Material Sciences
Vol. 13  No. 12 ( 2023 ), Article ID: 78095 , 10 pages
10.12677/MS.2023.1312124

中低温固体氧化物燃料电池半导体复合异质结电解质研究进展

高栋栋1,马翰博1,史李嘉1,许瑞1,王婉如1,赵君昊1,张洁1,2,3*

1郑州师范学院物理与电子工程学院,河南 郑州

2郑州大学物理学院(微电子学院),河南 郑州

3郑州威科姆科技股份有限公司,河南 郑州

收稿日期:2023年11月19日;录用日期:2023年12月20日;发布日期:2023年12月27日

摘要

中低温固体氧化物燃料电池(IT-SOFC)是未来发展的趋势,单相电解质的离子电导率在600℃以下达不到≥ 0.1 S/cm的商业化应用标准,因此必须开发适合于中低温SOFC的复合电解质材料。本文通过大量研究对比综述了钐掺杂氧化铈–半导体复合异质结电解质、钆掺杂氧化铈–半导体复合异质结电解质、其他离子导体–半导体复合异质结三类半导体–离子导体复合电解质,以及两相半导体复合异质结电解质的研究进展。研究表明与半导体复合后形成的异质结电解质最高电导率 ≥ 0.2 S/cm,是单相电解质电导率的2~3倍,其中钐掺杂氧化铈(SDC)–半导体复合异质结电解质具有更高的离子电导率和更高的功率密度,SDC与多种半导体材料复合后制成的电池最大功率密度 ≥ 1000 mW/cm2,体现出更加优异的性能。这是由于半导体与离子导体的两相复合存在大量异质界面,在异质界面产生内建电场,从而提高材料的离子电导率,同时抑制其电子电导,显示出优异的电学性能。研究结果期望为实验上制备出性能优异的半导体复合异质结电解质提供理论指导。

关键词

中低温固体氧化物燃料电池,异质结电解质,离子电导率,开路电压,功率密度

Research Progress on Semiconductor Composite Heterojunction Electrolyte Materials for Medium-Low Temperature Solid Oxide Fuel Cells

Dongdong Gao1, Hanbo Ma1, Lijia Shi1, Rui Xu1, Wanru Wang1, Junhao Zhao1, Jie Zhang1,2,3*

1College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou Henan

2School of Physics (School of Microelectronics), Zhengzhou University, Zhengzhou Henan

3Zhengzhou Vcom Science & Technology Co. Ltd., Zhengzhou Henan

Received: Nov. 19th, 2023; accepted: Dec. 20th, 2023; published: Dec. 27th, 2023

ABSTRACT

Medium-low temperature solid oxide fuel cells (IT-SOFC) is the development trend in the future, and the ion conductivity of single-phase electrolytes cannot meet the commercial application standard of ≥ 0.1 S/cm below 600˚C. Therefore, it is necessary to develop composite electrolyte materials suitable for medium-low temperature SOFCs. This article provides a comprehensive review of the research progress of three types of semiconductor-ion conductor composite electrolytes: samarium doped ceria-semiconductor composite heterojunction electrolytes, gadolinium doped ceria-semiconductor composite heterojunction electrolytes, and other ion conductor-semiconductor composite heterojunctions, as well as the two-phase semiconductor composite heterojunction electrolytes. Research has shown that the highest conductivity of heterojunction electrolytes formed by compounded by semiconductors is ≥ 0.2 S/cm, which is 2~3 times that of single-phase electrolytes. Among them, samarium doped cerium oxide (SDC) - semiconductor composite heterojunction electrolytes have higher ion conductivity and power density. The maximum power density of batteries made by combining SDC with various semiconductor materials is ≥ 1000 mW/cm2, reflecting more excellent performance. This is due to the presence of a large number of heterogeneous interfaces in the two-phase composite of semiconductors and ionic conductors, which generates an internal electric field at the heterogeneous interface, thereby improving the ion conductivity of the material while suppressing its electronic conductivity, so the excellent electrical performance can be obtained. The research results are expected to provide theoretical guidance for the preparation of semiconductor composite heterojunction electrolytes with excellent performance in experiments.

Keywords:Medium-Low Temperature Solid Oxide Fuel Cell, Heterojunction Electrolyte, Ionic Conductivity, Open Circuit Voltage, Power Density

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

能源短缺与环境污染问题变得日益严峻,因此开发绿色环保、高效便捷的新能源技术具有重要意义。固体氧化物燃料电池(SOFC)是一种能够将化学能转化为电能,且具有能量转化率高、环境友好、无污染以及燃料多样性等优点的电源技术。传统的SOFC运行温度为800℃~1000℃,高温运行增加了燃料电池的生产成本,并且降低其运行的可靠性。因此固体氧化物燃料电池中低温化(600℃以下)是未来的发展趋势,这就要求探索适用于中低温(600℃以下) SOFC的新型电池材料。电解质是燃料电池的核心部分,目前常用的SOFC电解质有:ZrO2基电解质 [1] [2] 、Bi2O3基电解质材料 [3] [4] 、LaGaO3基电解质 [5] [6] 、CeO2基电解质材料 [7] - [12] 。研究表明单相电解质的离子电导率在600℃以下均达不到 ≥ 0.1 S/cm的商业应用要求,因此制备高离子电导率的复合电解质成为发展的方向。

目前颇受关注的新型半导体离子材料,不仅具有多离子传输路径,而且由异质结构产生的内建电场能大大增强离子电导率,相比于传统的电解质,半导体复合异质结电解质具有更好的性能和成本优势 [13] [14] [15] 。本文主要综述了钐掺杂氧化铈–半导体复合异质结电解质、钆掺杂氧化铈–半导体复合异质结电解质、其他离子导体–半导体复合异质结三类半导体–离子导体复合电解质,以及两相半导体复合电解质的研究进展。

2. 异质结构电解质概述

Zhu等提出了一种将半导体离子导体复合材料作为功能层的无电解质燃料电池(EFFC) [16] ,虽然这种复合电解质具有离子电导和电子电导,但有研究将N型和P型半导体以及离子导体的复合层作为电解质应用于燃料电池中,粒子之间的界面或粒子表面形成体异质结或P-N结,通过测试发现由于能带排列,电池不仅抑制了电子传输,而且增强整个电解质中离子传输的特性 [17] 。P-N异质结构能使电荷发生分离,阻碍了电子在内部的传输,并引入类似二极管的行为,解释了电池内部的工作原理,为SOFC的创新性发展提供了理论依据 [18] 。

近年来Zhu又进一步提出了体异质结(BHJ)的概念 [15] ,指出这种复合材料内部包含的半导体组分和离子导体组分形成了互相贯穿的网状结构,而异质相界处会形成体异质结 [14] [19] ,从而整个器件内部形成了可以有效地防止短路的BHJ,复合材料中由于存在了大量异质界面,显著提升了SOFC的离子导电性,使SOFC具有更加优异的输出性能。

3. 半导体–离子导体复合异质结电解质

通常将半导体材料与传统的SOFC离子电解质材料进行复合来制备半导体—离子导体复合电解质,如掺杂氧化铈与半导体材料(n型和p型)复合的异质结构。而半导体材料(n型和p型)的选择既有像氧化锌、二氧化钛此类的单相半导体,也有如钙钛矿氧化物半导体、金属氧化物电极材料立方结构的LiNiCuSr氧化物、层状氧化物LiCo0.8Fe0.2O2(LCF)、ABO3型钙钛矿氧化物此类的多相复合半导体材料。由于二氧化铈(CeO2)在许多领域都表现出了很好的功能性,因此在制备半导体–离子导体复合材料时,离子电导性更高的掺杂稀土和碱性阳离子(如Gd、Sm、Ca和La)的CeO2,如SDC (钐掺杂氧化铈)、GDC (钆掺杂氧化铈)、TDC (铽掺杂氧化铈)等常被作为离子导体材料的首选。

3.1. 钐掺杂氧化铈–半导体复合异质结电解质

Zhu B等采用共沉淀法将离子导体Ce0.8Sm0.2O2-δ(SDC)和半导体Li0.15Ni0.45Zn0.4氧化物合成了复合电解质,所制备的电解质在550℃下取得了高达600 mW/cm2的性能输出 [16] 。童语竹利用湿化学法将SDC和TiO2制成了类似核壳结构的SDC@TiO2复合材料,该复合材料在550℃时开路电压达到1 V,最大输出功率密度达到761 mW/cm2,比用干混法制备的SDC-TiO2复合材料作为电解质的电池性能高出21% [20] 。邵康采用半导体材料NaCoO2和离子导体SDC以及添加Ni0.8Co0.15Al0.05LiO2(NCAL)的催化层构建了新类型半导体–离子导体燃料电池(SIMFC),当半导体NaCoO2含量为 30wt%时,550℃时最大离子电导率约为0.204 S/cm,开路电压1.025 V,最大功率密度为631 mW/cm2,450℃时仍有开路电压1.06 V,最大功率密度的450 mW/cm2的优异性能 [21] 。刘开将SDC与半导体材料SnO2复合构筑半导体离子导体隔膜燃料电池(SIMFC),当质量分数为20SnO2-80SDC时,在550℃条件下电池的最大输出功率可达1059 mW/cm2,为了进一步提高SnO2的离子电导率,构建了以Ce掺杂SnO2/SDC复合材料为电解质的燃料电池,该器件提供了大于1 V的开路电压,在550℃下最大输出功率达到了1177 mW/cm2 [22] 。

宓有全将制备的掺杂氧化铈氧化物(RE)与制备的金属氧化物LiNiCuSr (LNCS)混合,成功开发出RE-LNCS离子和半导体纳米复合材料,用其制备的半导体离子隔膜燃料电池在550℃的开路电压为1.08 V,输出功率达到1108 mW/cm2,并设计了一种功能强大的半导体(p型)层状氧化物LiCo0.8Fe0.2O2(LCF),通过引进共沉淀法制备的离子导体SDC材料构造LCF-SDC的异质复合结构,在550℃时具有0.23 S/cm的离子导电率,以及1150 mW/cm2的输出功率 [23] 。Sajid Rauf设计的Co0.2Zn0.8O-SDC异质结构材料在550℃下输出功率密度达到928 mW/cm2,离子电导率为0.24 S/cm,其设计的另一种异质结构材料Ba0.5Sr0.5Co0.1Fe0.7Zr0.1Y0.1O3-δ-SCDC在520℃下输出功率密度达到900 mW/cm2,离子电导率为0.22 S/cm [24] 。

表1列出了SDC-半导体复合异质结电解质性能的对比,从表1可以看出SDC与半导体复合异质结电解质的电导率比纯SDC的电导率提高2~3倍,其中Sajid Rauf等设计的Co0.2Zn0.8O-SDC电解质电导率最高,550℃时达到0.24 S/cm [8] ;用半导体复合后的异质结电解质制备的电池测试的开路电压均超过1 V,功率密度也大幅提高,许多半导体–复合异质结电解质制备的电池在550℃时功率密度超过1000 mW/cm2 [22] [23] [25] ,其中刘开等制备的SDC-Ce掺杂SnO2电解质制备的电池功率密度最高,550℃时功率密度达到1177 mW/cm2 [22] 。

Table 1. Comparison of performance of SDC-semiconductor composite heterojunction electrolytes

表1. SDC-半导体复合异质结电解质性能对比

Dong W等将半导体SrCo0.8Nb0.1Ta0.1O3-δ(SCNT)与离子导体Ce0.8Sm0.05Ca0.15O2-δ(SCDC)合成半导体–离子导体复合材料,制备的电池在450℃时开路电压为1.08 V,最大功率密度达到400 mW/cm2 [26] 。Wang B等人将Ca0.04Ce0.8Sm0.16O2-δ(SCDC)和LSCF以质量比为2:1复合,在550℃时的输出功率为814 mW/cm2,600℃时离子电导率为0.188 S/cm [11] 。张炜将SCDC与一种半导体镍钴铝锂氧化物(NCAL)混合,制备了SCDC-NCAL半导体–离子混合传导型隔膜的燃料电池,在550℃的功率密度达到617 mW/cm2,然后将Sm掺杂的CeO2-Na2CO3(NSDC)复合材料与NCAL半导体材料6:4混合,这种复合隔膜材料制备的燃料电池在550℃时输出功率达到了1072 mW/cm2 [12] 。

表2列出了SCDC、NSDC与半导体复合异质结电解质性能的对比,从表2可以看出SCDC及NSDC与半导体复合后的电解质所制备的电池在550℃时的功率密度均超过600 mW/cm2 [11] [12] [27] ,其中张炜等用NSDC-NCAL制备的单部件燃料电池550℃时输出功率达到了1072 mW/cm2 [12] 。

Table 2. Comparison of performance of SCDC, NSDC-semiconductor composite heterojunction electrolytes

表2. SCDC、NSDC与半导体复合异质结电解质性能对比

3.2. 钆掺杂氧化铈–半导体复合异质结电解质

Chen G等将钙钛矿氧化物SrTiO3(STO)半导体与(GDC)制备了SIFC电池,在550℃时最大功率密度为620 mW/cm2,并获得了0.24 S/cm的离子电导率 [28] 。Zhu B等采用固相反应法将LiOH和Ni(NO3)2·6H2O合成半导体材料LiNiO2,然后与GDC复合制备的SIFC单电池在550℃时的最大功率密度为450 mW/cm2 [29] 。Asghar等采用固相反应法将Li0.15Ni0.45Zn0.4-oxide与GDC混合制备出的SIFC在550℃开路电压为1.02 V,最大功率密度为800 mW/cm2 [30] 。董婷等将半导体LiCo0.225Ni0.7Cu0.075O3-δ(LCNC)与GDC制备GDC-LCNC复合电解质材料,在550℃下质量比为2:1时,功率密度为223 mW/cm2 [31] 。Xia Y将LiNiCuZn-氧化物与GDC按照一定的质量比制备的燃料电池在550℃时开路电压为1.05V,最大功率密度为800 mW/cm2 [32] 。周晓蜜将Ce0.9Gd0.1O2-δ-Na2CO3(NGDC)与半导体材料La0.3Sr0.7Fe0.7Ti0.3O3-δ (LSTF)进行复合,LSTF质量百分比为50 %时,形成的离子–半导体隔膜层燃料电池在600℃时开路电压为0.8 V,输出功率密度为654 mW/cm2,将另一种半导体材料NdBa0.5Sr0.5Cu2O5+δ (NBSCu)与NGDC制得NGDC-NBSCu复合隔膜燃料电池,在600℃时开路电压为1.0 V,获得726 mW/cm2的稳定输出功率 [33] 。

表3列出了GDC、NGDC与半导体复合异质结电解质性能的对比,从表3可以看出用GDC、NGDC与半导体复合异质结电解质制备的电池开路电压在1 V左右,Asghar M I等利用GDC-Li0.15Ni0.45Zn0.4-oxide [30] 和Xia Y等利用GDC-LiNiCuZn-氧化物制备的电池在550℃时最大功率密度达到800 mW/cm2 [32] 。

Table 3. Comparison of performance of GDC, NGDC-semiconductor composite heterojunction electrolytes

表3. GDC、NGDC-半导体复合异质结电解质性能对比

3.3. 其他离子导体–半导体复合异质结电解质

王广军采用溶胶凝胶法制备了铽掺杂氧化铈TDC,然后与层状氧化物半导体材料LiNi0.8Co0.15Al0.05O2-δ (LNCA)进行了异质复合,所制备的单电池在温度为460℃~500℃时输出功率为190-610 mW/cm2 [34] 。乔峥将ZnO中引入离子导体La/Pr掺杂CeO2(LCP)从而设计了新型的复合电解质ZnO-LCP,该复合电解质在550℃时的离子电导率为0.156 S/cm,并获得864 mW/cm2的输出功率 [35] 。邢月明将LaNiO3(LNO)作为电解质应用在SOFC中,进一步引入CeO2构建了LNO-CeO2异质结,在LNO:CeO2 = 7:3时,制备的燃料电池在520℃输出功率达到了983 mW/cm2 [36] 。高洁制备了ZnO和YSZ的复合电解质,并研究了两种材料的重量比对电池性能的影响,结果表明在550℃下当两者重量比为1:1时,电池获得721 mW/cm2的最佳功率密度 [37] 。

表4列出了其他离子导体与半导体复合异质结电解质性能的对比,从表4可以看出高洁等设计的YSZ-ZnO复合电解质在550℃时电导率最大,达到0.338 S/cm [10] 。邢月明等用CeO2-LNO异质结制备的电池在520℃输出功率最大,达到了983 mW/cm2 [36] 。

Table 4. Comparison of properties of other ionic conductors-semiconductor composite heterojunctions electrolyte

表4. 其他离子导体–半导体复合异质结电解质性能对比

4. 两相半导体复合异质结电解质

钙钛矿型半导体因其较好的热力学、化学稳定性、较高的催化性能成为SIFC的最佳材料之一。董婷将La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)和Li4Ti5O12(LTO)按照不同质量比混合,制备的LSCF-LTO复合材料在550℃时,LSCF:LTO (质量比) = 1:1时所制备电池的性能最佳,此时复合电解质的电导率达0.677 S/cm,LSCF-LTO电池的峰值功率密度达343 mW/cm2 [31] 。LIUL等将Sm2O3和半导体NiO复合异质结材料为电解质,将喷涂NCAL的泡沫镍作为阴阳极制备的燃料电池在550℃下最大功率密度为718 mW/cm2 [38] [39] 。湖北大学朱斌教授等将La0.65Sr0.3Ce0.05Cr0.5Fe0.5O3-δ新型高离子电导率材料用于低温型SIFC,在550℃下获得了837 mW/cm2的最大功率密度和1.117 V的开路电压 [40] 。中国地质大学吴艳等以La0.6Sr0.4Co0.2Fe0.8O3的复合异质结材料为电解质制备的SIFC在600℃取得了467 mW/cm2的功率密度 [41] 。

Xia等 [42] 打破了具有电子传导性的半导体不适用于SOFC的理论,利用BCFZY-ZnO复合材料形成异质结构从而构建出的SIFC电池在500℃时的开路电压为1.01 V,最大功率密度达到643 mW/cm2,优异的性能表明没有明显的短路问题。孙子元 [43] 基于BHJ的设计理念利用p型NiO纳米颗粒与ZnO颗粒形成体p-n结来构建BHJ电池,所构建的电池在最佳比例7ZnO-3NiO条件下,550℃时电压为0.964 V,功率密度为644 mW/cm2。Wu等人对ZnO-SrTiO3(STO)复合异质结材料的研究表明,单相材料ZnO和STO均不表现出离子导电,而ZnO-SrTiO3复合异质结材料由于形成了大量的异质界面,表现出可观的离子导电性 [44] 。Shah等制备了由p型SFT和n型ZnO组成的半导体异质结复合材料SrFe0.2Ti0.8O3-d-ZnO,用作LTSOFCs电解质,在520℃下其离子电导率为0.21 S/cm,组装成的电池功率密度峰值为650 mW/cm2 [45] 。

邢月明利用在线还原气氛处理的方法在CeO2表面构建了质子快速传输通道,该材料呈CeO2/CeO2-δ核壳结构。研究表明该异质结构材料在520℃下质子电导率高达0.16 S/cm,应用于SOFC电解质层后获得了697 mW/cm2的功率密度。之后邢月明构建了La0.8Sr0.2Co0.8Fe0.2O3-δ(LSCF)-CeO2复合异质结电解质,采用湿化学法将不同比例的CeO2与LSCF复合,发现LSCF-20%CeO2异质结电解质在520℃时其输出功率达到了501 mW/cm2,电导率高达0.23 S/cm。又将不同比例的CeO2与LaNiO3(LNO)复合制备LNO-CeO2半导体复合异质结电解质,所制备的电池在520℃时功率密度达到983 mW/cm2 (7:3) [36] 。

表5列出了两相半导体复合异质结电解质性能的对比,从表5可以看出该类异质结电解质在500℃~550℃所测得的电导率均超过了1.0 S/cm,达到了商业化应用的标准,用两相半导体复合异质结电解质制备的电池最大输出功率密度均超过了500 mW/cm2,其中SajidRauf等设计的SrFe0.2Ti0.8O3-δ-SnO2复合异质结电解质500℃时电导率最高达到0.24 S/cm,所制备电池的最大输出功率密度达到1004 mW/cm2 [46] [47] [48] 。

Table 5. Comparison of performance of two phase semiconductor composite heterojunction electrolytes

表5. 两相半导体复合异质结电解质性能对比

5. 小结

固体氧化物燃料电池的中低温化成为未来发展的趋势,单相电解质的离子电导率在600℃以下难以达到应用的要求,因此制备更高性能的复合电解质成为发展的方向,其中半导体复合异质结电解质具有更好的性能和成本优势。本文通过大量研究对比,简要概括了异质结构电解质,主要综述了钐掺杂氧化铈–半导体复合异质结电解质、钆掺杂氧化铈–半导体复合异质结电解质、其他离子导体–半导体复合异质结三类半导体–离子导体复合电解质,以及两相半导体复合电解质的研究进展。

研究表明与半导体复合后形成的异质结电解质最高电导率 ≥ 0.2 S/cm,是单相电解质电导率的2~3倍,其中钐掺杂氧化铈(SDC)–半导体复合异质结电解质具有更高的离子电导率和更高的功率密度,SDC与多种半导体材料复合后制成的电池最大功率密度 ≥ 1000 mW/cm2,体现出更加优异的性能。这是由于半导体与离子导体的两相复合存在大量异质界面,异质结能在半导体和离子材料接触界面产生内建电场,从而降低活化能、增加可迁移离子浓度、为离子运动提供额外的驱动力,促进离子传输,形成超离子传输通道,同时阻碍电子或空穴越过界面,显示出优异的性能。研究结果期望为实验上制备出性能优异的半导体复合异质结电解质提供理论指导。

基金项目

本项目由2022河南省自然科学基金–青年项目,应变诱导的自发极化对二氧化钛表面光催化性能影响机理研究(222300420378),河南省大学生创新训练计划项目(202312949002),河南省高等学校重点科研项目(23B140008),河南省一流本科课程建设项目(SHHYLKC2221718),郑州师范学院线上一流课程建设项目(XSYLKC221851),郑州师范学院大学生创新训练计划项目(DCZ2022002)提供经费支持。

文章引用

高栋栋,马翰博,史李嘉,许 瑞,王婉如,赵君昊,张 洁. 中低温固体氧化物燃料电池半导体复合异质结电解质研究进展
Research Progress on Semiconductor Composite Heterojunction Electrolyte Materials for Medium-Low Temperature Solid Oxide Fuel Cells[J]. 材料科学, 2023, 13(12): 1114-1123. https://doi.org/10.12677/MS.2023.1312124

参考文献

  1. 1. Radici, P., Valadez Huerta, G., Geesmann, N. and Kabelac, S. (2021) A Novel Method to Determine the Transport Coef-ficients of an YSZ Electrolyte Based on Impedance Spectroscopy. Solid State Ionics, 363, Article ID: 115591. https://doi.org/10.1016/j.ssi.2021.115591

  2. 2. Gao, B., Liu, Z., Ji, S. and Ao, Q.B. (2022) Fabrication of a YSZ Electrolyte Layer via Co-Pressing/Co-Sintering for Tubular NiO-YSZ Anode-Supported SOFCs. Materials Letters, 323, Article ID: 132547. https://doi.org/10.1016/j.matlet.2022.132547

  3. 3. Balci, M., Al-Jaafer, H. and Ari, M. (2022) Structural, Thermal and Electrical Analysis of Tb-Gd-Sm Co-Doped Bi2O3-Based Solid Solutions for Intermediate-Temperature Solid Oxide Fuel Cells (IT-SOFCs). Chemical Physics Letters, 809, Article ID: 140149. https://doi.org/10.1016/j.cplett.2022.140149

  4. 4. Balci, M., Cengel, A. and Ari, M. (2022) The Microstructure and Thermo-Electrical Characterization of the Tb-Gd-Ho Co-Doped Stabilized Bi2O3 Based Solid Electrolyte Systems. Chi-nese Journal of Physics, 79, 89-97. https://doi.org/10.1016/j.cjph.2022.08.005

  5. 5. Zhang, J., Liang, E.J. and Zhang, X.H. (2010) Rapid Synthesis of La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolyte by a CO2 Laser and Its Electric Properties for Intermediate Temperature Solid State Oxide Full Cells. Journal of Power Sources, 195, 6758-6763. https://doi.org/10.1016/j.jpowsour.2010.03.092

  6. 6. Zhang, J., Yuan, C., Wang, J.Q., et al. (2013) Oxygen Ion Conductivity of La0.8Sr0.2Ga0.83Mg0.17−xCoxO3−δ Synthesized by Laser Rapid Solidification. Chinese Physics B, 22, Arti-cle ID: 087201. https://doi.org/10.1088/1674-1056/22/8/087201

  7. 7. Dong, X., Tian, L., Li, J., Zhao, Y., Tian, Y. and Li, Y. (2014) Single Layer Fuel Cell Based on a Composite of Ce0.8Sm0.2O2-δ-Na2CO3 and a Mixed Ionic and Electronic Conductor Sr2Fe1.5Mo0.5O6-δ. Journal of Power Sources, 249, 270-276. https://doi.org/10.1016/j.jpowsour.2013.10.045

  8. 8. Deng, H., Zhang, W., Wang, X., et al. (2017) An Ionic Con-ductor Ce0.8Sm0.2O2-δ (SDC) and Semiconductor Sm0.5Sr0.5CoO3 (SSC) Composite for High Performance Electro-lyte-Free Fuel Cell. International Journal of Hydrogen Energy, 42, 22228- 22234. https://doi.org/10.1016/j.ijhydene.2017.03.089

  9. 9. Yousaf, M., Mushtaq, N., Zhu, B., et al. (2020) Electrochemi-cal Properties of Ni0.4Zn0.6Fe2O4 and the Heterostructure Composites (Ni-Zn ferrite-SDC) for Low Temperature Solid Oxide Fuel Cell (LT-SOFC). Electrochimical Acta, 331, Article ID: 135349. https://doi.org/10.1016/j.electacta.2019.135349

  10. 10. Mushtaq, N., Xia, C., Dong, W., et al. (2019) Tuning the En-ergy Band Structure at Interfaces of the SrFe0.75Ti0.25O3-δ- Sm0.25Ce0.75O2-δ Heterostructure for Fast Ionic Transport. ACS Applied Materials & Interfaces, 11, 38737-38745. https://doi.org/10.1021/acsami.9b13044

  11. 11. Wang, B., Wang, Y., Fan, L., et al. (2016) Preparation and Character-ization of Sm and Ca Co-Doped Ceria- La0.6Sr0.4Co0.2Fe0.8O3-δ Semiconductor-Ionic Composites for Electro-lyte-Layer-Free Fuel Cells. Journal of Materials Chemistry A, 4, 15426-15436. https://doi.org/10.1039/C6TA05763B

  12. 12. 张炜. 氧化铈基电解质在单部件燃料电池中的应用[D]: [硕士学位论文]. 武汉: 湖北大学, 2017.

  13. 13. Zhu, B., Lund, P., Raza, R., et al. (2013) A New Energy Conversion Technology Based on Nano-Redox and Nano- Device Processes. Nano Energy, 2, 1179-1185. https://doi.org/10.1016/j.nanoen.2013.05.001

  14. 14. Scharber, M.C., Hlbacher, M.D., Koppe, M., et al. (2006) De-sign Rules for Donors in Bulk-Heterojunction Solar Cells- Towards 10 % Energy-Conversion Efficiency. Advanced Ma-terials, 18, 789-794. https://doi.org/10.1002/adma.200501717

  15. 15. Zhu, B., Raza, R., Qin, H. and Fan, L.D. (2011) Single-Component and Three-Component Fuel Cells. Journal of Power Sources, 196, 6362-6365. https://doi.org/10.1016/j.jpowsour.2011.03.078

  16. 16. Zhu, B., Raza, R., Abbas, G. and Singh, M. (2011) An Elec-trolyte-Free Fuel Cell Constructed from One Homogenous Layer with Mixed Conductivity. Advanced Functional Mate-rials, 21, 2465-2469. https://doi.org/10.1002/adfm.201002471

  17. 17. Zhu, B., Raza, R., Liu, Q., Qin, H., Zhu, Z., Fan, L., Singh, M. and Lund, P. (2012) A New Energy Conversion Technology Joining Electrochemical and Physical Principles. RSC Advances, 2, 5066-5072. https://doi.org/10.1039/c2ra01234k

  18. 18. Lu, Y.Z., Li, J.J., Ma, L.G., et al. (2021) The Development of Semicon-ductor-Ionic Conductor Composite Electrolytes for Fuel Cells with Symmetrical Electrodes. International Journal of Hy-drogen Energy, 46, 9835-9846. https://doi.org/10.1016/j.ijhydene.2020.05.240

  19. 19. Gong, X., Tong, M., Brunetti, F.G., et al. (2011) Bulk Hetero-junction Solar Cells with Large Open-Circuit Voltage: Electron Transfer with Small Donor-Acceptor Energy Offset. Ad-vanced Materials, 23, 2272-2277. https://doi.org/10.1002/adma.201003768

  20. 20. 童雨竹. 二氧化钛电解质在固体氧化物燃料电池中的应用[D]: [硕士学位论文]. 武汉: 湖北大学, 2019.

  21. 21. 邵康. 混合半导体-离子型燃料电池新材料开发与电化学性能研究[D]: [硕士学位论文]. 深圳: 深圳大学, 2020.

  22. 22. 刘开. 氧化锡基半导体-离子导体在SOFC中的研究与应用[D]: [硕士学位论文]. 武汉: 湖北大学, 2021.

  23. 23. 宓有全. 基于新型功能半导体离子材料的低温固体氧化物燃料电池[D]: [硕士学位论文]. 武汉: 湖北大学, 2019.

  24. 24. Sajid Rauf. 设计面向低温固体氧化物燃料电池的高离子电导型半导体和异质结构电解质[D]: [硕士学位论文]. 武汉: 湖北大学, 2021.

  25. 25. 孟元靖. 钐掺杂氧化铈与钙钛矿复合电解质在低温固体氧化物燃料电池中的应用研究[D]: [博士学位论文]. 长春: 吉林大学, 2020.

  26. 26. Dong, W., Tong, Y., Zhu, B., et al. (2019) Semiconductor TiO2 Thin Film as an Electrolyte for Fuel Cells. Journal of Materials Chemistry A, 7, 16728-16734. https://doi.org/10.1039/C9TA01941C

  27. 27. Zhu, B., Wang, B., Wang, Y., et al. (2017) Charge Separation and Transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and Ion-Doping Ceria Heterostructure Material for New Generation Fuel Cell. Nano Energy, 37, 195-202. https://doi.org/10.1016/j.nanoen.2017.05.003

  28. 28. Chen, G., Liu, H., He, Y., et al. (2019) Electrochemical Mecha-nisms of an Advanced Low-Temperature Fuel Cell with a SrTiO3 Electrolyte. Journal of Materials Chemistry A, 7, 9638-9645. https://doi.org/10.1039/C9TA00499H

  29. 29. Zhu, B., Qin, H., Raza, R., et al. (2011) A Sin-gle-Component Fuel Cell Reactor. International Journal of Hydrogen Energy, 36, 536-8541. https://doi.org/10.1016/j.ijhydene.2011.04.082

  30. 30. Asghar, M.I., Jouttijärvi, S., Jokiranta, R., et al. (2018) Wide Bandgap Oxides for Low-Temperature Single-Layered Nanocomposite Fuel Cell. Nano Energy, 53, 391-397. https://doi.org/10.1016/j.nanoen.2018.08.070

  31. 31. 董婷. 半导体离子型燃料电池的性能研究[D]: [硕士学位论文]. 南京: 东南大学, 2020.

  32. 32. Xia, Y., Liu, X., Bai, Y., et al. (2012) Electrical Conductivity Optimization in Elec-trolyte-Free Fuel Cells by Single- Component Ce0.8Sm0.2O2-d-Li0.15Ni0.45Zn0.4 Layer. RSC Advances, 2, 3828-3834. https://doi.org/10.1039/c2ra01213h

  33. 33. 周晓蜜. 具有离子-半导体复合膜的无电解质层燃料电池的制备及性能[D]: [硕士学位论文]. 包头: 内蒙古科技大学, 2019.

  34. 34. 王广军. 新型低温固体氧化物燃料电池复合材料制备与器件设计[D]: [硕士学位论文]. 长春: 吉林大学, 2016.

  35. 35. 乔峥. 氧化锌基固态电解质在燃料电池中的应用及电导特性研究[D]: [博士学位论文]. 武汉: 湖北大学, 2021.

  36. 36. 邢月明. CeO2基半导体异质结材料的离子传输特性研究[D]: [博士学位论文]. 武汉: 中国地质大学, 2022.

  37. 37. 高洁. 固体氧化物燃料电池半导体-离子导体复合电解质研究[D]: [硕士学位论文]. 武汉: 湖北大学, 2021.

  38. 38. Xia, C., Qiao, Z., Feng, C., et al. (2018) Study on Zinc Oxide-Based Electrolytes in Low-Temperature Solid Oxide Fuel Cells. Materials, 11, Article 40. https://doi.org/10.3390/ma11010040

  39. 39. Liu, L., Liu, Y.Y., Li, L.Y., et al. (2018) The Composite Electrolyte with an Insulation Sm2O3 and Semiconductor NiO for Advanced Fuel Cells. International Journal of Hydrogen Energy, 43, 12739-12747. https://doi.org/10.1016/j.ijhydene.2018.03.184

  40. 40. Meng, Y., Wang, X., Zhang, W., et al. (2019) Novel High Ionic Conductivity Electrolyte Membrane Based on Semiconductor La0.65Sr0.3Ce0.05Cr0.5Fe0.5O3-δ for Low-Temperature Solid Oxide Fuel Cells. Journal of Power Sources, 421, 33-40. https://doi.org/10.1016/j.jpowsour.2019.02.100

  41. 41. Wu, Y., Xia, C., Zhang, W., et al. (2016) Natural Hematite for Next-Generation Solid Oxide Fuel Cells. Advanced Functional Materials, 26, 938-942. https://doi.org/10.1002/adfm.201503756

  42. 42. Xia, C., Mi, Y., Wang, B., et al. (2019) Shaping Triple-Conducting Semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an Electrolyte for Low-Temperature Solid Oxide Fuel Cells. Nature Com-munications, 10, Article No. 1707. https://doi.org/10.1038/s41467-019-09532-z

  43. 43. 孙子元, 邹晗, 赵建永, 等. 半导体异质结燃料电池发电性能研究[J]. 电源技术, 2022, 46(1): 29-32.

  44. 44. Wu, Y., Dong, B., Zhang, J., Song, H. and Yan, C. (2018) The Syn-thesis of ZnO/SrTiO3 Composite for High-Efficiency Photocatalytic Hydrogen and Electricity Conversion. International Journal of Hydrogen Energy, 43, 12627-12636. https://doi.org/10.1016/j.ijhydene.2018.03.206

  45. 45. Shah, M.A.K.Y., Mushtaq, N., Rauf, S., et al. (2019) The Semiconductor SrFe0.2Ti0.8O3-δ-ZnO Heterostructure Electrolyte Fuel Cells. International Journal of Hydrogen Energy, 44, 30319-30327. https://doi.org/10.1016/j.ijhydene.2019.09.145

  46. 46. Shah, M.A.K.Y., Tayyab, Z., Rauf, S., et al. (2021) Interface Engineering of Bi-Layer Semiconductor SrCoSnO3-δ- CeO2-δ Heterojunction Electrolyte for Boosting the Electrochemical Performance of Low-Temperature Ceramic Fuel Cell. International Journal of Hydrogen Energy, 46, 33969-33977. https://doi.org/10.1016/j.ijhydene.2021.07.204

  47. 47. Hu, M.S., Chen, M., Wang, Y.C., et al. (2023) A p-n Hetero-structure Composite of NaCrO2and CeO2 for Intermediate Temperature Solid Oxide Fuel Cells. Journal of Alloys and Compounds, 962, Article ID: 171169. https://doi.org/10.1016/j.jallcom.2023.171169

  48. 48. Rauf, S., Hanif, M.B., Wali, F., et al. (2023) Highly Active In-terfacial Sites in SFT-SnO2 Hetero Junction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentally. Energy & Environmental Materials, 6, e12606. https://doi.org/10.1002/eem2.12606

  49. 49. Shah, M.A.K.Y., Lu, Y. and Mushtaq, N. (2022) Interfacial Active-Sites p-n Heterojunction SFT-WO3 for Enhanced Fuel Cell Performance at 400-500℃. Materials Today Sustainability, 20, Article ID: 100229. https://doi.org/10.1016/j.mtsust.2022.100229

期刊菜单