195-1203. https://doi.org/10.1016/j.joen.2020.05.020

  9. 9. Hu, T., Lei, L. and Zhou, X.D. (2022) Research Progress in Pathogenesis and Control of Enterococcus faecalis with Persis-tent Infection in Root Canals. Chinese Journal of Stomatology, 57, 10-15.

  10. 10. Daw, K., Baghdayan, A.S., Awasthi, S., et al. (2012) Biofilm and Planktonic Enterococcus faecalis Elicit Different Responses from Host Phagocytes in Vitro. FEMS Immunology and Medical Microbiology, 65, 270-282. https://doi.org/10.1111/j.1574-695X.2012.00944.x

  11. 11. Elashiry, M.M., Elashiry, M., Zeitoun, R., et al. (2020) Enterococcus faecalis Induces Differentiation of Immune-Aberrant Dendritic Cells from Murine Bone Marrow-Derived Stem Cells. Infection and Immunity, 88, e00338-20. https://doi.org/10.1128/IAI.00338-20

  12. 12. Gomes, B.P.F.A., Francisco, P.A., Godoi Jr., E.P., et al. (2021) Identi-fication of Culturable and Nonculturable Microorganisms, Lipopolysaccharides, and Lipoteichoic Acids from Root Ca-nals of Teeth with Endodontic Failure. Journal of Endodontics, 47, 1075-1086. https://doi.org/10.1016/j.joen.2021.04.011

  13. 13. Wang, L., Jin, H., Ao, X., et al. (2019) JAK2-STAT3 Signaling Pathway Is Involved in Rat Periapical Lesions Induced by Enterococcus faecalis. Oral Diseases, 25, 1769-1779. https://doi.org/10.1111/odi.13169

  14. 14. Lima, S.M., Sousa, M.G., Freire, M.S., et al. (2015) Immune Response Profile against Persistent Endodontic Pathogens Candida albicans and Enterococcus faecalis in Vitro. Journal of Endo-dontics, 41, 1061-1065. https://doi.org/10.1016/j.joen.2015.02.016

  15. 15. Kowalski, W.J., Kasper, E.L., Hatton, J.F., et al. (2006) Entero-coccus faecalis Adhesin, Ace, Mediates Attachment to Particulate Dentin. Journal of Endodontics, 32, 634-637. https://doi.org/10.1016/j.joen.2005.12.005

  16. 16. Guneser, M.B. and Eldeniz, A.U. (2016) The Effect of Gelatinase Production of Enterococcus faecalis on Adhesion to Dentin after Irrigation with Various Endodontic Irrigants. Acta Bio-materialia Odontologica Scandinavica, 2, 144-149. https://doi.org/10.1080/23337931.2016.1256212

  17. 17. 郭惠杰, 岳林. 粪肠球菌在根管内定植模式的体外研究[J]. 北京大学学报(医学版), 2009, 41(6): 699-701.

  18. 18. Su, C., Zhang, R., Wang, R., et al. (2022) Prognostic Predic-tors of Endodontic Microsurgery: Radiographic Assessment. International Dental Journal, 72, 628-633. https://doi.org/10.1016/j.identj.2022.02.007

  19. 19. Xu, Z., Tong, Z., Neelakantan, P., et al. (2018) Enterococcus fae-calis Immunoregulates Osteoclastogenesis of Macrophages. Experimental Cell Research, 362, 152-158. https://doi.org/10.1016/j.yexcr.2017.11.012

  20. 20. Van Hoecke, L., Van Lint, S., Roose, K., et al. (2018) Treatment with mRNA Coding for the Necroptosis Mediator MLKL Induces Antitumor Immunity Directed against Neo-Epitopes. Nature Communications, 9, Article No. 3417. https://doi.org/10.1038/s41467-018-05979-8

  21. 21. Dai, X., Ma, R., Jiang, W., et al. (2022) Enterococcus faecal-is-Induced Macrophage Necroptosis Promotes Refractory Apical Periodontitis. Microbiology Spectrum, 10, e104522. https://doi.org/10.1128/spectrum.01045-22

  22. 22. Dai, X., Deng, Z., Liang, Y., et al. (2020) Enterococcus faecalis Induces Necroptosis in Human Osteoblastic MG63 Cells through the RIPK3/MLKL Signalling Pathway. International Endodontic Journal, 53, 1204-1215. https://doi.org/10.1111/iej.13323

  23. 23. Fu, Q., Chen, K., Zhu, Q., et al. (2017) Beta-Catenin Promotes Intracellular Bacterial Killing via Suppression of Pseudomonas aeruginosa-Triggered Macrophage Autophagy. Journal of Interna-tional Medical Research, 45, 556-569. https://doi.org/10.1177/0300060517692147

  24. 24. Lin, D., Gao, Y., Zhao, L., et al. (2018) Enterococcus faecalis Lipoteichoic Acid Regulates Macrophages Autophagy via PI3K/Akt/mTOR Pathway. Biochemical and Biophysical Re-search Communications, 498, 1028-1036. https://doi.org/10.1016/j.bbrc.2018.03.109

  25. 25. Zhai, C., Cheng, J., Mujahid, H., et al. (2014) Selective Inhibition of PI3K/Akt/mTOR Signaling Pathway Regulates Autophagy of Macrophage and Vulnerability of Atherosclerotic Plaque. PLOS ONE, 9, e0090563. https://doi.org/10.1371/journal.pone.0090563

  26. 26. 陈宇雄, 杨詠嘉, 黄元瑾. IL-1β和TNF-α对成骨样MG63细胞OPG和RANKL表达的影响[J]. 广东医学, 2018, 39(16): 2414-2418.

  27. 27. Tazawa, K., Azuma, P.M., Furusho, H., et al. (2022) Revisiting the Role of IL-1 Signaling in the Development of Apical Periodontitis. Frontiers in Dental Medicine, 3, Article ID: 985558. https://doi.org/10.3389/fdmed.2022.985558

  28. 28. Matsuo, T., Ebisu, S., Nakanishi, T., et al. (1994) Interleukin-1 alpha and Interleukin-1 beta Periapical Exudates of Infected Root Canals: Correlations with the Clinical Findings of the Involved Teeth. Journal of Endodontics, 20, 432-435. https://doi.org/10.1016/S0099-2399(06)80032-4

  29. 29. Eislmayr, K., Bestehorn, A., Morelli, L., et al. (2022) Non-redundancy of IL-1alpha and IL-1beta Is Defined by Distinct Regulation of Tissues Orchestrating Resistance versus Tol-erance to Infection. Science Advances, 8, eabj7293. https://doi.org/10.1126/sciadv.abj7293

  30. 30. 樊佳, 赵二川, 叶震璇, 等. ASC与Caspase-1在PBC患者外周血中的表达研究[J]. 重庆医学, 2018, 47(8): 1044-1048.

  31. 31. Ran, S., Huang, J., Liu, B., et al. (2021) Enterococcus faecalis Activates NLRP3 Inflammasomes Leading to Increased Interleukin-1 beta Secretion and Pyroptosis of THP-1 Macrophages. Microbial Pathogenesis, 154, Article ID: 104761. https://doi.org/10.1016/j.micpath.2021.104761

  32. 32. Lu, B., Zhang, J., Huang, X., et al. (2015) Expression of Inter-leukin-1beta and Matrix Metalloproteinase-8 in Cytolytic and Noncytolytic Enterococcus faecalis-Induced Persistent Ap-ical Periodontitis: A Comparative Study in the Rat. Journal of Endodontics, 41, 1288-1293. https://doi.org/10.1016/j.joen.2015.04.019

  33. 33. Istomine, R., Pavey, N. and Piccirillo, C.A. (2016) Posttranscrip-tional and Translational Control of Gene Regulation in CD4+ T Cell Subsets. The Journal of Immunology, 196, 533-540. https://doi.org/10.4049/jimmunol.1501337

  34. 34. Sakaguchi, S., Mikami, N., Wing, J.B., et al. (2020) Regulatory T Cells and Human Disease. Annual Review of Immunology, 38, 541-566. https://doi.org/10.1146/annurev-immunol-042718-041717

  35. 35. 李梦菲, 仉红, 赵少剑, 等. 叉头样转录因子3在粪肠球菌感染模型大鼠难治性根尖周炎病变中的表达[J]. 中国组织工程研究, 2023, 27(8): 1187-1192.

  36. 36. Li, R., Hu, Y. and Hou, S. (2022) An Exploration of Oral-Gut Pathogens Mediating Immune Escape of Pancreatic Cancer via miR-21/PTEN Axis. Frontiers in Microbiology, 13, Article ID: 928846. https://doi.org/10.3389/fmicb.2022.928846

期刊菜单