Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 65604 , 7 pages
10.12677/ACM.2023.1351137

KRAS突变型微卫星稳定型晚期结直肠癌的 治疗

朱增光1,姬发祥2*

1青海大学临床医学院,青海 西宁

2青海大学附属医院,青海 西宁

收稿日期:2023年4月19日;录用日期:2023年5月11日;发布日期:2023年5月22日

摘要

结直肠癌(CRC)是我国最常见的恶性肿瘤,大多数结直肠癌患者在发现时已处于中晚期,目前晚期CRC的治疗仍然是以化疗治疗为主。随着研究的深入及进展,靶向治疗、免疫治疗等多种治疗方式也在不断进步提升。对于微卫星高度不稳定型CRC的治疗,免疫在一线、后线辅助、新辅助治疗均取得了重大突破。但是对于大多数的微卫星稳定型(MSS),免疫治疗的研究及治疗疗效不尽人意,特别是对于KRAS突变型微卫星稳定型CRC的治疗及生存尤为显著,目前多项研究将免疫治疗与靶向治疗、化疗等相结合作为新的突破方向。本文将对KRAS突变型MSS型晚期CRC的治疗及治疗进展进行梳理及综述。

关键词

晚期结直肠癌,KRAS突变,微卫星稳定,靶向治疗,免疫治疗

Treatment of KRAS Mutant Microsatellite Stabilized Advanced Colorectal Cancer

Zengguang Zhu1, Faxiang Ji2*

1Clinical Medical College, Qinghai University, Xining Qinghai

2Affilitated Hospital of Qinghai University, Xining Qinghai

Received: Apr. 19th, 2023; accepted: May 11th, 2023; published: May 22nd, 2023

ABSTRACT

Colorectal cancer is the most common malignant tumor in China. Most patients with CRC are in the middle and advanced stage at the time of discovery. Chemotherapy is still the main treatment for the advanced stage CRC. With the deepening of research and progress, targeted therapy, immunotherapy and other forms of treatment are also improving. For the treatment of highly unstable CRC with microsatellites, major breakthroughs have been made in first-line, post-line adjuvant and neoadjuvant therapy. However, for most microsatellite stable CRC, immunotherapy research and therapeutic efficiency are unsatisfactory, especially for the treatment and survival of KRAS mutant microsatellite stable CRC. Currently, a number of studies have taken the combination of immunotherapy with targeted therapy and chemotherapy as a new breakthrough direction. In this paper, the treatment and treatment progress of KRAS mutant MSS advanced CRC will be reviewed and summarized.

Keywords:Advanced Colorectal Cancer, KRAS Mutation, Microsatellite Stabilization, Targeted Therapy, Immunotherapy

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

据2020年GLOBAL CANCER介绍,2020年全球约有190万新发肿瘤病例,其中结直肠癌(Colorectal Cancer, CRC)的发病人数占总的肿瘤发病人数的10%,在全部癌症发病中排第三位,死亡率居癌症导致死亡原因的第二位,占比约为9.4%,仅次于肺癌 [1] 。就我国CRC发病情况而言,发病率第四,死亡率第五。另外,由于结直肠癌的临床症状出现都比较晚,故大约85%的患者在疾病诊断时已经处于中晚期。其中结直肠癌远处转移的约占43.81%,即转移性结直肠癌(metastatic Colorectal Cancer, mCRC) [2] [3] [4] 。在结直肠癌转移的病灶中,最常见的转移部位是肝、肺和腹膜转移,这就导致了结直肠癌有着高死亡率的原因 [5] [6] 。同时,由于社会经济的发展,生活方式、饮食方式的改变,即由植物源性食物转向动物源性食物的摄入的增加和久坐的生活习惯,再加上运动的减少和体重的超重,成为了结直肠癌危险因素增加的原因 [7] 。mCRC的治疗以化疗为主,靶向治疗及免疫治疗也在不断进步。相关研究显示免疫治疗在微卫星不稳定(Microsatellite Stable High, MSI-H)/错配修复功能缺陷(mismatch repair deficient, dMMR)转移性结直肠癌患者中显示出较好的疗效 [8] 。但是,总体而言,大约只有约5%的mCRC为dMMR/MSI-H型,另外约95%的mCRC患者为DNA错配修复完整(mismatch repair proficient, pMMR)/微卫星稳定(Microsatellite Stable, MSS)型 [9] 。RAS基因突变通常发生在CRC中,在所有突变中,最常见的突变基因为KRAS基因。据统计,大约43%的CRC发生KRAS突变,NRAS突变率约为9%,是第二常见基因突变 [10] 。中国患者中大约35%~40%的CRC病例中检测到KRAS突变。一旦发生KRAS突变,晚期结直肠肿瘤患者的有着肿瘤分化不良以及较差生存率 [11] [12] 。目前多项研究将免疫治疗与靶向治疗、化疗等相结合作为新的突破方向。本文将对KRAS突变型MSS型mCRC的治疗及治疗进展进行梳理及综述。

2. 化学治疗

目前来讲,对于CRC最有效的治疗方法仍然是手术切除,但因大多数发现时已经转移且分期较晚,导致多数患者无法行手术治疗或手术治疗切除率较低,故只能行内科药物治疗,如化学治疗,靶向治疗,局部放射治疗,免疫治疗。近几十年来,多学科疾病管理取得了进展,化疗的进步促进了mCRC患者的生存。奥沙利铂联合5-FU/亚叶酸钙方案(FOLFOX)和伊立替康联合5-FU/亚叶酸钙方案(FOLFIRI)是晚期CRC的基本方案 [13] 。FOLFIRI于2012年被欧洲和美国食品药品监督管理局(FDA)批准为晚期mCRC的一线治疗 [14] 。一项随机交叉试验显示,这些联合方案在统计学上没有差异,接受这些药物的患者在任何顺序的生存中位数为18~20个月 [15] [16] 。因此,FOLFOX方案和FOLFIRI方案成为治疗mCRC的标准一线化疗方案。

3. 靶向治疗

对于mCRC的患者由于其中细胞内药物浓度降低,代谢改变或治疗靶点改变成为了其治疗效果较差的主要原因 [17] 。抗血管生成靶向治疗的出现,将mCRC的治疗推向了一个新的阶段,延长了患者的生存时间。抗VEGF和抗EGFR单克隆抗体目前被认为是CRC的靶向治疗选择。进一步将晚期结直肠癌患者的总生存期延长至3年左右 [18] [19] 。贝伐单抗是针对人血管内皮生长因子(VEGF)的重组人源化IgG单克隆抗体,通过抑制血管内皮细胞生长和新生血管的形成,从而抑制mCRC的进展 [20] 。我国的一项随机III期有关贝伐珠单抗联合改良伊立替康、亚叶酸钙推注和5-FU静脉输注(mIFL)在mCRC一线治疗中的疗效和安全性临床试验,研究结果表明贝伐珠单抗加mIFL作为我国mCRC患者的一线治疗是有效且耐受性良好的 [21] 。在一项给KRAS突变的mCRC患者接受呼肠孤病毒治疗的临床实验中,呼肠孤病毒治疗的50%患者出现部分缓解,中位无进展生存期(Progression-Free Survival, PFS)和总生存期(Overall Survival, OS)分别为107.5周和11.11周。PFS和OS结果优于历史数据,安全性和耐受性良好。在KRAS突变的mCRC患者中给予呼肠孤病毒使治疗向前迈出的重要一步。 [22] 。另外,首个由我国自主研发的抗癌药物呋喹替尼,同样也是通过抗肿瘤血管生成发挥抗肿瘤作用其靶点为VEGF、VEGFR-2 [23] 。一项随机、双盲、安慰剂对照、多中心III期临床试验(FRESCO)结果表明,其OS、PFS、客观缓解率(Objective Response Rate, ORR)、疾病控制率(Disease Control Rate, DCR)均显著高于安慰剂组,且1例达到了完全缓解,12例部分缓解 [24] [25] 。AGM510 (Sotorasib)是FDA批准的第一个KRAS G12C的特异性、不可逆抑制剂。它使KRAS陷入不活跃的GDP束缚状态 [26] 。AGM510已在临床前研究中显示可以抑制KRAS的关键下游效应细胞外信号调节激酶(ERK)的磷酸化,在携带KRAS p。G12C肿瘤的小鼠中产生持久的完全肿瘤消退 [27] 。

4. 免疫治疗

免疫治疗首先是Brahmer在2010年首次报导了在晚期实体瘤患者中的临床活性试验,取得了良好的效果 [28] 。目前免疫治疗已经广泛应用临床,免疫治疗包括主动免疫和被动免疫,应用较多是被动免疫里的免疫检查点抑制剂药物。免疫检查点抑制剂主要包括PD-1单抗、PD-L1单抗以及CTLA-4单抗药物,其中应用较多的为细胞程序性死亡受体(PD-1单抗)药物。主要用于启动免疫应答的T细胞和抗原呈递细胞(APC)的识别和组合与兴奋性和抑制性信号有关。T细胞受体识别MHC复合物与APC表面的抗原。它激活T细胞上的共刺激分子,例如CD28,与APC上的CD80或CD86 (B7家族基因)相互作用,并有助于T细胞增殖和细胞因子产生 [29] 。PD-1的主要配体为PD-L1 (又称B7-H1),它是一种I型跨膜糖蛋白。因PD-1与PD-L1结合后,会产生负性调节作用,使T细胞无法激活,无法杀灭突变的正常细胞,导致恶性肿瘤的发生及进展。在肿瘤微环境(TME)中,恶性肿瘤表面可表达PD-L1,与T细胞上的PD-1结合,抵抗T细胞的杀伤作用,最终引起肿瘤免疫逃逸。 [30] 。因而PD-1单抗药物可针对PD-1靶点进行治疗,导致肿瘤细胞无法与T细胞表面的PD-1位点结合,进而使T细胞激活,对肿瘤细胞进行杀伤,从而实现抗肿瘤的作用。其新型的抗肿瘤机制获得了更好的临床疗效,相对于传统化疗及靶向药物治疗其不良反应更少。同样,在预后不良的肿瘤中观察到,如恶性黑色素瘤和非小细胞肺癌 [31] 。在其他实体肿瘤中,包括胃肠道肿瘤和肝细胞癌中,也已经报道了免疫治疗的积极疗效,取得了较为不错的治疗效果 [32] 。免疫治疗近几年来在晚期结直肠癌上也取得了良好的效果。KEYNOTE-177研究的最终总体生存分析突显出微卫星不稳定(MSI-H)/错配修复功能缺陷(dMMR)转移性结直肠癌患者中,帕博利珠单抗组中位PFS较标准治疗组呈翻倍延长。在最新的分析中显示了帕博利珠单抗持久的抗肿瘤活性和更少的治疗相关不良事件,但两个治疗组之间的总生存期没有显着差异。同时这些发现也支持帕博利珠单抗在MSI-H/dMMR转移性结直肠癌患者的有效一线治疗 [8] 。一项多中心、开放标签的II期临床实验KEYNOTE-164 [33] 和一项II期临床研究 [34] 结果显示派姆单抗在MSI-H/dMMR的晚期结直肠癌患者疗效较好,且不良反应可控,均证明了从临床中可以获益。同时,一项多中心、开放标签、随机、对照的II期临床试验表明了一线用阿替利珠单抗加FOLFOXIRI联合贝伐单抗方案可显著延长既往未治疗过的mCRC患者的无进展生存期 [35] 。虽然目前很多实验结果证明了免疫治疗在MSI-H/dMMR转移性结直肠癌治疗中显示了不错的疗效,但是就目前对于KRAS突变型晚期结直肠癌的临床指南推荐化疗(FOLFOX或FOLFIRI或FOLFOXIRI),并加用抗血管内皮生长因子药物作为早期治疗的主流。2020年ASCO会议上,研究者报道的有关KEYNOTE-177 [8] 研究亚的组分析的发现,KRAS或NRAS突变的患者使用PD-1单抗相比单纯化疗的获益没有显著差异。同样在KEYNOTE-164 [33] 中,也可以观察RAS突变亚组中单药PD-1单抗治疗获益不显著。BACCI研究采用卡培他滨 + BEV ± Atezolizumab后线治疗标准治疗失败的mCRC患者,分为A、B两组各纳入46和82位病人,随访中位数为12.35个月,最终两组的无进展生存期中位数分别为3.3个月和4.4个月[HR of 0.725 (0.491~1.07)],联合Atezolizumab的PFS和OS没有明显改善 [36] 。2022年ASCO-GI报道的II期CheckMate9X8研究比较了mFOLFOX6 + BEV + Nivolumab (NIVO + SOC组)与mFOLFOX6 + BEV (SOC组)用于mCRC一线治疗结果,两组mPFS均11.9个月,但NIVO + SOC组的1年PFS率及ORR均高于SOC组,显示出更高的PFS率、更高的客观缓解率和更持久的缓解时间以及可耐受的安全性 [37] 。AtezoTRIBE研究采用FOLFOXIRI + BEV ± Atezolizumab一线治疗mCRC,结果显示两组主要研究终点中位无进展生存期(Median PFS, mPFS)间的差异具有统计学意义(13.1个月:11.5个月,P = 0.012),表明了在一线FOLFOXIRI加贝伐珠单抗的基础上加用阿替利珠单抗是安全的,并且改善了既往未经治疗的mCRC患者的PFS。 [38] 。NIVACOR研究评估了纳武利尤单抗联合FOLFOXIRI/贝伐珠单抗作为一线治疗RAS/BRAF突变mCRC患者一线治疗的在任何MSS/MSI状态的晚期结直肠癌患者中的疗效。其初步中期实验结果达到主要终点ORR。结果表明纳武利尤单抗联合FOLOXIRI/贝伐珠单抗作为一线治疗RAS/BRAF突变mCRC患者的初步疗效和安全性 [39] 。AtezoTRIBE研究及NIVACOR研究同时在2022年ASCO上公布的我国一项信迪利单抗 + CAPEOX (奥沙利铂 + 卡培他滨) + BEV一线治疗RAS突变型MSS型mCRC患者的II期研究(NCT04547166研究)结果显示,初步ORR为84%,mPFS未达到,亚组分析显示肝转移及肺转移的ORR分别为93.3%和100.0%,且安全性可控 [40] 。一项I/II期MEDETREME研究在KRAS突变型mCRC的中期分析支持其疗效,6个月的PFS为62.5%,1年PFS为50%,次要终点DCR为87.5%,ORR为62.5%,完全缓解(Completeresponse, CR)为25% (16例患者中有10例),其中5例为完全缓解CR,5例为部分缓解(Partialresponse, PR) [41] 。同样,我国的一项II期试验正在评估sintilimab (抗PD-1单抗)与XELOX和贝伐珠单抗在RAS突变微卫星稳定型转移性结直肠癌的一线治疗疗效(NCT04194359)以及III期的sintilimab与XELOX + 贝伐珠单抗一线治疗RAS突变型转移性结直肠癌患者(NCT05171660)。

5. 结语

mCRC大多数都是MSS型,MSS型CRC由于自身存在免疫抑制的微环境,故一直以来对于单一的免疫治疗不敏感,且在基因突变中以KRAS突变为主要表现,目前来说对于KRAS突变的微卫星稳定型mCRC来说没有更优的方案,因此需要寻找新的治疗方法。目前,已经有多个临床试验在免疫联合靶向联合化疗治疗方向探索。表现出了一定的有效性,为KRAS突变的微卫星稳定型mCRC患者的治疗提供了新的思路,同时也有部分临床试验数据未能达到预期,因此,仍需要开展更多的临床试验验证此方案的有效性。同时希望能带来更好、更多的生存获益。

文章引用

朱增光,姬发祥. KRAS突变型微卫星稳定型晚期结直肠癌的治疗
Treatment of KRAS Mutant Microsatellite Stabilized Advanced Colorectal Cancer[J]. 临床医学进展, 2023, 13(05): 8128-8134. https://doi.org/10.12677/ACM.2023.1351137

参考文献

  1. 1. Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  2. 2. Zheng, R., Zhang, S., Zeng, H., Wang, S., Sun, K., Chen, R., et al. (2022) Cancer Incidence and Mortality in China, 2016. Journal of the National Cancer Center, 2, 1-9. https://doi.org/10.1016/j.jncc.2022.02.002

  3. 3. 吴春晓, 顾凯, 龚杨明, 郑荣寿, 王少明, 陈茹, 张思维, 施燕, 魏文强, 付晨, 赫捷. 2015年中国结直肠癌发病和死亡情况分析[J]. 中国癌症杂志, 2020(4): 241-245.

  4. 4. Xu, R., Wang, W., Zhu, B., Lin, X., Ma, D., Zhu, L., et al. (2020) Disease Characteristics and Treatment Patterns of Chinese Pa-tients with Metastatic Colorectal Cancer: A Retrospective Study Using Medical Records from China. BMC Cancer, 20, Article No. 131. https://doi.org/10.1186/s12885-020-6557-5

  5. 5. Van Cutsem, E., Cervantes, A., Nordlinger, B., Arnold, D. and ESMO Guidelines Working Group (2014) Metastatic Colorectal Cancer: ESMO Clinical Practice Guide-lines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 25, iii1-9. https://doi.org/10.1093/annonc/mdu260

  6. 6. Lee, R.M., Cardona, K. and Russell, M.C. (2019) Historical Perspec-tive: Two Decades of Progress in Treating Metastatic Colorectal Cancer. Journal of Surgical Oncology, 119, 549-563. https://doi.org/10.1002/jso.25431

  7. 7. Islami, F., Goding Sauer, A., Miller, K.D., et al. (2018) Proportion and Number of Cancer Cases and Deaths Attributable to Potentially Modifiable Risk Factors in the United States. CA: A Cancer Journal for Clinicians, 68, 31-54. https://doi.org/10.3322/caac.21440

  8. 8. Diaz, L.A., Shiu, K.K., Kim, T.W., Jensen, B.V., Jensen, L.H., Punt, C., et al. (2022) Pembrolizumab versus Chemotherapy for Microsatellite Instability-High or Mismatch Repair-Deficient Meta-static Colorectal Cancer (KEYNOTE-177): Final Analysis of a Randomised, Open-Label, Phase 3 Study. The Lancet Oncology, 23, 659-670. https://doi.org/10.1016/S1470-2045(22)00197-8

  9. 9. Overman, M.J., McDermott, R., Leach, J.L., Lonardi, S., Lenz, H.J., Morse, M.A., et al. (2017) Nivolumab in Patients with Metastatic DNA Mismatch Repair-Deficient or Mi-crosatellite Instability-High Colorectal Cancer (CheckMate 142): An Open-Label, Multicentre, Phase 2 Study. The Lancet Oncology, 18, 1182-1191. https://doi.org/10.1016/S1470-2045(17)30422-9

  10. 10. Afrăsânie, V.A., Marinca, M.V., Alexa-Stratulat, T., Gafton, B., Păduraru, M., Adavidoaiei, A.M., Miron, L. and Rusu, C. (2019) KRAS, NRAS, BRAF, HER2 and Microsatellite Instability in Metastatic Colorectal Cancer-Practical Implications for the Clinician. Radiology and Oncology, 53, 265-274. https://doi.org/10.2478/raon-2019-0033

  11. 11. Cefalì, M., Epistolio, S., Palmarocchi, M.C., Frattini, M. and De Dosso, S. (2021) Research Progress on KRAS Mutations in Colorectal Cancer. Journal of Cancer Metastasis and Treatment, 7, Article No. 26. https://doi.org/10.20517/2394-4722.2021.61

  12. 12. Testa, U., Pelosi, E. and Castelli, G. (2018) Colorectal Cancer: Genetic Abnormalities, Tumor Progression, Tumor Heterogeneity, Clonal Evolution and Tumor-Initiating Cells. Medical Sciences (Basel), 6, Article No. 31. https://doi.org/10.3390/medsci6020031

  13. 13. Modest, D.P., Pant, S. and Sartore-Bianchi, A. (2019) Treatment Se-quencing in Metastatic Colorectal Cancer. European Journal of Cancer, 109, 70-83. https://doi.org/10.1016/j.ejca.2018.12.019

  14. 14. Venook, A.P., Niedzwiecki, D., Lenz, H.J., Innocenti, F., Fruth, B., Meyerhardt, J.A., et al. (2017) Effect of First-Line Chemotherapy Combined with Cetuximab or Bevacizumab on Overall Survival in Patients with KRAS Wild-Type Advanced or Metastatic Colorectal Cancer: A Randomized Clinical Trial. JAMA, 317, 2392-2401. https://doi.org/10.1001/jama.2017.7105

  15. 15. Tournigand, C. andré, T., Achille, E., Lledo, G., Flesh, M., Mery-Mignard, D., et al. (2004) FOLFIRI Followed by FOLFOX6 or the Reverse Sequence in Advanced Colorectal Cancer: A Randomized GERCOR Study. Journal of Clinical Oncology, 22, 229-237. https://doi.org/10.1200/JCO.2004.05.113

  16. 16. Grothey, A., Sargent, D., Goldberg, R.M. and Schmoll, H.J. (2004) Survival of Patients with Advanced Colorectal Cancer Improves with the Availability of Fluorouracil-Leucovorin, Iri-notecan, and Oxaliplatin in the Course of Treatment. Journal of Clinical Oncology, 22, 1209-1214. https://doi.org/10.1200/JCO.2004.11.037

  17. 17. Hammond, W.A., et al. (2016) Pharmacologic Resistance in Colo-rectal Cancer: A Review. Therapeutic Advances in Medical Oncology, 8, 57-84. https://doi.org/10.1177/1758834015614530

  18. 18. Biller, L.H. and Schrag, D. (2021) Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA, 325, 669-685. https://doi.org/10.1001/jama.2021.0106

  19. 19. Zarour, L.R., Anand, S., Billingsley, K.G., Bisson, W.H., Cercek, A., Clarke, M.F., et al. (2017) Colorectal Cancer Liver Metas-tasis: Evolving Paradigms and Future Directions. Cellular and Molecular Gastroenterology and Hepatology, 3, 163-173. https://doi.org/10.1016/j.jcmgh.2017.01.006

  20. 20. Rosen, L.S., Jacobs, I.A. and Burkes, R.L. (2017) Bevacizumab in Colorectal Cancer: Current Role in Treatment and the Potential of Biosimilars. Targeted Oncology, 12, 599-610. https://doi.org/10.1007/s11523-017-0518-1

  21. 21. Guan, Z.Z., Xu, J.M., Luo, R.C., Feng, F.Y., Wang, L.W., Shen, L., et al. (2011) Efficacy and Safety of Bevacizumab plus Chemotherapy in Chinese Patients with Metastatic Colorectal Cancer: A Randomized Phase III ARTIST Trial. Chinese Journal of Cancer, 30, 682-689. https://doi.org/10.5732/cjc.011.10188

  22. 22. Parakrama, R., Fogel, E., Chandy, C., et al. (2020) Immune Characteri-zation of Metastatic Colorectal Cancer Patients Post Reovirus Administration. BMC Cancer, 20, Article No. 569. https://doi.org/10.1186/s12885-020-07038-2

  23. 23. Liu, X., Guo, A., Tu, Y., et al. (2020) Fruquintinib Inhibits VEGF/ VEGFR2 Axis of Choroidal Endothelial Cells and M1-Type Macrophages to Protect Against Mouse La-ser-Induced Choroidal Neovascularization. Cell Death & Disease, 11, Article No. 1016. https://doi.org/10.1038/s41419-020-03222-1

  24. 24. Li, J., Qin, S., Xu, R.H., Shen, L., Xu, J., Bai, Y., et al. (2018) Effect of Fruquintinib vs Placebo on Overall Survival in Patients with Previously Treated Metastatic Colorectal Cancer: The FRESCO Randomized Clinical Trial. JAMA, 319, 2486-2496. https://doi.org/10.1001/jama.2018.7855

  25. 25. Burki, T.K. (2018) Fruquintinib for Previously Treated Meta-Static Colorectal Cancer. The Lancet Oncology, 19, e388. https://doi.org/10.1016/S1470-2045(18)30503-5

  26. 26. Lito, P., Solomon, M., Li, L.-S., Hansen, R. and Rosen, N. (2016) Allele-Specific Inhibitors Inactivate Mutant KRAS G12C by a Trapping Mechanism. Science, 351, 604-608. https://doi.org/10.1126/science.aad6204

  27. 27. Canon, J., Rex, K., Saiki, A.Y., Mohr, C., Cooke, K., Bagal, D., Gaida, K., Holt, T., Knutson, C.G., Koppada, N., et al. (2019) The Clinical KRAS(G12C) Inhibitor AMG 510 Drives Anti-Tumour Immunity. Nature, 575, 217-223. https://doi.org/10.1038/s41586-019-1694-1

  28. 28. Patel, S.A. and Weiss, J. (2020) Advances in the Treatment of Non-Small Cell Lung Cancer: Immunothera. Clinics in Chest Medicine, 41, 237-247. https://doi.org/10.1016/j.ccm.2020.02.010

  29. 29. Chen, L., Jiang, X., Li, Y., Zhang, Q., Li, Q., Zhang, X., et al. (2022) How to Overcome Tumor Resistance to Anti-PD-1/PD-L1 Therapy by Immunotherapy Modifying the Tumor Microenvironment in MSS CRC. Clinical Immunology, 237, Article ID: 108962. https://doi.org/10.1016/j.clim.2022.108962

  30. 30. Pu, Y. and Ji, Q. (2022) Tumor-Associated Macrophages Regulate PD-1/PD-L1 Immunosuppression. Frontiers in Immunology, 13, Article ID: 874589. https://doi.org/10.3389/fimmu.2022.874589

  31. 31. Chae, Y.K., Arya, A., Iams, W., Cruz, M.R., Chandra, S., Choi, J. and Giles, F. (2018) Current Landscape and Future of Dual Anti-CTLA4 and PD‑1/PD‑L1 Blockade Immunotherapy in Cancer: Lessons Learned from Clinical Trials with Melanoma and Non‑Small Cell Lung Cancer (NSCLC). The Journal for ImmunoTherapy of Cancer, 6, 39. https://doi.org/10.1186/s40425-018-0349-3

  32. 32. Stein, A., Moehler, M., Trojan, J., Goekkurt, E. and Vogel, A. (2018) Immuno-Oncology in GI Tumours: Clinical Evidence and Emerging Trials of PD-1/PD-L1 Antagonists. Critical Reviews in Oncology/Hematology, 130, 13-26. https://doi.org/10.1016/j.critrevonc.2018.07.001

  33. 33. Le, D.T., Kim, T.W., Van Cutsem, E., et al. (2020) Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. Journal of Clinical Oncology, 38, 11-19. https://doi.org/10.1200/JCO.19.02107

  34. 34. Le, D.T., Uram, J.N., Wang, H., et al. (2015) PD-1 Blockade in Tu-mors with Mismatch-Repair Deficiency. The New England Journal of Medicine, 372, 2509-2520. https://doi.org/10.1056/NEJMoa1500596

  35. 35. Antoniotti, C., Rossini, D., Pietrantonio, F., et al. (2022) Upfront FOLFOXIRI plus Bevacizumab with or without Atezolizumab in the Treatment of Patients with Metastatic Colorectal Cancer (AtezoTRIBE): A Multicentre, Open-Label, Randomised, Controlled, Phase 2 Trial. The Lancet Oncology, 23, 876-887. https://doi.org/10.1016/S1470-2045(22)00274-1

  36. 36. Mettu, N.B., et al. (2019) BACCI: A Phase II Randomized, Double-Blind, Multicenter, Placebo-Controlled Study of Capecitabine (C) Bevacizumab (B) plus Atezolizumab (A) or Placebo (P) in Refractory Metastatic Colorectal Cancer (mCRC): An ACCRU Network Study. Annals of Oncology, 30, v198-v252. https://doi.org/10.1093/annonc/mdz246.011

  37. 37. Lenz, H.-J., Parikh, A.R., Spigel, D.R., et al. (2022) Nivolumab (NIVO) + 5-Fluorouracil/Leucovorin/Oxaliplatin (mFOLFOX6)/Bevacizumab (BEV) versus mFOLFOX6/BEV for First-Line (1L) Treatment of Metastatic Colorectal Cancer (mCRC): Phase 2 Results from CheckMate 9X8. Journal of Clinical Oncology, 40, Article No. 8. https://doi.org/10.1200/JCO.2022.40.4_suppl.008

  38. 38. Antoniotti, C., Rossini, D., Pietrantonio, F., Catteau, A., Salvatore, L., Lonardi, S., et al. (2022) Upfront FOLFOXIRI plus Bevacizumab with or without Atezolizumab in the Treatment of Patients with Metastatic Colorectal Cancer (AtezoTRIBE): A Multicentre, Open-Label, Randomised, Con-trolled, Phase 2 Trial. The Lancet Oncology, 23, 876-887. https://doi.org/10.1016/S1470-2045(22)00274-1

  39. 39. Damato, A., Bergamo, F., Antonuzzo, L., Nasti, G., Iachetta, F., Romagnani, A., Gervasi, E., Larocca, M. and Pinto, C. (2021) FOLFOXIRI/Bevacizumab plus Nivolumab as First-Line Treatment in Metastatic Colorectal Cancer RAS/BRAF Mutated: Safety Run-In of Phase II NIVACOR Trial. Frontiers in Oncology, 11, Article ID: 766500. https://doi.org/10.3389/fonc.2021.766500

  40. 40. Fang, X.F., et al. (2022) A Phase 2 Trial of Sintilimab (IBI 308) in Combination with CAPEOX and Bevacizumab (BBCAPX) as First-Line Treatment in Patients with RAS-Mutant, Mi-crosatellite Stable, Unresectable Metastatic Colorectal Cancer. Journal of Clinical Oncology, 40, 3563. https://doi.org/10.1200/JCO.2022.40.16_suppl.3563

  41. 41. Ghiringhelli, F., Chibaudel, B. and Taieb, J. (2020) Dur-valumab and Tremelimumab in Combination with FOLFOX in Patients with RAS-Mutated, Microsatellite-Stable, Previ-ously Untreated Metastatic Colorectal Cancer (MCRC): Results of the First Intermediate Analysis of the Phase Ib/II MEDETREME Trial. Journal of Clinical Oncology, 38, 3006. https://doi.org/10.1200/JCO.2020.38.15_suppl.3006

  42. NOTES

    *通讯作者。

期刊菜单