Advances in Clinical Medicine
Vol. 12  No. 07 ( 2022 ), Article ID: 53324 , 7 pages
10.12677/ACM.2022.127880

残余胆固醇与血液透析患者血脂异常的现况

杜柯锐,侯显玥,杨小娟*

延安大学附属医院,陕西 延安

收稿日期:2022年6月4日;录用日期:2022年6月28日;发布日期:2022年7月5日

摘要

血液透析(HD)已成为大多数终末期肾病患者偏向选择的肾脏替代方式,心血管疾病(CVD)是其主要死亡原因。脂代谢紊乱是CVD和终末期肾病(ESRD)共同进展的机制。越来越多的证据表明,即使当低密度脂蛋白控制到最佳水平,残余胆固醇(RC)仍从流行病学及遗传学等方面被证明在预测ASCVD的发生中起着重要作用。现就HD患者血脂紊乱的特点及RC的定义、测量、机制、相关研究进展等进行总结。

关键词

残余胆固醇,终末期肾脏病,血液透析,心血管疾病,脂代谢紊乱

Remnant Cholesterol and Status of Dyslipidemia in Hemodialysis Patients

Kerui Du, Xianyue Hou, Xiaojuan Yang*

Affiliated Hospital of Yan’an University, Yan’an Shaanxi

Received: Jun. 4th, 2022; accepted: Jun. 28th, 2022; published: Jul. 5th, 2022

ABSTRACT

Hemodialysis (HD) has become the preferred renal replacement for most patients with end-stage renal disease, and cardiovascular disease (CVD) is the leading cause of death. Dyslipidemia is a mechanism for the co-progression of CVD and end-stage renal disease (ESRD). There is increasing evidence that even when low-density lipoprotein is controlled to optimal levels, remnant cholesterol (RC) is still proven to play an important role in predicting the occurrence of ASCVD from the aspects of pathogenic mechanism, epidemiology and genetics. This article summarizes the characteristics of dyslipidemia in HD patients and the definition, measurement, mechanism, and related research progress of RC.

Keywords:Remnant Cholesterol, End-Stage Renal Disease, Hemodialysis, Atherosclerotic Cardiovascular Disease, Dyslipidemia

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

慢性肾脏病(chronic kidney disease, CKD)已逐渐发展为全球性卫生健康问题,而我国逐渐成为全球CKD患病率最高的国家 [1]。当疾病进入终末期状态时,肾脏代替治疗包括肾移植、腹膜透析及血液透析(hemodialysis, HD)需纳入考虑,我国患者大多数选择了后者 [2]。心血管疾病(cardiovascular diseases, CVD)是导致HD患者发病和死亡的一个重要原因,研究表明,HD患者CVD死亡率为普通人群的10~30倍 [3]。众多导致CVD的因素中,脂代谢紊乱作为肾脏病和动脉粥样硬化性心血管病(atherosclerotic cardiovascular disease, ASCVD)的共同“通路” [4],引发了近年来学者的广泛关注。

大量研究表明,在普通人群以及轻中度CKD患者中,应用HMG-CoA还原酶抑制剂(他汀类药物)预防心血管风险有良好的反应 [5] [6] [7]。值得注意的是,CKD和终末期肾病(end-stage renal disease, ESRD)患者血脂异常的性质和机制以及CVD的特征与普通人群不同,尽管对低密度脂蛋白(low-density lipoprotein, LDL)进行了有效治疗,LDL的降低效果明显低于当前推荐的治疗目标,心血管事件复发率仍高于预期:SHARP试验和一项荟萃分析显示,经他汀治疗后CVD的风险仍随着CKD病情发展的晚期而增加 [5] [8]。虽然他汀类药物对部分轻中度CKD患者有效,但不能降低ESRD人群的CVD发病率和死亡率 [9] [10]。近年来,已有流行病学、遗传学和生物学等研究证明富含甘油三酯的脂蛋白(triglyceride-rich lipoprotein, TRL)升高是炎症、ASCVD和全因死亡率的因果风险因素 [11] [12],而其中最重要的成分或为残余胆固醇(remnant cholesterol, RC) [13] [14]。

目前国内外大量研究验证了RC与炎症以及缺血性心脏病、缺血性卒中和高血压的发展有关的相关性及因果关系 [14] - [21]。也有研究表明RC浓度可预测糖尿病肾病和视网膜病变的发展及糖尿病患者的心血管风险 [22] [23]。我国关于脂肪肝和非酒精性脂肪肝的研究中,RC和脂肪肝的发生率、严重程度呈强正相关,可能有助于进一步识别和预防脂肪肝 [24] [25]。而在HD患者中,目前关于RC仍需进一步研究。本文将结合近年来的科研文献概述HD患者的血脂紊乱及治疗现况。

2. HD患者血脂紊乱特点及机制

HD人群中脂质异常主要表现有甘油三酯(TG)和TRL (包括极低密度脂蛋白(VLDL)、乳糜微粒(CM)及其胆固醇残余物)升高、高密度脂蛋白(HDL)和载脂蛋白A (apoA)降低及血浆总胆固醇(TC)和低密度脂蛋白(LDL)不变或降低为主 [26]。其受多种因素如糖尿病、饮食、炎症、营养不良及与肾脏疾病无关的遗传疾病、脂质修饰药物(类固醇)和肾脏替代方式(即HD和腹膜透析)等的影响 [27] [28]。

HD患者早在CKD早期就开始TG升高,这与脂蛋白脂酶(LPL)缺乏和功能障碍有关。正常情况下,LPL介导VLDL和CM中TG的水解,从而使得心肌细胞和脂肪细胞能够释放和吸收脂肪酸。ESRD导致各组织中LPL的表达降低 [29],糖基磷脂酰肌醇锚定结合蛋白1 (GPIHBP1)的缺失以及甲状旁腺激素血清浓度的增加也会导致LPL缺乏 [30]。同时,载脂蛋白CIII (LPL抑制剂)/载脂蛋白CII(LPL激活剂)比率增加、肝素介导的内皮结合LPL的释放和降解 [30]、血管生成素样蛋白(ANGPTL) 3和4的浓度增加都可以有效抑制LPL的活性 [27]。此外,LDL受体相关蛋白(LRP)和VLDL受体下调,这些蛋白在清除VLDL、CM和中低密度脂蛋白(IDL)颗粒中起关键作用 [31]。上述异常不仅导致血清TG和TRL含量升高,损害能量传递和利用,也部分解释了ESRD中各种致动脉粥样硬化胆固醇残余物清除率降低的原因 [31]。部分研究指出,与普通人群相比,HD患者的血清TG和TRL水平升高与HD患者死亡率增加无关,一些研究则报告生存率提高 [32]。

LDL是导致ASCVD的主要危险因素之一 [11]。虽然在HD患者中,LDL水平往往并不升高甚至降低,但LDL代谢异常,极易被氧化为oxLDL并增加动脉粥样硬化的风险。具有这些特征的LDL的产生主要是由于LPL缺乏和活性降低,从而导致TRL和LDL的血清浓度升高。此外,在正常条件下,LDL的胆固醇含量通过胆固醇酯转移蛋白(CETP)的作用而增加:CETP促进胆固醇酯从HDL转移到TRL,从而降低高密度脂蛋白胆固醇(HDL-C)的血清浓度。尽管在ESRD患者中,CETP的血清活性可能正常或升高,但这些患者缺乏富含胆固醇的HDL,从而导致CETP缺乏胆固醇底物,进一步增加小密度低胆固醇LDL的水平 [33]。

HDL浓度降低是CKD疾病进展的典型特征,二者之间的关联已在HD患者中得到证实 [34]。HD患者中HDL和apoA浓度降低,部分原因是肝合成apoA的能力减弱以及卵磷脂–胆固醇酰基转移酶(LCAT)浓度和活性缺陷导致血浆HDL重塑改变 [34]。此外,HDL的组成和功能的异常包括HDL介导的胆固醇逆向转运减少以及其抗氧化和抗炎特性降低 [35]。目前还没有发现高浓度HDL与HD患者生存率的提高相关,在某些亚群中,高浓度HDL与更差的预后相关,此时此类HDL可能是促炎性的,通过积累对称性二甲基精氨酸(SDMA)促进内皮功能障碍 [36]。同样,一项针对170万男性的研究发现,较低的肾小球滤过率(eGFR)会减弱HDL的任何有益作用 [37]。因此,低HDL水平目前被认为是ASCVD风险的生物标志物,但不是治疗的目标,未来的研究将需要检查HDL的组成、抗氧化、抗炎和HDL内流/卸载能力,作为评估ESRD患者风险的临床工具 [38]。

3. 残余胆固醇(RC)

3.1. 定义

残余胆固醇(RC),一种与高浓度TG相关的新型脂蛋白指标,主要由VLDL和中等密度脂蛋白(IDL)、餐后状态时还包括CM等物质被LPL水解掉TG、磷脂、apoA和C等物质后剩余的胆固醇总称,占血浆TC的三分之一 [39]。RC的定量方法基本上包含两种:1) 据Friedewald方程计算,RC = TC − (LDL-C) − (HDL-C),优点是无需额外成本,局限则表现为该方程假定TG与VLDL-C的比率固定,然而,实际的比率则不同情况下变化很大。目前可以通过使用LDL-C计算RC来部分缓解或通过直接分析RC含量来完全缓解 [20] [40]。2) 获得RC还可通过医院实验室的循环酶法、免疫吸附法等测量,但由于血浆中代谢胆固醇残余物的浓度较低,且在不同时期大小和组成不均一,目前只能通过更费力的方法来如超速离心或核磁共振光谱法测量 [11]。国内的一项研究显示,计算的与核磁共振直接测量的RC水平之间存在显著差异,而在某些TG水平内,二者测量方式所得几乎相等,意味着使用计算的RC是可行的 [41]。所以,仍有必要开发一种更为准确且简便的临床方法来测量RC水平,或成为未来治疗的潜在靶点。

3.2. 机制

根据已有研究结果,动脉粥样硬化由内膜的损伤和炎症触发,强有力的证据表明,高浓度的RC会导致ASCVD [12] [42]。与LDL相比,RC导致动脉粥样硬化的方式存在重大差异:TRL经水解后的RC进入动脉壁,未经修饰即被巨噬细胞和平滑肌细胞吸收形成泡沫细胞,而LDL需要在吸收前进行氧化修饰 [43]。此外,一项巴西成人健康研究表明,空腹血糖受损的个体中TRL颗粒大小与肥胖、胰岛素抵抗和炎症高度相关 [44]。TRL颗粒比LDL大,携带胆固醇含量是其40倍,这可能使它们比LDL更容易导致动脉粥样硬化。Varbo A等人的研究表明,RC升高会导致低度炎症和缺血性心脏病,而LDL-C升高会导致缺血性心脏病而无炎症,进一步证明相对于LDL,RC会导致的动脉粥样硬化炎症反应更加明确 [45]。

3.3. 部分研究进展

目前国内外大量研究验证了RC与CVD、糖尿病、高血压、脂肪肝、深静脉血栓等各系统疾病的相关性,为RC的致动脉粥样硬化风险提供了有力支撑。肾脏病方面,FAVORIT研究首次证明基线RC水平升高与心血管事件风险和肾移植受者全因死亡率之间存在因果关系 [46]。一项横断面研究结果证明,在中国普通中老年人群中,较高的RC与CKD流行风险的增加独立相关,尤其是女性、超重/肥胖、非糖尿病前期、高血压、HDL-C正常、适当和高LDL-C值以及无CVD事件的受试者 [47]。一项队列研究证明,高浓度RC与传统血脂指标的升高相比,与肾损伤早期进展的关系更为密切 [48]。Transplant Lines生物库和队列研究的结果表示:基线RC水平与肾移植受者移植后新发糖尿病密切相关 [49]。因此,通过生活方式和药物干预来监测和降低高危人群的RC值非常重要,从而在降低CKD风险和带来CVD相关方面益处。目前仍缺乏以HD患者为基础的心血管事件风险研究,仍需进一步的数据来支持帮助改善HD患者的预后。

4. 治疗

导致ASCVD残余风险的机制不仅表明了我们对动脉粥样硬化病变的不完全理解,且提出了新的治疗方法。已有的治疗中他汀类、贝特类、胆汁酸螯合剂和烟酸的潜力有限,促使人们寻找疗效和安全性更好的新药物分子,如CETP抑制剂,除了具有降低LDL的特性外,还具有提高HDL的潜力;微粒体甘油三酯转移蛋白(MTP)抑制剂和载脂蛋白CIII抑制剂已被批准用于家族性高胆固醇血症,但在非家族性环境中的经验非常有限;PCSK9抑制剂有望在LDL-C控制中发挥作用;我国学者利用三项数据库对CKD患者的荟萃分析证明,补充辅酶Q10可能具有改善炎症水平、葡萄糖代谢、心脏结构和心脏生物标志物的潜力,此结果仍应在更大规模的高质量研究中得到证实 [50] [51];目前正在研究靶向针对脂蛋白(a)的新方法对心血管的益处 [14];欧洲药品管理局基于REDUCE-IT实验批准二十碳五烯乙酯(IPE)的使用,明显降低了RC的浓度,也可调节内皮功能、减轻斑块内炎症和氧化应激,以及减少巨噬细胞积累 [52]。上述治疗方法仍有必要进行进一步的临床试验,RC如何进一步降低及降低后的成果仍值得我们拭目以待。

5. 总结及讨论

血脂代谢异常及新近的指标RC已从致病机制、流行病学及遗传学等被证明是CKD和ASCVD的主要机制,在预测心血管风险的发生中起着重要作用。了解这些复杂和独特的脂蛋白变化特征不仅对现有临床数据结果的解释至关重要,而且对ESRD脂质紊乱治疗的个体化也至关重要。目前的降脂药物的使用有限,且针对RC治疗的研究较少,RC的标准化检测尚存争议,未来需对该疾病的进一步了解以及使用可靠的技术进行更深入的研究,从而使我们在追求理想的抗血脂药物的道路上更进一步。

文章引用

杜柯锐,侯显玥,杨小娟. 残余胆固醇与血液透析患者血脂异常的现况
Remnant Cholesterol and Status of Dyslipidemia in Hemodialysis Patients[J]. 临床医学进展, 2022, 12(07): 6106-6112. https://doi.org/10.12677/ACM.2022.127880

参考文献

  1. 1. Zhang, L.X., et al. (2012) Prevalence of Chronic Kidney Disease in China: A Cross-Sectional Survey. The Lancet, 379, 815-822. https://doi.org/10.1016/S0140-6736(12)60033-6

  2. 2. Lu, R., Estremadoyro, C. and Chen, X. (2018) Hemodialysis versus Peritoneal Dialysis: An Observational Study in Two International Centers. The International Jour-nal of Artificial Organs, 41, 58-65. https://doi.org/10.5301/ijao.5000656

  3. 3. Vaziri, N.D. (2006) Dyslipidemia of Chronic Renal Failure: The Nature, Mechanisms, and Potential Consequences. American Journal of Physiology—Renal Physiology, 290, F262-F272. https://doi.org/10.1152/ajprenal.00099.2005

  4. 4. Zoccali, C., Mallamaci, F. and Tripepi, G. (2004) Novel Cardio-vascular Risk Factors in End-Stage Renal Disease. Journal of the American Society of Nephrology, 15, S77-S80. https://doi.org/10.1097/01.ASN.0000093240.84097.FE

  5. 5. Baigent, C., et al. (2011) The Effects of Lowering LDL Cholesterol with Simvastatin plus Ezetimibe in Patients with Chronic Kidney Disease (Study of Heart and Renal Protection): A Randomised Placebo-Controlled Trial. The Lancet, 377, 2181-2192.

  6. 6. 康伟平. 阿托伐他汀对高脂血症合并慢性肾脏病患者心血管风险影响的临床研究[J]. 中国现代药物应用, 2019, 13(1): 125-126.

  7. 7. Hou, W.Y., et al. (2013) Effect of Statin Therapy on Cardiovascular and Renal Outcomes in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. European Heart Journal, 34, 1807-1817. https://doi.org/10.1093/eurheartj/eht065

  8. 8. Messow, C.M. and Isles, C. (2017) Meta-Analysis of Statins in Chronic Kidney Disease: Who Benefits? QJM, 110, 493-500. https://doi.org/10.1093/qjmed/hcx040

  9. 9. Wanner, C., et al. (2005) Atorvastatin in Patients with Type 2 Diabetes Mellitus Undergoing Hemodialysis. The New England Journal of Medicine, 353, 238-248. https://doi.org/10.1056/NEJMoa043545

  10. 10. Fellström, B.C., et al. (2009) Rosuvastatin and Cardiovascular Events in Patients Undergoing Hemodialysis. The New England Journal of Medicine, 360, 1395-1407. https://doi.org/10.1056/NEJMoa0810177

  11. 11. Sandesara, P.B., Virani, S.S., Fazio, S., et al. (2019) The Forgotten Lipids: Triglycerides, Remnant Cholesterol, and Atherosclerotic Cardiovascular Disease Risk. En-docrine Reviews, 40, 537-557. https://doi.org/10.1210/er.2018-00184

  12. 12. Nordestgaard, B.G. (2016) Triglycer-ide-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights from Epidemiology, Genetics, and Bi-ology. Circulation Research, 118, 547-563. https://doi.org/10.1161/CIRCRESAHA.115.306249

  13. 13. Varbo, A., Freiberg, J.J. and Nordestgaard, B.G. (2015) Extreme Nonfasting Remnant Cholesterol vs Extreme LDL Cholesterol as Contributors to Cardiovascular Disease and All-Cause Mortality in 90000 Individuals from the General Population. Clinical Chemistry, 61, 533-543. https://doi.org/10.1373/clinchem.2014.234146

  14. 14. Bruemmer, D. and Cho, L. (2021) Remnant Cholesterol. Cir-culation: Cardiovascular Imaging, 14, e12615. https://doi.org/10.1161/CIRCIMAGING.121.012615

  15. 15. Qian, S., You, S. and Sun, Y. (2021) Remnant Choles-terol and Common Carotid Artery Intima-Media Thickness in Patients with Ischemic Stroke. Circulation: Cardiovascular Imaging, 14, e010953. https://doi.org/10.1161/CIRCIMAGING.120.010953

  16. 16. Castañer, O., Pintó, X. and Subirana, I. (2020) Remnant Cholesterol, Not LDL Cholesterol, Is Associated with Incident Cardiovascular Disease. Journal of the American College of Cardiology, 76, 2712-2724. https://doi.org/10.1016/j.jacc.2020.10.008

  17. 17. Bernelot Moens, S.J., Verweij, S.L. and Schnitzler, J.G. (2017) Remnant Cholesterol Elicits Arterial Wall Inflammation and a Multilevel Cellular Immune Response in Humans. Arterio-sclerosis, Thrombosis, and Vascular Biology, 37, 969-975. https://doi.org/10.1161/ATVBAHA.116.308834

  18. 18. Wadström, B.N., Wulff, A.B., Pedersen, K.M., et al. (2021) Elevated Remnant Cholesterol Increases the Risk of Peripheral Artery Disease, Myocardial Infarction, and Ischaemic Stroke: A Cohort-Based Study. European Heart Journal, ehab705. https://doi.org/10.1093/eurheartj/ehab705

  19. 19. Xu, J., Qu, P. and Du, X. (2021) Change in Postprandial Level of Remnant Cholesterol after a Daily Breakfast in Chinese Patients with Hypertension. Frontiers in Cardiovascular Medi-cine, 8, Article ID: 685385. https://doi.org/10.3389/fcvm.2021.685385

  20. 20. Varbo, A. and Nordestgaard, B.G. (2021) Directly Measured vs. Calculated Remnant Cholesterol Identifies Additional Overlooked Individuals in the General Population at Higher Risk of Myocardial Infarction. European Heart Journal, 42, 4833-4843. https://doi.org/10.1093/eurheartj/ehab293

  21. 21. 聂大奥, 林桥文, 谭文惠, 等. 残余胆固醇水平对急性脑梗死发病的预测价值[J]. 实用医学杂志, 2021, 37(13): 1711-1713.

  22. 22. Jansson, S.F., Dahlström, E.H., Forsblom, C., et al. (2021) Remnant Cholesterol Predicts Progression of Diabetic Nephropathy and Retinopathy in Type 1 Diabetes. Journal of Internal Medicine, 290, 632-645. https://doi.org/10.1111/joim.13298

  23. 23. Cao, Y., Zhang, H. and Jin, J. (2020) The Longitudinal Association of Remnant Cholesterol with Cardiovascular Outcomes in Patients with Diabetes and Pre-Diabetes. Cardiovascular Dia-betology, 19, 104. https://doi.org/10.1186/s12933-020-01076-7

  24. 24. Zhang, S., Cheng, S. and He, X. (2022) Remnant Lipoprotein Cholesterol as a Factor Related to Adult Fatty Liver Disease. The Journal of Clinical Endocrinology & Metabolism, 107, e1598-e1609. https://doi.org/10.1210/clinem/dgab825

  25. 25. Zou, Y., Hu, C., Kuang, M., et al. (2022) Remnant Cholester-ol/High-Density Lipoprotein Cholesterol Ratio Is a New Powerful Tool for Identifying Non-Alcoholic Fatty Liver Dis-ease. BMC Gastroenterology, 22, Article No. 134. https://doi.org/10.1186/s12876-022-02216-x

  26. 26. Tsimihodimos, V., Mitrogianni, Z. and Elisaf, M. (2011) Dyslipidemia Associated with Chronic Kidney Disease. The Open Cardiovascular Medicine Journal, 5, 41-48. https://doi.org/10.2174/1874192401105010041

  27. 27. Vaziri, N.D. (2018) Molecular Mechanisms of Disorders of Lipid Metabolism in Chronic Kidney Disease. Frontiers in Bioscience, 23, 146-161. https://doi.org/10.2741/4585

  28. 28. Shapiro, M.D. and Fazio, S. (2016) From Lipids to Inflammation. Circulation Research, 118, 732-749. https://doi.org/10.1161/CIRCRESAHA.115.306471

  29. 29. Nosratola, D. and Vaziri, H.M. (2006) Mechanisms of Dyslipidemia of Chronic Renal Failure. Hemodialysis International, 10, 1-7. https://doi.org/10.1111/j.1542-4758.2006.01168.x

  30. 30. Chan, M.K., et al. (1984) Pathogenic Roles of Post-Heparin Lipases in Lipid Abnormalities in Hemodialysis Patients. Kidney International, 25, 812-818. https://doi.org/10.1038/ki.1984.94

  31. 31. Kim, C. and Vaziri, N.D. (2005) Down-Regulation of Hepatic LDL Re-ceptor-Related Protein (LRP) in Chronic Renal Failure. Kidney International, 67, 1028-1032. https://doi.org/10.1111/j.1523-1755.2005.00166.x

  32. 32. Chang, T.I., et al. (2017) Association of Serum Tri-glyc-Eride to HDL Cholesterol Ratio with All-Cause and Cardiovascular Mortality in Incident Hemodialysis Patients. Clinical Journal of the American Society of Nephrology, 12, 591- 602. https://doi.org/10.2215/CJN.08730816

  33. 33. Homma, K., et al. (2013) Skew of Plasma Low- and High-Density Lipoprotein Distributions to Less Dense Subfractions in Normotriglyceridemic Chronic Kidney Disease Patients on Maintenance Hemodialysis Treatment. Nephron Clinical Practice, 123, 41-45. https://doi.org/10.1159/000351506

  34. 34. Calabresi, L., et al. (2015) Acquired Lecithin: Cholesterol Acyltransferase Deficiency as a Major Factor in Lowering Plasma HDL Levels in Chronic Kidney Disease. Journal of Internal Medicine, 5, 552-561. https://doi.org/10.1111/joim.12290

  35. 35. Vaziri, N.D. (2016) HDL Abnormalities in Nephrotic Syndrome and Chronic Kidney Disease. Nature Reviews Nephrology, 12, 37-47. https://doi.org/10.1038/nrneph.2015.180

  36. 36. Chang, T.I., et al. (2018) Increments in Serum High-Density Lipo-protein Cholesterol over Time Are Not Associated with Improved Outcomes in Incident Hemodialysis Patients. Journal of Clinical Lipidology, 12, 488-497. https://doi.org/10.1016/j.jacl.2018.01.010

  37. 37. Bowe, B., Xie, Y., Xian, H., et al. (2016) High Density Lipoprotein Cholesterol and the Risk of All-Cause Mortality among U.S. Veterans. Clinical Journal of the American Society of Nephrology, 11, 1784-1793. https://doi.org/10.2215/CJN.00730116

  38. 38. Kronenberg, F. (2018) High-Density Lipoprotein in Chronic Kidney Diseases—The Devil Is in the Detail. Journal of the American Society of Nephrology, 29, 1356-1371. https://doi.org/10.1681/ASN.2017070798

  39. 39. Chapman, M.J., et al. (2011) Triglyceride-Rich Lipoproteins and High-Density Lipoprotein Cholesterol in Patients at High Risk of Cardiovascular Disease: Evidence and Guidance for Management. European Heart Journal, 32, 1345- 1361. https://doi.org/10.1093/eurheartj/ehr112

  40. 40. Martin, S.S., Blaha, M.J., Elshazly, M.B., et al. (2013) Comparison of a Novel Method vs the Friedewald Equation for Estimating Low-Density Lipoprotein Cholesterol Levels from the Standard Lipid Profile. JAMA, 310, 2061-2068. https://doi.org/10.1001/jama.2013.280532

  41. 41. Chen, J., Kuang, J. and Tang, X. (2020) Comparison of Calculated Remnant Lipoprotein Cholesterol Levels with Levels Directly Measured by Nuclear Magnetic Resonance. Lipids in Health and Disease, 19, Article No. 132. https://doi.org/10.1186/s12944-020-01311-w

  42. 42. Quispe, R., Martin, S.S. and Michos, E.D. (2021) Remnant Cholesterol Predicts Cardiovascular Disease beyond LDL and ApoB: A Primary Prevention Study. European Heart Journal, 42, 4324-4332. https://doi.org/10.1093/eurheartj/ehab432

  43. 43. Nakajima, K., et al. (2006) The Oxidative Modification Hypothesis of Atherosclerosis: The Comparison of Atherogenic Effects on Oxidized LDL and Remnant Lipoproteins in Plasma. Clinica Chimica Acta, 367, 36-47. https://doi.org/10.1016/j.cca.2005.12.013

  44. 44. Carvalho, L.S.F., Benseñor, I.M. and Nogueira, A.C.C. (2021) In-creased Particle Size of Triacylglycerol-Enriched Remnant Lipoproteins, But Not Their Plasma Concentration or Lipid Content, Augments Risk Prediction of Incident Type 2 Diabetes. Diabetologia, 64, 385-396. https://doi.org/10.1007/s00125-020-05322-1

  45. 45. Varbo, A., et al. (2013) Elevated Remnant Cholesterol Causes both Low-Grade Inflammation and Ischemic Heart Disease, Whereas Elevated Low-Density Lipoprotein Cholesterol Causes Ischemic Heart Disease without Inflammation. Circulation, 128, 1298-1309. https://doi.org/10.1161/CIRCULATIONAHA.113.003008

  46. 46. Horace, R.W., et al. (2022) Remnant Cholesterol Is Prospectively Associated with Cardiovascular Disease Events and All-Cause Mortality in Kidney Transplant Recipi-ents: The FAVORIT Study. Nephrology Dialysis Transplantation, 37, 382-389. https://doi.org/10.1093/ndt/gfab068

  47. 47. Yan, P., Xu, Y. and Miao, Y. (2021) Association of Remnant Cholesterol with Chronic Kidney Disease in Middle- Aged and Elderly Chinese: A Population-Based Study. Acta Diabetologica, 58, 1615-1625. https://doi.org/10.1007/s00592-021-01765-z

  48. 48. Zhai, Q., Dou, J., Wen, J., et al. (2022) Association between Changes in Lipid Indexes and Early Progression of Kidney Dysfunction in Participants with Normal Estimated Glomeru-lar Filtration Rate: A Prospective Cohort Study. Endocrine, 76, 312-323. https://doi.org/10.1007/s12020-022-03012-z

  49. 49. Szili-Torok, T., Sokooti, S., Osté, M., et al. (2022) Remnant Lipoprotein Cholesterol Is Associated with Incident New Onset Diabetes after Transplantation (NODAT) in Renal Transplant Recipients: Results of the Transplant Lines Biobank and Cohort Studies. Cardiovascular Diabetology, 21, 41. https://doi.org/10.1186/s12933-022-01475-y

  50. 50. Xu, Y., Yang, G., Zuo, X., et al. (2022) A Systematic Review for the Efficacy of Coenzyme Q10 in Patients with Chronic Kidney Disease. International Urology and Nephrology, 54, 173-184. https://doi.org/10.1007/s11255-021-02838-2

  51. 51. George, M., et al. (2015) Looking into the Crystal Ball-Upcoming Drugs for Dyslipidemia. Journal of Cardiovascular Pharmacology and Therapeutics, 20, 11-20. https://doi.org/10.1177/1074248414545127

  52. 52. Chapman, M.J., Zamorano, J.L. and Parhofer, K.G. (2022) Re-ducing Residual Cardiovascular Risk in Europe: Therapeutic Implications of European Medicines Agency Approval of Icosapent Ethyl/Eicosapentaenoic Acid. Pharmacology & Therapeutics, 237, Article ID: 108172. https://doi.org/10.1016/j.pharmthera.2022.108172

  53. NOTES

    *通讯作者。

期刊菜单