Advances in Clinical Medicine
Vol. 12  No. 03 ( 2022 ), Article ID: 49168 , 11 pages
10.12677/ACM.2022.123231

慢性肾脏病肌肉减少症:机制和治疗

李嘉琪,谭荣韶*

暨南大学附属广州红十字会医院,广东 广州

收稿日期:2022年2月3日;录用日期:2022年2月26日;发布日期:2022年3月7日

摘要

在慢性肾脏病(chronic kidney disease, CKD)患者中,经常出现骨骼肌萎缩和蛋白质能量消耗。肌肉功能的损失会导致生活质量下降、发病率和死亡率增加。蛋白质降解与合成之间的持续不平衡会导致肌肉萎缩,在代谢性疾病如CKD,在肌肉中检测出的炎症增加、卫星细胞功能障碍以及尿毒素的积累可以激活泛素–蛋白酶体系统(ubiquitin-proteasome system, UPS),促进肌生长抑制素导致骨骼肌质量损失。因此,及早发现、诊断及防治肌少症对提高CKD患者的生存质量至关重要。本文就CKD肌少症的机制和治疗进行综述。

关键词

慢性肾脏病,肌肉减少症,肌肉萎缩

Sarcopenia in Chronic Kidney Disease: Mechanism and Treatment

Jiaqi Li, Rongshao Tan*

Guangzhou Red Cross Hospital, Jinan University, Guangzhou Guangdong

Received: Feb. 3rd, 2022; accepted: Feb. 26th, 2022; published: Mar. 7th, 2022

ABSTRACT

Skeletal muscle atrophy and protein energy wasting are frequent in patients with chronic kidney disease (CKD). Loss of muscle function leads to the decreased quality of life and increased morbidity and mortality. A persistent imbalance between protein degradation and synthesis can lead to muscle atrophy, and in metabolic diseases such as CKD, increased inflammation, satellite cell dysfunction, and accumulation of urea toxins detected in muscle can activate the ubiquitin-proteasome system (UPS) that promotes myostatin leading to loss of skeletal muscle mass. Therefore, early detection, diagnosis and prevention of sarcopenia are essential to improve the quality of life of CKD patients. This article reviews the mechanism and treatment of sarcopenia in CKD.

Keywords:Chronic Kidney Disease, Sarcopenia, Muscle Atrophy

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

慢性肾脏病者经常会出现骨骼肌萎缩和运动耐力下降 [1] ,并且死亡率与肌肉质量下降有关 [2] ,肌肉质量降低还与运动能力和身体机能受损有关 [3] 。因此,改善体力表现和增强肌肉质量是改善CKD患者预后的重要因素。

肌肉质量的减少归因于蛋白质降解和合成之间的持续失衡,UPS、半胱氨酸天冬氨酸蛋白酶-3 (caspase-3)、肌生长抑制素诱导蛋白质降解,代谢性酸中毒、氧化应激与炎症增加、卫星细胞功能障碍、胰岛素信号缺乏以及尿毒素的积累等可启动上述途径,以及可能成为抵消CKD引起的肌肉减少症的潜在治疗方法。

肌肉减少症(简称肌少症)是一种进行性和全身性的骨骼肌疾病,会极大地降低CKD患者的生活质量,对其预后带来不良影响。

2. 肌少症的定义与流行病学

肌肉减少症首次使用是指与衰老相关的过度肌肉损失 [4] 。在2010年,欧洲老年人肌肉减少症工作组(European Working Group on Sarcopenia in Older People, EWGSOP)阐述了肌肉减少症的定义,其中包括低肌肉量和功能的存在 [5] ,并且该定义得到最广泛的应用,并于2019年1月更新为EWGSOP2 [6] 。肌肉减少症的诊断取决于1) 肌肉质量的综合测量,即通过双能X线吸收法(dual energy X-ray absorptiometry, DXA)或生物电阻抗分析(bioelectrical impedance analysis, BIA)进行评估;2) 肌肉力量,通过功能测试(如握力)评估;3) 身体表现,包括活动能力、力量和平衡的评估 [7] 。肌肉减少症目前被定义为骨骼肌质量的普遍丧失加上力量或身体机能的降低 [8] 。

CKD中肌肉萎缩的患病率随评估方法的不同而不同,评估方法不同,临界值也不同。EWGSOP和美国国立卫生研究院基金会(Foundation for the National Institutes of Health, Inc., FNIH)根据手握力确定肌肉减少症,但临界值不同(男性 < 30 kg/女性20 kg与<26 kg公斤/16公斤)。

肌肉减少症是很多慢性疾病的不良反应,肌肉减少症的患病率取决于应用的方法和标准。使用2010年EWGSOP定义,该定义仅评估肌肉质量,有研究显示,欧洲40~79岁的男性和女性的发病率是1.6% [9] 。在一项巴西研究中,通过DXA评估肌肉减少症,患有肌肉减少症的患病率为34.5% [10] 。CKD或血透患者比普通人更易出现肌肉质量和力量的损失,在一项老年血液透析研究中患者的低肌肉质量患病率估计为4%至74%,具体取决于方法和截止应用 [11] 。同样在美国,通过生物电阻抗测量评估全身肌肉质量,通过四种不同的指标方法,包括身高2、体重百分比、体表面积和身体质量指数,血透患者的低肌肉质量的患病率在男性中为12.2%~37.3%,在女性中为2.3%~25.5% [12] 。

3. CKD肌肉减少症的病理生理学及机制

1) 蛋白质降解

a) 泛素–蛋白酶体系统(UPS)

泛素–蛋白酶体系统(UPS)是骨骼肌蛋白质降解的主要调控机制,UPS是一个ATP依赖性蛋白水解系统,可通过介导泛素分子结合而降解鉴定的目标蛋白 [13] 。E3s (泛素连接酶)在UPS降解蛋白质机制的选择性和特异性中起着重要作用 [14] 。UPS的特异性可以通过不同的E3识别基板上不同的序列的能力来实现 [15] 。

蛋白质通过UPS降解的活性通过一系列步骤进行调节。降解级联反应的第一步涉及通过caspase-3裂解肌肉蛋白的复杂结构,从而产生降解底物。蛋白底物通过涉及酶E1、E2和E3的ATP依赖性过程与Ub偶联。蛋白质底物的选择性主要取决于对要被特异性E3 Ub连接酶降解的蛋白质的识别。在将五个Ub蛋白附着到蛋白质底物上之后,复合物可以被26S蛋白酶体识别,后者释放Ubs,展开蛋白质底物,然后将其“注入”到20S CP中,在20S CP中蛋白质被降解为肽。在这一阶段,caspase-3还切割26S蛋白酶调节亚基4和26S蛋白酶调节亚基8,它们是19S蛋白酶体RP的特异性亚基蛋白。该反应刺激20S蛋白酶体CP中蛋白质的降解,释放到细胞质中的肽被降解成氨基酸 [1] 。

除了胞外信号通路之外,多种细胞内信号传导途径还增加了atrogenes的表达,例如atrogin-1和MuRF-1,这是肌肉特异性泛素连接酶家族的成员。已经发现肌肉特异性E3泛素连接酶MuRF-1和MAFbx在培养的肌管中,MAFbx过表达会引起萎缩,而发现MAFbx或MuRF-1缺陷的小鼠对萎缩具有抗性 [16] 。肌肉质量的减少归因于蛋白质降解的增加或蛋白质合成的减少。CKD中肌肉蛋白质的代谢主要受蛋白质降解增加的影响,而不是受蛋白质合成减弱的影响,后者的影响较小 [17] 。有研究表明,肾切除大鼠的腓肠肌萎缩显示出MuRF-1和MAFbx的表达增加 [18] [19] ,说明使用实验动物模型已显示出肌肉特异性E3泛素连接酶参与CKD诱导的肌肉萎缩。

b) 半胱氨酸天冬氨酸蛋白酶-3 (caspase-3)

在CKD中,caspase-3被激活,并裂解肌肉蛋白的复杂结构,产生UPS的底物,从而导致肌肉片段中的特征性14kDa肌动蛋白片段断裂,这是CKD中肌肉蛋白水解增加的标志 [20] [21] 。Caspase-3活性可通过直接刺激蛋白酶体的蛋白水解活性来刺激UPS介导的蛋白质降解 [22] 。

c) 肌生长抑制素

肌生长抑制素是转化生长因子-β (transforming growth factor β, TGF-β)蛋白家族的成员,主要在骨骼肌中产生,是骨骼肌质量的负调节剂 [23] 。肌生长抑制素与肌肉细胞上的激活素A受体结合,随后激活下游Smad2/Smad 3介导的信号通路 [24] [25] ,从而刺激蛋白水解和肌肉萎缩。在CKD患者的骨骼肌中,肌生长抑制素的表达上调。CKD引起的氧化应激和炎症通过叉头盒蛋白O (FoxO)、NF-κB增强了肌生成抑制素的表达 [26] ,因此,抑制肌生长抑制素可通过改善卫星细胞功能和抑制蛋白质降解来防止肌肉萎缩。最近,张等人报道了CKD和第六只肾切除小鼠(CKD小鼠)的肌肉中肌生长抑制素表达增加,并且向这些小鼠施用抗肌生长抑制素抗肽抑制了肌肉质量的降低 [27] [28] 。

2) 蛋白质合成

胰岛素或胰岛素生长因子-1 (insulin-like growth factor 1, IGF-1)/磷脂酰肌醇激酶(phosphatidylinositol 3-kinase, PI3K)/蛋白激酶B (Akt)信号传导途径:

IGF1-PI3K-AKT途径主要通过雷帕霉素mTOR刺激蛋白质合成并抑制由mTOR诱导的降解来诱导肌肉生长FOXO转录因子 [29] 。当IGF-1或胰岛素与它们的细胞膜受体结合,引起胰岛素/IGF-1信号传导中间介质[例如胰岛素受体底物1 (insulin receptor substrate 1, IRS-1)、PI3K和Akt]发生一系列磷酸化。Akt的磷酸化可刺激代谢反应,包括蛋白质合成的增加和蛋白质降解的抑制。在CKD小鼠模型中,胰岛素/IGF-1信号传导受到抑制,导致肌肉萎缩,而PI3K/Akt通路的上调则阻止了肌肉萎缩 [30] 。除了在合成代谢信号传导中的作用外,Akt的激活还通过促进FOXO转录因子的磷酸化和失活来抑制骨骼肌中的蛋白质降解 [31] 。Sandri等人发现Akt活性降低导致Foxo转录因子和atrogen-1的诱导 [32] 。实际上,已证明IGF-1/PI3K/Akt信号通路在CKD酸中毒的小鼠肌肉中受到抑制 [33] 。

3) 氧化应激和炎症

CKD患者的循环性促炎细胞因子包括IL-6、肿瘤坏死因子-α (tumour necrosis factor α, TNF-α)、血清淀粉样蛋白A [27] [34] 。在肌肉消耗中,骨骼中产生异常高水平的活性氧(ROS)和炎性细胞因子 [35] [36] 。最近,Damiano等人 [37] 综述了活性氧对肌肉功能起到双重的作用,认为在低水平ROS的增加会增强肌肉力量,而ROS进一步增加会导致力量的急剧下降。线粒体是ROS产生的重要部位,衰老的肌肉减少症与骨骼肌线粒体功能障碍有关 [38] 。ROS诱导的TNF-α的增加通过NF-κB途径刺激了肌生长抑制素的表达,这进一步刺激了肌生长抑制素的表达并伴随着肌肉中IL-6的释放 [39] 。在CKD小鼠的肌肉组织中增加的炎性细胞因子,例如TNF-α和IL-6 [27] ,从而导致肌肉萎缩。TNF-α还增加了肌生长抑制素的表达,从而进一步加速了肌肉的分解代谢,抑制肌生长抑制素降低了这些细胞因子的血浆水平 [27] 。因此,肌肉萎缩与氧化应激和炎症相互关联。

4) 卫星细胞

骨骼肌祖细胞被称为卫星细胞,通过启动成肌作用来调节骨骼肌质量,从而促进生长和修复,有助于增加和维持肌肉质量。最近O’Sullivan等人 [40] 综述了CKD对卫星细胞的影响以及运动后对CKD卫星细胞功能的机制和作用。首先,CKD损害了IGF-1调节肌肉蛋白质合成和降解的能力。其次,在部分缺失IGF-1受体的小鼠和患有CKD的小鼠中,卫星细胞功能也受到损害。已经确定卫星细胞功能障碍与降低的IGF-1活性有关,而且还表明患有CKD的小鼠或具有诱导性IGF-1的部分缺失的小鼠在其肌肉中发生纤维化 [1] 。

5) 尿毒素

在CKD中,体内积累的尿毒症毒素会发挥生物活性。在尿毒症毒素中,与蛋白质结合的尿毒症毒素,例如硫酸吲哚酚(IS)、对甲酚硫酸盐(PCS)、吲哚乙酸(IA)、马尿酸(HA)、犬尿酸(KA)、3-羧基-4-甲基-5-丙基-2-呋喃丙酸(CMPF)等,由于其与白蛋白的强结合而难以通过血液透析将其清除,这些已被蛋白结合的尿毒症毒素有助于CKD和CKD并发症的进展。IS通过OAT分布到肌肉细胞中,从而导致ROS产生增加。ROS产生的增加反过来又触发了炎性细胞因子的产生,从而诱导了与肌肉萎缩有关的肌生长抑制素和atrogin-1的表达 [41] 。但是,通过抗氧化剂、燕麦抑制剂、AHR抑制剂和AHR的小干扰RNA (siRNA)的存在,可以防止由IS诱导的这些作用。向半切除肾的小鼠长期施用IS可减轻其体重和肌肉重量 [26] 。这些数据还表明,IS可能是CKD 肌肉萎缩的病因。最近Enoki等人 [42] 已经证明了在C2C12细胞中,IS诱导了C2C12肌管中ROS的产生和炎性细胞因子、肌生长抑制素和atrogin-1的表达,并通过氧化应激来诱导线粒体功能障碍,证明了IS与骨骼肌萎缩之间存在相互关系,并且提出新的潜在治疗干预,比如IS靶向(AST-120)和线粒体靶向干预(左旋肉碱)降低IS水平,抑制了CKD小鼠中肌生长抑制素和atrogin-1表达的诱导,从而抑制了肌肉质量的变化。

6) RNA

如今RNA、微小RNA在肌肉萎缩功能方面的基因组分析越来越引起人们的关注。MicroRNA能够在各种生理和病理条件下调节生物过程,它们通过与mRNA的3’非翻译区(UTR)中的互补序列结合而起作用,从而抑制mRNA的翻译,从而引起蛋白质表达的变化 [1] 。在一项研究中,12种microRNA水平的显着变化与CKD相关,包括miR-29a和miR-29b的水平下降。miR-29水平降低导致YY1蛋白上调,从而抑制了肌发生。因此说明microRNA的降低有助于CKD诱导肌肉萎缩 [43] 。在最新的恶病质会议的要点中指出,利用工程化的外泌体载体,肌肉卫星细胞产生miRN-26a,并注射到CKD小鼠的肌肉中,表明了miRNA-26a在肌肉中的过度表达阻止CKD引起的肌肉损失和心肌纤维化 [44] 。

7) 其他影响机制

代谢性酸中毒在CKD患者中普遍存在,特别在CKD4期。正常大鼠对代谢性酸中毒的反应是通过激活UPS刺激肌肉中的蛋白质分解代谢而不是蛋白质合成的减少来进行的 [45] 。另外,这种增加的蛋白水解和快速的肌肉损失需要糖皮质激素的参与。糖皮质激素是激活UPS所必需的,但只有在有第二种刺激(即代谢性酸中毒)时才会发生这种激活。酸中毒或生理上高剂量的糖皮质激素的存在都不会刺激UPS的活动 [1] 。在CKD的大鼠模型中,向食物中添加碳酸氢钠可以很大程度上消除在肌肉中的蛋白质降解的增加。临床研究还证实,在CKD患者中,预防代谢性酸中毒可以改善有关的蛋白质代谢和营养状况指标 [46] 。

随着年龄的增长,肌肉中的蛋白质合成下降,部分是由于合成代谢激素(尤其是睾丸激素和生长激素)减少所致。25至85岁之间的男性睾丸激素水平可能下降60%,女性下降30%。生长激素在30岁以后也会逐渐下降 [47] 。其中,睾丸激素已被证明是最能决定肌肉质量和力量下降的激素,而睾丸激素缺乏会导致肌肉减少。睾丸激素不仅对蛋白质合成很重要,而且对维持卫星细胞也很重要 [48] 。在患有CKD的男性中,睾丸激素缺乏症很常见 [49] 。已经报道了CKD的几种生长激素抵抗的机制 [50] 。然而,用生长激素治疗可减少肌肉消耗,但不能增加运动能力,性腺功能减退的男性的睾丸激素替代对肌肉质量和功能的影响较小 [51] 。

另外,维生素D缺乏会上调UPS途径,从而导致蛋白质降解,进而导致骨骼肌萎缩。维生素D的状态与肌肉力量呈正相关 [52] 。补充维生素D已显示可改善肌肉功能 [53] ,为维生素D对肌肉组织的直接作用进一步提供了证据支持。

4. CKD伴肌肉减少症的治疗干预

1) 抵抗运动

CKD可能由于复杂的机制而导致肌肉蛋白质消耗和肌肉萎缩。由于改善了肌肉的质量和功能,如今运动已被日益认为是治疗CKD肌肉减少症的重要方面 [54] 。而其中抵抗运动是预防和逆转肌肉减少症的主要治疗策略。有报道说CKD大鼠抵抗运动(肌肉超负荷)的模型会增加IGF-1以及IGF-1下游介质的表达,包括IRS-1,PI3K、pAkt和肌生长抑制素 [55] [56] 。在非透析性CKD患者中,在有氧运动的基础上结合阻力锻炼,可进一步增加肌肉力量和质量 [57] 。定期耐力训练也似乎可以改善HD患者的肌肉生长抑制素mRNA表达水平 [58] ,而在非透析患者中,24小时抵抗运动抑制了肌肉生长抑制素表达 [59] 。综上所述,运动尤其是抵抗运动可能是一种可行的治疗策略,以改善CKD肌肉萎缩。

2) 营养补充

CKD的患者蛋白质分解代谢加快,在CKD的情况下,高蛋白饮食不仅会加剧肾功能受损,而且还会降低CKD小鼠的运动耐力 [60] 。LPD即蛋白质摄入量 < 0.8 mg/kg/天,通过降低肾小球内压降低氮废物的产生并减少肾脏的工作量,这可以保护肾脏,尤其是在肾单位和肾功能下降的患者中。因此,通常推荐0.6~0.8 g/kg/天的低蛋白饮食(LPD)来治疗CKD [61] 。最近一项系统评价发现,接受LPD的人患ESRD的风险明显更低,全因死亡趋势也有所下降 [62] 。然而CKD中严格的饮食限制,则可能导致蛋白质能量营养不良 [63] 。CKD患者应谨慎考虑放宽饮食限制和采用个体化方法及更均衡的饮食方案。

另外,国际运动营养学会指出,肌酸是最有效的食品补充剂,可用于改善高强度性能和增加肌肉质量 [64] 。尽管肌酸补充剂在CKD中的研究很少,但有关健康年轻人、运动员和老年人补充肌酸的大量数据。在年轻人中,补充肌酸,无论是否进行阻力训练,不仅可以增加瘦体重,还可以增加短期剧烈运动时的力量和表现 [65] 。因此,有必要进一步研究以评估CKD患者肌酸补充对肌肉质量的影响。

3) 纠正酸中毒

摄入过多蛋白质的并发症是代谢性酸中毒的发展,纠正CKD患者的酸中毒会抑制蛋白质的消耗 [46] 。在动物模型的研究中,向食物中添加碳酸氢钠可以很大程度上减少在肌肉中的蛋白质降解的增加。临床研究还证实,在CKD患者中,预防代谢性酸中毒可以改善有关的蛋白质代谢和营养状况指标 [46] 。

4) 抑制肌生长抑制素

肌生长抑制素是骨骼肌质量的负调节剂,已知通过骨骼肌上的ActRIIB受体进行信号传导,从而导致肌肉消瘦 [66] 。结合肌生长抑制素或阻断其受体的抗肌生长抑制素肽体也在研究中,在5/6肾切除术小鼠模型中,皮下注射肌生长抑制素抗体(5 mg/kg)对骨骼肌具有多种有益作用,包括减少蛋白质降解,增加蛋白质合成和改善卫星细胞功能 [27] 。另外STAT3的小分子抑制剂也可以降低肌生成抑制素水平 [39] 。总之,这些各种研究和最近的临床发现均表明,抑制肌生长抑制素可能为阻断CKD或与其并发症相关的疾病中的肌肉蛋白质消耗提供新的治疗方向。

5) UPS的抑制剂

由于UPS是降解肌肉蛋白的主要途径,一种UPS抑制剂可以减少肌肉蛋白降解 [67] 。蛋白酶体抑制剂(例如硼替佐米)已被证明可以防止大鼠烧伤引起的腓肠肌肌群的丢失以及MuRF-1和MAFbx的上调 [68] ,也在某些血液癌症 [69] 的治疗中非常成功。尽管这类抑制剂最初是为了减少肌肉萎缩而研究的,但建议将其用于对抗萎缩是不明智的,因为它们可能还会改变细胞组成并干扰蛋白质质量控制。用它治疗超过12周的多发性骨髓瘤患者表现出心脏并发症 [70] 。因此需要长时间测试了解UPS抑制剂对CKD患者的影响。

6) AST-120

尿毒素IS是一种尿毒症毒素,可加速骨骼肌萎缩。使用AST-120可以抑制IS积累。Enoki等人研究了给药AST-120治疗的CKD小鼠后抑制了炎症因子、肌生长抑制素和atrogin-1的表达,减少了骨骼肌质量的损失,为IS诱导骨骼肌细胞中的线粒体功能障碍 [42] ,并提供潜在的治疗策略,目前仍然处于测试阶段。

7) 二肽基肽酶4 (dipeptidyl peptidase-IV, DPP-4)抑制剂与胰高血糖素样肽-1 (Glucagon-like peptide 1, GLP-1)受体激动剂

Teneligliptin,一种DPP-4抑制剂,用于治疗2型糖尿病患者,也用于治疗CKD引起的肌肉萎缩 [71] 。最近有研究证明teneligliptin抑制了CKD小鼠的体重损失和恢复了运动能力,并首次证明了teneligliptin具有抗CKD诱导的肌肉功能障碍的治疗潜力,而不会引起IS积累的变化 [42] 。DPP-4抑制剂也通过其增强GLP-1作用的能力发挥多效作用。GLP-1通过激活骨骼肌中的PI3K-Akt信号传导通路来改善骨骼肌的胰岛素抵抗 [72] 。最新报道,GLP-1受体激动剂[例如Exendin-4 (Ex-4)和dulaglutide]通过抑制肌生长抑制素和肌肉萎缩因子的表达并通过GLP-1介导的信号通路增强肌源性因子来改善肌肉萎缩。Ex-4通过抑制肌肉萎缩因子和增强肌源性因子(MyoG和MyoD)来改善肌肉萎缩,从而导致肌肉质量和功能增加。这些新发现表明,激活GLP-1信号传导可用于治疗萎缩相关性肌肉疾病 [73] 。

8) MicroRNA (miRNA)

MicroRNA通过与mRNA的3'非翻译区(UTR)中的互补序列结合而起作用,从而抑制mRNA的翻译,而引起蛋白质表达的变化 [1] 。MiR27a/b的增加会抑制肌生长抑制素的表达 [74] 。Wang等人研究了miR-23a 和miR-27a在调节肌肉质量中的作用。在CKD小鼠中miR-23a和miR-27a的过表达通过增加Akt磷酸化来抑制肌肉损失 [75] 。据报道,将microRNA-486注射到患有CKD的小鼠骨骼肌中可抑制FOXO1,阻断MuRF1和MAFbx的表达,增加了肌肉质量。

5. 结论

这篇综述总结了CKD患者肌肉减少症的流行病学、发病机理以及潜在的治疗方法。肌肉减少症是一种进行性和广泛性的骨骼肌疾病,涉及与不良临床预后相关的肌肉质量和功能丧失。重要的是,其发病机理的复杂性对其预防和治疗管理提出了挑战。到目前为止,尚无有效的现代药物疗法,但是一些有前途的治疗策略正在研究当中,比如肌酸补充剂、抑制肌生长抑制素、AST-120以及DPP-4抑制剂与GLP-1受体激动剂为CKD肌肉消瘦机制的潜在治疗方法。需要进一步研究来加深我们对基本细胞和分子机制的了解,筛查和诊断以及预防和治疗CKD患者的肌肉减少症。

文章引用

李嘉琪,谭荣韶. 慢性肾脏病肌肉减少症:机制和治疗
Sarcopenia in Chronic Kidney Disease: Mechanism and Treatment[J]. 临床医学进展, 2022, 12(03): 1607-1617. https://doi.org/10.12677/ACM.2022.123231

参考文献

  1. 1. Wang, X.H. and Mitch, W.E. (2014) Mechanisms of Muscle Wasting in Chronic Kidney Disease. Nature Reviews Nephrology, 10, 504-516. https://doi.org/10.1038/nrneph.2014.112

  2. 2. Gracia-Iguacel, C., Gonzalez-Parra, E., Perez-Gomez, M.V., Mahillo, I., Egido, J., Ortiz, A., et al. (2013) Prevalence of Protein-Energy Wasting Syndrome and Its Association with Mortality in Haemodialysis Patients in a Centre in Spain. Nefrologia, 33, 495-505.

  3. 3. Johansen, K.L., Shubert, T., Doyle, J., Soher, B., Sakkas, G.K. and Kent-Braun, J.A. (2003) Muscle Atrophy in Patients Receiving Hemodialysis: Effects on Muscle Strength, Muscle Quality, and Physical Function. Kidney International, 63, 291-297. https://doi.org/10.1046/j.1523-1755.2003.00704.x

  4. 4. Rosenberg, I.H. (2011) Sarcopenia: Origins and Clinical Relevance. Clinics in Geriatric Medicine, 27, 337-339. https://doi.org/10.1016/j.cger.2011.03.003

  5. 5. Cruz-Jentoft, A.J., Baeyens, J.P., Bauer, J.M., Boirie, Y., Cederholm, T., Landi, F., et al. (2010) Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing, 39, 412-423. https://doi.org/10.1093/ageing/afq034

  6. 6. Cruz-Jentoft, A.J., Bahat, G., Bauer, J., Boirie, Y., Bruyere, O., Cederholm, T., et al. (2019) Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing, 48, 16-31. https://doi.org/10.1093/ageing/afy169

  7. 7. Cruz-Jentoft, A.J. and Sayer, A.A. (2019) Sarcopenia. The Lancet, 393, 2636-2646. https://doi.org/10.1016/S0140-6736(19)31138-9

  8. 8. Fielding, R.A., Vellas, B., Evans, W.J., Bhasin, S., Morley, J.E., Newman, A.B., et al. (2011) Sarcopenia: An Undiagnosed Condition in Older Adults. Current Consensus Definition: Prevalence, Etiology, and Consequences. International Working Group on Sarcopenia. Journal of the American Medical Directors Association, 12, 249-256. https://doi.org/10.1016/j.jamda.2011.01.003

  9. 9. Gielen, E., O’Neill, T.W., Pye, S.R., Adams, J.E., Wu, F.C., Laurent, M.R., et al. (2015) Endocrine Determinants of Incident Sarcopenia in Middle-Aged and Elderly European Men. Journal of Cachexia, Sarcopenia and Muscle, 6, 242-252. https://doi.org/10.1002/jcsm.12030

  10. 10. Souza, V.A., Oliveira, D., Barbosa, S.R., Correa, J., Colugnati, F.A.B., Mansur, H.N., et al. (2017) Sarcopenia in Patients with Chronic Kidney Disease Not Yet on Dialysis: Analysis of the Prevalence and Associated Factors. PLoS ONE, 12, e0176230. https://doi.org/10.1371/journal.pone.0176230

  11. 11. Lamarca, F., Carrero, J.J., Rodrigues, J., Bigogno, F.G., Fetter, R.L. and Avesani, C.M. (2014) Prevalence of Sarcopenia in Elderly Maintenance Hemodialysis Patients: The Impact of Different Diagnostic Criteria. The Journal of Nutrition, Health and Aging, 18, 710-717. https://doi.org/10.1007/s12603-014-0505-5

  12. 12. Kittiskulnam, P., Chertow, G.M., Carrero, J.J., Delgado, C., Kaysen, G.A. and Johansen, K.L. (2017) Sarcopenia and Its Individual Criteria Are Associated, in Part, with Mortality among Patients on Hemodialysis. Kidney International, 92, 238-247. https://doi.org/10.1016/j.kint.2017.01.024

  13. 13. Murton, A.J., Constantin, D. and Greenhaff, P.L. (2008) The Involvement of the Ubiquitin Proteasome System in Human Skeletal Muscle Remodelling and Atrophy. Biochimica et Biophysica Acta, 1782, 730-743. https://doi.org/10.1016/j.bbadis.2008.10.011

  14. 14. Hershko, A. and Ciechanover, A. (1998) The Ubiquitin System. Annual Review of Biochemistry, 67, 425-479. https://doi.org/10.1146/annurev.biochem.67.1.425

  15. 15. Kisselev, A.F. and Goldberg, A.L. (2001) Proteasome Inhibitors: From Research Tools to Drug Candidates. Chemistry & Biology, 8, 739-758. https://doi.org/10.1016/S1074-5521(01)00056-4

  16. 16. Bodine, S.C., Latres, E., Baumhueter, S., Lai, V.K., Nunez, L., Clarke, B.A., et al. (2001) Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy. Science, 294, 1704-1708. https://doi.org/10.1126/science.1065874

  17. 17. Thomas, S.S. and Mitch, W.E. (2013) Mechanisms Stimulating Muscle Wasting in Chronic Kidney Disease: The Roles of the Ubiquitin-Proteasome System and Myostatin. Clinical and Experimental Nephrology, 17, 174-182. https://doi.org/10.1007/s10157-012-0729-9

  18. 18. Gomes, M.D., Lecker, S.H., Jagoe, R.T., Navon, A. and Goldberg, A.L. (2001) Atrogin-1, a Muscle-Specific f-Box Protein Highly Expressed during Muscle Atrophy. Proceedings of the National Academy of Sciences of the United States of America, 98, 14440-14445. https://doi.org/10.1073/pnas.251541198

  19. 19. Lecker, S.H., Jagoe, R.T., Gilbert, A., Gomes, M., Baracos, V., Bailey, J., et al. (2004) Multiple Types of Skeletal Muscle Atrophy Involve a Common Program of Changes in Gene Expression. FASEB Journal, 18, 39-51. https://doi.org/10.1096/fj.03-0610com

  20. 20. Du, J., Wang, X., Miereles, C., Bailey, J.L., Debigare, R., Zheng, B., et al. (2004) Activation of caspase-3 Is an Initial Step Triggering Accelerated Muscle Proteolysis in Catabolic Conditions. Journal of Clinical Investigation, 113, 115-123. https://doi.org/10.1172/JCI18330

  21. 21. Workeneh, B.T., Rondon-Berrios, H., Zhang, L., Hu, Z., Ayehu, G., Ferrando, A., et al. (2006) Development of a Diagnostic Method for Detecting Increased Muscle Protein Degradation in Patients with Catabolic Conditions. Journal of the American Society of Nephrology, 17, 3233-3239. https://doi.org/10.1681/ASN.2006020131

  22. 22. Wang, X.H., Zhang, L., Mitch, W.E., LeDoux, J.M., Hu, J. and Du, J. (2010) Caspase-3 Cleaves Specific 19 s Proteasome Subunits in Skeletal Muscle Stimulating Proteasome Activity. Journal of Biological Chemistry, 285, 21249-21257. https://doi.org/10.1074/jbc.M109.041707

  23. 23. McCroskery, S., Thomas, M., Maxwell, L., Sharma, M. and Kambadur, R. (2003) Myostatin Negatively Regulates Satellite Cell Activation and Self-Renewal. Journal of Cell Biology, 162, 1135-1147. https://doi.org/10.1083/jcb.200207056

  24. 24. Lokireddy, S., McFarlane, C., Ge, X., Zhang, H., Sze, S.K., Sharma, M., et al. (2011) Myostatin Induces Degradation of Sarcomeric Proteins through a smad3 Signaling Mechanism during Skeletal Muscle Wasting. Molecular Endocrinology, 25, 1936-1949. https://doi.org/10.1210/me.2011-1124

  25. 25. Sartori, R., Milan, G., Patron, M., Mammucari, C., Blaauw, B., Abraham, R., et al. (2009) Smad2 and 3 Transcription Factors Control Muscle Mass in Adulthood. American Journal of Physiology-Cell Physiology, 296, C1248-C1257. https://doi.org/10.1152/ajpcell.00104.2009

  26. 26. Enoki, Y., Watanabe, H., Arake, R., Sugimoto, R., Imafuku, T., Tominaga, Y., et al. (2016) Indoxyl Sulfate Potentiates Skeletal Muscle Atrophy by Inducing the Oxidative Stress-Mediated Expression of Myostatin and atrogin-1. Scientific Reports, 6, Article No. 32084. https://doi.org/10.1038/srep32084

  27. 27. Zhang, L., Rajan, V., Lin, E., Hu, Z., Han, H.Q., Zhou, X., et al. (2011) Pharmacological Inhibition of Myostatin Suppresses Systemic Inflammation and Muscle Atrophy in Mice with Chronic Kidney Disease. The FASEB Journal, 25, 1653-1663. https://doi.org/10.1096/fj.10-176917

  28. 28. Verzola, D., Procopio, V., Sofia, A., Villaggio, B., Tarroni, A., Bonanni, A., et al. (2011) Apoptosis and Myostatin mRNA Are Upregulated in the Skeletal Muscle of Patients with Chronic Kidney Disease. Kidney International, 79, 773-782. https://doi.org/10.1038/ki.2010.494

  29. 29. Glass, D.J. (2010) Pi3 Kinase Regulation of Skeletal Muscle Hypertrophy and Atrophy. Current Topics in Microbiology and Immunology, 346, 267-278. https://doi.org/10.1007/82_2010_78

  30. 30. Zhang, L., Wang, X.H., Wang, H., Du, J. and Mitch, W.E. (2010) Satellite Cell Dysfunction and Impaired igf-1 Signaling Cause ckd-Induced Muscle Atrophy. Journal of the American Society of Nephrology, 21, 419-427. https://doi.org/10.1681/ASN.2009060571

  31. 31. Stitt, T.N., Drujan, D., Clarke, B.A., Panaro, F., Timofeyva, Y., Kline, W.O., et al. (2004) The igf-1/pi3k/akt Pathway Prevents Expression of Muscle Atrophy-Induced Ubiquitin Ligases by Inhibiting Foxo Transcription Factors. Molecular Cell, 14, 395-403. https://doi.org/10.1016/S1097-2765(04)00211-4

  32. 32. Sandri, M., Sandri, C., Gilbert, A., Skurk, C., Calabria, E., Picard, A., et al. (2004) Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy. Cell, 117, 399-412. https://doi.org/10.1016/S0092-8674(04)00400-3

  33. 33. Bailey, J.L., Zheng, B., Hu, Z., Price, S.R. and Mitch, W.E. (2006) Chronic Kidney Disease Causes Defects in Signaling through the Insulin Receptor Substrate/Phosphatidylinositol 3-Kinase/Akt Pathway: Implications for Muscle Atrophy. Journal of the American Society of Nephrology, 17, 1388-1394. https://doi.org/10.1681/ASN.2004100842

  34. 34. Zhang, L., Du, J., Hu, Z., Han, G., Delafontaine, P., Garcia, G., et al. (2009) Il-6 and Serum Amyloid a Synergy Mediates Angiotensin II-Induced Muscle Wasting. Journal of the American Society of Nephrology, 20, 604-612. https://doi.org/10.1681/ASN.2008060628

  35. 35. Sriram, S., Subramanian, S., Sathiakumar, D., Venkatesh, R., Salerno, M.S., McFarlane, C.D., et al. (2011) Modulation of Reactive Oxygen Species in Skeletal Muscle by Myostatin Is Mediated through nf-Kappab. Aging Cell, 10, 931-948. https://doi.org/10.1111/j.1474-9726.2011.00734.x

  36. 36. Powers, S.K., Kavazis, A.N. and DeRuisseau, K.C. (2005) Mechanisms of Disuse Muscle Atrophy: Role of Oxidative Stress. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288, R337-R344. https://doi.org/10.1152/ajpregu.00469.2004

  37. 37. Damiano, S., Muscariello, E., La Rosa, G., Di Maro, M., Mondola, P. and Santillo, M. (2019) Dual Role of Reactive Oxygen Species in Muscle Function: Can Antioxidant Dietary Supplements Counteract Age-Related Sarcopenia? International Journal of Molecular Sciences, 20, 3815. https://doi.org/10.3390/ijms20153815

  38. 38. Bratic, A. and Larsson, N.G. (2013) The Role of Mitochondria in Aging. Journal of Clinical Investigation, 123, 951-957. https://doi.org/10.1172/JCI64125

  39. 39. Zhang, L., Pan, J., Dong, Y., Tweardy, D.J., Dong, Y., Garibotto, G., et al. (2013) Stat3 Activation Links a c/ebpdelta to Myostatin Pathway to Stimulate Loss of Muscle Mass. Cell Metabolism, 18, 368-379. https://doi.org/10.1016/j.cmet.2013.07.012

  40. 40. O’Sullivan, T.F., Smith, A.C. and Watson, E.L. (2018) Satellite Cell Function, Intramuscular Inflammation and Exercise in Chronic Kidney Disease. Clinical Kidney Journal, 11, 810-821. https://doi.org/10.1093/ckj/sfy052

  41. 41. Watanabe, H., Enoki, Y. and Maruyama, T. (2019) Sarcopenia in Chronic Kidney Disease: Factors, Mechanisms, and Therapeutic Interventions. Biological and Pharmaceutical Bulletin, 42, 1437-1445. https://doi.org/10.1248/bpb.b19-00513

  42. 42. Bastert, E. and Schlafke, D. (2011) Forensic Patients with Organic Brain Disorders. The World Journal of Biological Psychiatry, 12, 23-27. https://doi.org/10.3109/15622975.2011.598689

  43. 43. Wang, X.H., Hu, Z., Klein, J.D., Zhang, L., Fang, F. and Mitch, W.E. (2011) Decreased mir-29 Suppresses Myogenesis in CKD. Journal of the American Society of Nephrology, 22, 2068-2076. https://doi.org/10.1681/ASN.2010121278

  44. 44. Ebner, N., Anker, S.D. and von Haehling, S. (2019) Recent Developments in the Field of Cachexia, Sarcopenia, and Muscle Wasting: Highlights from the 11th Cachexia Conference. Journal of Cachexia, Sarcopenia and Muscle, 10, 218-225. https://doi.org/10.1002/jcsm.12408

  45. 45. May, R.C., Kelly, R.A. and Mitch, W.E. (1987) Mechanisms for Defects in Muscle Protein Metabolism in Rats with Chronic Uremia. Influence of Metabolic Acidosis. Journal of Clinical Investigation, 79, 1099-1103. https://doi.org/10.1172/JCI112924

  46. 46. de Brito-Ashurst, I., Varagunam, M., Raftery, M.J. and Yaqoob, M.M. (2009) Bicarbonate Supplementation Slows Progression of CKD and Improves Nutritional Status. Journal of the American Society of Nephrology, 20, 2075-2084. https://doi.org/10.1681/ASN.2008111205

  47. 47. Cohen, S., Nathan, J.A. and Goldberg, A.L. (2015) Muscle Wasting in Disease: Molecular Mechanisms and Promising Therapies. Nature Reviews Drug Discovery, 14, 58-74. https://doi.org/10.1038/nrd4467

  48. 48. Haren, M.T., Siddiqui, A.M., Armbrecht, H.J., Kevorkian, R.T., Kim, M.J., Haas, M.J., et al. (2011) Testosterone Modulates Gene Expression Pathways Regulating Nutrient Accumulation, Glucose Metabolism and Protein Turnover in Mouse Skeletal Muscle. International Journal of Andrology, 34, 55-68. https://doi.org/10.1111/j.1365-2605.2010.01061.x

  49. 49. Carrero, J.J., Qureshi, A.R., Nakashima, A., Arver, S., Parini, P., Lindholm, B., et al. (2011) Prevalence and Clinical Implications of Testosterone Deficiency in Men with End-Stage Renal Disease. Nephrology Dialysis Transplantation, 26, 184-190. https://doi.org/10.1093/ndt/gfq397

  50. 50. Rabkin, R., Sun, D.F., Chen, Y., Tan, J. and Schaefer, F. (2005) Growth Hormone Resistance in Uremia, a Role for Impaired Jak/Stat Signaling. Pediatric Nephrology, 20, 313-318. https://doi.org/10.1007/s00467-004-1713-8

  51. 51. Srinivas-Shankar, U., Roberts, S., Connolly, M.J., O’Connell, M.D., Adams, J.E., Oldham, J.A., et al. (2010) Effects of Testosterone on Muscle Strength, Physical Function, Body Composition, and Quality of Life in Intermediate-Frail and Frail Elderly Men: A Randomized, Double-Blind, Placebo-Controlled Study. The Journal of Clinical Endocrinology & Metabolism, 95, 639-650. https://doi.org/10.1210/jc.2009-1251

  52. 52. Bhat, M., Kalam, R., Qadri, S.S., Madabushi, S. and Ismail, A. (2013) Vitamin D Deficiency-Induced Muscle Wasting Occurs through the Ubiquitin Proteasome Pathway and Is Partially Corrected by Calcium in Male Rats. Endocrinology, 154, 4018-4029. https://doi.org/10.1210/en.2013-1369

  53. 53. Pfeifer, M., Begerow, B., Minne, H.W., Abrams, C., Nachtigall, D. and Hansen, C. (2000) Effects of a Short-Term Vitamin D and Calcium Supplementation on Body Sway and Secondary Hyperparathyroidism in Elderly Women. Journal of Bone and Mineral Research, 15, 1113-1118. https://doi.org/10.1359/jbmr.2000.15.6.1113

  54. 54. Isoyama, N., Qureshi, A.R., Avesani, C.M., Lindholm, B., Barany, P., Heimburger, O., et al. (2014) Comparative Associations of Muscle Mass and Muscle Strength with Mortality in Dialysis Patients. Clinical Journal of the American Society of Nephrology, 9, 1720-1728. https://doi.org/10.2215/CJN.10261013

  55. 55. Chen, Y., Sood, S., Biada, J., Roth, R. and Rabkin, R. (2008) Increased Workload Fully Activates the Blunted irs-1/pi3-Kinase/Akt Signaling Pathway in Atrophied Uremic Muscle. Kidney International, 73, 848-855. https://doi.org/10.1038/sj.ki.5002801

  56. 56. Sun, D.F., Chen, Y. and Rabkin, R. (2006) Work-Induced Changes in Skeletal Muscle igf-1 and Myostatin Gene Expression in Uremia. Kidney International, 70, 453-459. https://doi.org/10.1038/sj.ki.5001532

  57. 57. Watson, E.L., Gould, D.W., Wilkinson, T.J., Xenophontos, S., Clarke, A.L., Vogt, B.P., et al. (2018) Twelve-Week Combined Resistance and Aerobic Training Confers Greater Benefits than Aerobic Training Alone in Nondialysis CKD. American Journal of Physiology-Renal Physiology, 314, F1188-F1196. https://doi.org/10.1152/ajprenal.00012.2018

  58. 58. Kopple, J.D., Storer, T. and Casburi, R. (2005) Impaired Exercise Capacity and Exercise Training in Maintenance Hemodialysis Patients. Journal of Renal Nutrition, 15, 44-48. https://doi.org/10.1053/j.jrn.2004.09.022

  59. 59. Watson, E.L., Viana, J.L., Wimbury, D., Martin, N., Greening, N.J., Barratt, J., et al. (2017) The Effect of Resistance Exercise on Inflammatory and Myogenic Markers in Patients with Chronic Kidney Disease. Frontiers in Physiology, 8, Article No. 541. https://doi.org/10.3389/fphys.2017.00541

  60. 60. Tamaki, M., Hagiwara, A., Miyashita, K., Wakino, S., Inoue, H., Fujii, K., et al. (2015) Improvement of Physical Decline through Combined Effects of Muscle Enhancement and Mitochondrial Activation by a Gastric Hormone Ghrelin in Male 5/6nx CKD Model Mice. Endocrinology, 156, 3638-3648. https://doi.org/10.1210/en.2015-1353

  61. 61. Ko, G.J., Obi, Y., Tortorici, A.R. and Kalantar-Zadeh, K. (2017) Dietary Protein Intake and Chronic Kidney Disease. Current Opinion in Clinical Nutrition & Metabolic Care, 20, 77-85. https://doi.org/10.1097/MCO.0000000000000342

  62. 62. Rhee, C.M., Ahmadi, S.F., Kovesdy, C.P. and Kalantar-Zadeh, K. (2018) Low-Protein Diet for Conservative Management of Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Controlled Trials. Journal of Cachexia, Sarcopenia and Muscle, 9, 235-245. https://doi.org/10.1002/jcsm.12264

  63. 63. Maraj, M., Kusnierz-Cabala, B., Dumnicka, P., Gala-Bladzinska, A., Gawlik, K., Pawlica-Gosiewska, D., et al. (2018) Malnutrition, Inflammation, Atherosclerosis Syndrome (mia) and Diet Recommendations among End-Stage Renal Disease Patients Treated with Maintenance Hemodialysis. Nutrients, 10, 69. https://doi.org/10.3390/nu10010069

  64. 64. Twycross-Lewis, R., Kilduff, L.P., Wang, G. and Pitsiladis, Y.P. (2016) The Effects of Creatine Supplementation on Thermoregulation and Physical (Cognitive) Performance: A Review and Future Prospects. Amino Acids, 48, 1843-1855. https://doi.org/10.1007/s00726-016-2237-9

  65. 65. Post, A., Tsikas, D. and Bakker, S.J.L. (2019) Creatine Is a Conditionally Essential Nutrient in Chronic Kidney Disease: A Hypothesis and Narrative Literature Review. Nutrients, 11, E1044. https://doi.org/10.3390/nu11051044

  66. 66. Han, H.Q., Zhou, X., Mitch, W.E. and Goldberg, A.L. (2013) Myostatin/Activin Pathway Antagonism: Molecular Basis and Therapeutic Potential. The International Journal of Biochemistry & Cell Biology, 45, 2333-2347. https://doi.org/10.1016/j.biocel.2013.05.019

  67. 67. Jamart, C., Raymackers, J.M., Li, A.G., Deldicque, L. and Francaux, M. (2011) Prevention of Muscle Disuse Atrophy by mg132 Proteasome Inhibitor. Muscle Nerve, 43, 708-716. https://doi.org/10.1002/mus.21949

  68. 68. Lang, C.H., Huber, D. and Frost, R.A. (2007) Burn-Induced Increase in Atrogin-1 and murf-1 in Skeletal Muscle Is Glucocorticoid Independent but Downregulated by igf-i. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292, R328-R336. https://doi.org/10.1152/ajpregu.00561.2006

  69. 69. Goldberg, A.L. (2012) Development of Proteasome Inhibitors as Research Tools and Cancer Drugs. Journal of Cell Biology, 199, 583-588. https://doi.org/10.1083/jcb.201210077

  70. 70. Enrico, O., Gabriele, B., Nadia, C., Sara, G., Daniele, V., Giulia, C., et al. (2007) Unexpected Cardiotoxicity in Haematological Bortezomib Treated Patients. British Journal of Haematology, 138, 396-397. https://doi.org/10.1111/j.1365-2141.2007.06659.x

  71. 71. Enoki, Y., Watanabe, H., Arake, R., Fujimura, R., Ishiodori, K., Imafuku, T., et al. (2017) Potential Therapeutic Interventions for Chronic Kidney Disease-Associated Sarcopenia via Indoxyl Sulfate-Induced Mitochondrial Dysfunction. Journal of Cachexia, Sarcopenia and Muscle, 8, 735-747. https://doi.org/10.1002/jcsm.12202

  72. 72. Rupprecht, L., Mietlicki-Baase, E.G., Zimmer, D.J., McGrath, L.E., Olivos, D.R. and Hayes, M.R. (2013) Hindbrain glp-1 Receptor-Mediated Suppression of Food Intake Requires a pi3k-Dependent Decrease in Phosphorylation of Membrane-Bound AKT. American Journal of Physiology-Endocrinology and Metabolism, 305, E751-E759. https://doi.org/10.1152/ajpendo.00367.2013

  73. 73. Hong, Y., Lee, J.H., Jeong, K.W., Choi, C.S. and Jun, H.S. (2019) Amelioration of Muscle Wasting by Glucagon-Like Peptide-1 Receptor Agonist in Muscle Atrophy. Journal of Cachexia, Sarcopenia and Muscle, 10, 903-918. https://doi.org/10.1002/jcsm.12434

  74. 74. McFarlane, C., Vajjala, A., Arigela, H., Lokireddy, S., Ge, X., Bonala, S., et al. (2014) Negative Auto-Regulation of Myostatin Expression Is Mediated by smad3 and Microrna-27. PLoS ONE, 9, e87687. https://doi.org/10.1371/journal.pone.0087687

  75. 75. Wang, B., Zhang, C., Zhang, A., Cai, H., Price, S.R. and Wang, X.H. (2017) Microrna-23a and Microrna-27a Mimic Exercise by Ameliorating CKD-Induced Muscle Atrophy. Journal of the American Society of Nephrology, 28, 2631-2640. https://doi.org/10.1681/ASN.2016111213

  76. NOTES

    *通讯作者Email: tanrongshao@126.com

期刊菜单