Advances in Clinical Medicine
Vol. 13  No. 02 ( 2023 ), Article ID: 61472 , 9 pages
10.12677/ACM.2023.132313

SGLT2抑制剂在动物模型中治疗心肌缺血 再灌注损伤的机制

黎人榕,佘强*

重庆医科大学附属第二医院,重庆

收稿日期:2023年1月16日;录用日期:2023年2月11日;发布日期:2023年2月17日

摘要

SGLT2抑制剂在多个大型临床试验研究中显示出良好的心血管保护作用,包括减轻2型糖尿病及非2型糖尿病患者的心衰发生率、全因死亡率、改善心室功能等。但SGLT2抑制剂对急性心肌梗死患者的治疗疗效及预后尚不十分明确,其机制仍在探索阶段。本文主要针对有关心肌梗死的相关动物实验中,SGLT2抑制剂对心脏保护作用潜在机制作一综述。

关键词

心血管疾病,急性心肌梗死,缺血再灌注损伤,SGLT-2抑制剂

Mechanisms of SGLT2 Inhibitors in the Treatment of Myocardial Ischemia-Reperfusion Injury in Animal Models

Renrong Li, Qiang She*

The Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Jan. 16th, 2023; accepted: Feb. 11th, 2023; published: Feb. 17th, 2023

ABSTRACT

SGLT2 inhibitors have shown promising cardiovascular protective effects in many large clinical trials, including reduced incidence of heart failure, all-cause mortality and improved ventricular function in both type 2 diabetic patients and non-type 2 diabetic patients. However, the therapeutic effects and prognosis of SGLT2 inhibitors in patients with acute myocardial infarction are not well defined, and the mechanisms are still being explored. This article reviews the potential mechanisms of cardioprotection by SGLT2 inhibitors in myocardial infarction-related animal studies.

Keywords:Cardiovascular Diseases, Myocardial Infarct, Ischemia/Reperfusion Injury, Sodium-Glucose Cotransporter 2 Inhibitors

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

SGLT是一种膜转运蛋白,负责介导葡萄糖和钠离子跨膜运输,在SGLT家族中,SGLT-2是一种低亲和力、高容量葡萄糖共转运蛋白,几乎只在肾脏表达,已知近曲小管S1段是哺乳动物肾脏重吸收葡萄糖的主要位置,SGLT-2则主要分布在近曲小管S1段的顶膜,其Na'与葡萄糖的偶联比为1:1,以此排尿糖和降血糖。SGLT-2未吸收的残余葡萄糖则在S3段被另一个SGLT家族成员SGLT-1重新吸收。在CANVAS、EMPA-REG OUTCOME等大型研究中,针对SGLT2抑制剂的研究在心血管保护方面的作用已得出了统一的结论 [1] [2] 。但在针对是否可以减少心肌梗死发生率或心梗面积的研究中,似乎尚无统一定论。在CVD-REAL [3] 中,针对欧美国家人群服用SGLT2的长期心血管保护作用的多国观察性研究表明,SGLT2抑制剂和其它类型降糖药物(胰岛素、DPP-IV、GLP-1、二甲双胍)治疗可以降低2型糖尿病患者心肌梗死和中风发生率,且SGLT-2i组的心肌梗死和MI发生率均比其他类型降糖药物低。在SGLT2抑制剂针对缺血再灌注损伤的急性期和慢性期治疗的试验中,动物实验显示出了不同的结果。本文就目前动物实验中对SGLT-2治疗急性心肌梗死的结果及研究现状,从三个主要假设,来解释SGLT2抑制剂的潜在机制:1) 抑制钠氢交换体以减少(胞质内) Na+/Ca2+超载;2) 保护线粒体功能并减少氧化应激;3) 对自噬的双向调节作用。

2. SGLT2抑制剂在心肌缺血再灌注动物模型中的治疗

2.1. 急性期治疗

通过结扎冠状动脉诱导大鼠心肌梗死模型,在结扎前预处理,或缺血期间或在灌注前不同时间点行不同剂量SGLT2静脉或口服(灌胃)给药,再测量对照及空白组的心肌梗死面积、心室功能等,以此评价急性期SGLT2给药对心肌梗死的疗效,系此类动物实验的主要方式。Jacob [4] 等人发现,心肌梗死前1.5小时给予EMPA并未减少空白组和实验组大鼠心梗面积,而Sarayut [5] 在Wistar大鼠通过类似的试验,同时选取如前所述的3个不同的给药节点,发现与对照组相比,经达格列净预处理15分钟的大鼠梗死面积显著减少约42%,缺血期间治疗的大鼠梗死面积明显减少约16%,再灌注开始时给予达格列净与对照组相比梗死面积并无统计学差异。在Baker等人 [6] 的试验中,成年雄猪在术前24小时或2小时给予卡格列嗪,行冠脉闭塞术,结果显示,与空白组相比,显著减少梗死面积约60%。在Nikolaou [7] 的研究中,缺血再灌注前24小时急性给药恩格列净,对照组与实验组的梗死/风险比为46.48 ± 2.82 VS 40.75 ± 1.74 (该数据由Engauge Digitizer处理)。在上述提及的试验中,急性期预处理时间最长不超过24 h。尽管选用的动物种类、给药剂量和麻醉方法有所不同,但试验结果的差异仍值得深究,急性期预处理在是否可以减少心肌梗死面积上获益需要更多的试验以证明,但值得一提的是,无论心肌梗死面积是否减少,进一步的试验均论证了SGLT2抑制剂可以减少心肌纤维化程度、改善血压、降低心率,并增加心脏输出量及心脏做功。

2.2. 慢性期治疗

虽然短期内SGLT2抑制剂给药在减少实验动物心肌梗死面积方面的结果有分歧,但在慢性治疗中,Jacob [4] 、Lee [8] 、Andreadou [9] 、Nikolaou [7] 、Kim [10] 等人的试验却显示出了基本统一且令人满意的结果,即在缺血前行数天至数周,最长周期不超过1个月的预处理,再灌注治疗后数天或数周内测量心梗面积及心室功能,与对照组相比,心肌梗死面积可有效减少10%~20%,并且伴随有收缩压及左室收缩末压的减少,射血分数的轻度增加。

3. SGLT2抑制剂心肌保护作用的潜在机制

在现已上市的新型抗血糖药物SGLT2抑制剂中,恩帕列嗪、达帕列嗪和卡格列净的心血管和微血管安全性已被证实。除了降低血糖,在降低中风、心肌梗死、心血管死亡和心力衰竭住院的风险方面SGLT2显示出可观的治疗潜力,且对于非2型糖尿病患者,低血糖发生概率较二甲双胍、DPP-IV抑制剂来说同样较低。在这篇综述中,我们重点关注SGLT2抑制剂的离子通道和分子线粒体介导的机制及其心脏保护特性。

3.1. 抑制钠氢交换体(NHE)以减少胞质内Na+/Ca2+超载

NHE系胞膜上转运钠离子及氢离子的转运蛋白,酸中毒是NHE活性的主要刺激因素 [11] 。心肌缺血期间由于代谢性酸性产物堆积使得NHE系统活性升高,细胞内质子与细胞外钠交换,导致细胞内钠超载,在再灌注开始时,细胞膜上的pH梯度导致NHE系统的最大激活,而因为缺血期间ATP合成减少导致Na+/K+-ATP酶转运系统功能失调,钠离子的排出则主要通过Na+/Ca2+交换剂,导致胞内钙超载。再灌注后,酸性细胞外液被稀释,质子浓度梯度再次形成,使NHE活性增加,加剧缺血期间形成的第二次钠、钙过载 [12] ,钙超载会导致心肌过度收缩及细胞死亡。ROS通过激活心脏NHE-1上游的激酶可能导致Ca2+超载,并且ROS和Ca2+都是调节线粒体通透性转换孔(MPTP)形成的介质,这是再灌注损伤过程中的关键步骤 [13] 。早期研究发现,在缺血再灌注动物模型中,NHE抑制剂已被证明可以限制几种动物的梗死面积 [14] 。缺血前给予Na1/H1交换抑制剂效果最好,再灌注前给药虽不及前者效果显著,但仍有获益 [13] 。在GUARDIAN临床试验中发现,非ST段抬高型急性冠脉综合征患者作为研究对象与安慰剂组作对照,随机分组使用不同剂量的NHE抑制剂卡立泊来德(cariporide),组间36天全因死亡率或心肌梗死的主要终点无差异 [15] 。在ESCAMI试验中结果也表明,在对ST段抬高型心肌梗死患者分组进行在溶栓治疗或血管成形术前予以不同剂量的依泊来德,对照组与100 mg依泊来德组,无论是CK曲线面积(63.6 ± 50.3 VS 69.1 ± 50.2),亦或是心电图II(III)导练ST段消退率29.3% (46.5%)、32.2% (45.7%),均提示MI的大小并无明显变化,却有过度死亡和卒中的风险,简言之,急性ST段抬高型心肌梗死患者在再灌注治疗前服用NHE-1抑制剂恩尼普利并没有限制梗死面积或改善临床预后 [16] 。尽管动物实验数据显示出良好的运用前景,但在向临床转换过程中,结果却不尽如人意。

同样位于胞膜上的物质交换转运体,并且在动物实验中也显示出双向性的SGLT2抑制剂,在保护心肌细胞机制上是否和NHE类似,NHE是否有直接或间接的参与到SGLT2抑制剂保护心肌作用中,是目前研究的靶点之一。

Baker [6] 等人选用成年猪行冠脉闭塞模型,分组于缺血前静脉给予安慰剂、卡格列净(1 mg/kg)、NHE-1抑制剂卡立泊来德(0.03 mg/kg) 15~30分钟,测量基线、完全闭塞回旋冠状动脉1小时和再灌注2小时的相关指标,结果显示,在基线和缺血再灌注期间,卡格列净和卡立泊来德的急性治疗对心室功能没有影响。在局部心肌缺血(冠状动脉回旋支闭塞)发生后,与对照组和卡立泊来德组相比,卡格列净组显著增加了局部心肌的做功量和心脏效率。进一步过对转染野生型NHE-1和诱导型多能干细胞(iPSC)衍生心肌细胞的AP-1细胞的检测,卡立泊来德对NHE-1活性呈剂量依赖性抑制,而卡格列净在任何暴露剂量中对NHE-1活性没有显著影响,明显表现为在任何应用浓度下细胞内pH值没有变化。由于SGLT2i和NHE-1在实验性缺血反应中缺乏一致性效应,故并不支持SGLT2i通过NHE-1发挥心肌保护作用。Chung [17] 等人在离体大鼠心室心肌细胞中发现恩格列净(1、3、10或30 mM)处理并没有减缓胞内Na+浓度,同时在Langendorff灌流的小鼠、大鼠和豚鼠心脏中,EMPA对基线时胞内钠离子浓度和急性酸中毒后胞内PH值的恢复没有影响。尽管有研究认为 [18] ,恩格列净可以降低NHE-1活性,造成试验误差的在于试剂选择及浓度的不同而致细胞高流量的超融合,和试验中NHE-1活性检测的非特异性。仍有不少研究证实了SGLT2抑制剂抑制NHE活性 [19] - [24] ,可显著改善心肌纤维化、心肌肥厚程度 [23] ,在一定程度上改善心梗后心室收缩力,保护线粒体功能 [24] ,减少乳酸生成 [21] ,通过NHE介导下调自噬通量,减少线粒体活性氧释放。

3.2. 保护线粒体功能并减少氧化应激

线粒体在心肌细胞的生命和死亡中起着重要作用,参与细胞分裂,细胞离子尤其钙离子的调节,以及氧化磷酸化产生ATP为细胞提供能量。缺血再灌注损伤会导致心肌线粒体受损,因此,维持线粒体的完整性,减少线粒体自噬,可能有助于限制心肌细胞的损伤。SGLT2抑制剂可以通过调节线粒体的融合和分裂来调节线粒体动力学,有证据表明, 伊格列净在体内将线粒体融合蛋白Opa1和Mfn2的水平恢复到正常值,从而减轻高脂肪饮食大鼠的线粒体功能障碍 [25] [26] 。类似的,达格列净使代谢综合征大鼠模型中的线粒体融合蛋白Mfn1/Mfn2比值正常化。通过激活AMP依赖的蛋白激酶(AMPK)调节线粒体分裂蛋白DRP1磷酸化,以抑制线粒体分裂。此前有研究证实,通过抑制Drp1抑制线粒体分裂,减少了因缺血/再灌注(I/R)而发生的梗死的大小 [27] 。恩格列净还能消除MI后线粒体分裂蛋白Fist1的上调,无论是在心力衰竭还是在糖尿病心肌梗死模型小鼠中,恩格列净表现出良好的保留心肌线粒体大小和数量的能力 [28] [29] ,能将高糖状态下呈现的小点状、圆形线粒体恢复至丝状、管状状态,这种恢复过程具体机制目前暂未完全揭露,包括DRP1磷酸化、fit1升高介导的线粒体分裂可能参与其中 [30] 。除了上调融合、下调分裂,有研究发现,恩格列净的治疗可增加轻度肥胖2型糖尿病小鼠(KKAy)中低水平表达的线粒体标记蛋白细胞色素c氧化酶 IV(COX IV)和细胞色素c氧化酶(CYTO C),这两者均参与到线粒体呼吸链。另一方面,SGLT2抑制剂通过线粒体吞噬促进碎片化线粒体的消除。在经恩格列净处理后的自发性2型糖尿病大鼠(OLETF)心肌梗死后,线粒体外膜蛋白Bnip3表达水平可以显著增加。作为自噬体的线粒体受体组成部分,Bnip3介导的线粒体吞噬参与了恩格列净对碎小线粒体的清除。该研究还发现,OLETF组心肌梗死后,线粒体自噬液泡的数量显著减少,且伴随着线粒体分裂蛋白Fis1蛋白水平增加及Drp1-Ser616的磷酸化。此研究中并未找到PINK1/Parkin通路参与自噬过程的证据。尽管该通路为线粒体自噬的重要通路之一 [29] [31] 。

心肌细胞主要依赖线粒体氧化磷酸化系统(OXPHOS)产生的ATP能量,钠与钙的调节在心肌细胞中的氧化–还原调节和兴奋–收缩耦合中发挥重要作用。OXPHOS与三羧酸循环共同作用保持腺嘌呤核苷三磷酸/腺苷二磷酸(ATP/ADP)和还原型辅酶Ⅰ/氧化型烟酰胺腺嘌呤二核甘酸(NADH/ )的恒定比率,能量需求增加会增高NAD+及Ca2+摄取,进一步促进NADH的产生,NADH通过在氧化呼吸链中传递电子,帮助H+向线粒体膜间空间的易位,同时向还原型蛋白库提供电子,在维持氧化防御方面发挥着关键作用。因此,线粒体Ca2+摄取对于保持线粒体抗氧化能力以及使能量供应与需求匹配至关重要 [26] 。如前文所述,胞内钠离子的升高会加速线粒体Na+/Ca2+交换器(NCLX)对离子的转换,使得线粒体内钙离子减少,NADH和还原型辅酶Ⅱ (NADPH)的产生也因此减少,ROS增多,进一步损伤线粒体膜结构,氧化脂质,使线粒体解偶联,加重细胞损伤。SGLT2抑制剂通过抑制NHE,降低胞内钠、钙离子浓度,升高线粒体钙离子浓度,减少氧化应激,改善心室舒张功能 [21] [32] 。恩格列净通过增加糖尿病小鼠的肌浆内质网Ca2+-ATP酶(SERCA2a)、线粒体膜活性,改善左心室舒张功能 [30] ,也有研究发现,衰老心肌中SGLT2表达明显增加同样会对线粒体和肌浆/内质网的Ca2+稳态和心功能产生负面影响,因此SGLT2也可以成为SGLT2抑制剂调节胞内Na+、Ca2+的靶点 [33] 。需要注意的是,在胞浆Ca2+瞬变的速度及幅度下,线粒体Ca2+单转运蛋白(MCU)促进线粒体Ca2+的摄取速度较NCLX动力学更活跃,因此,MCU介导及其它上游机制的调控的Ca2+内流更容易形成线粒体Ca2+超载,ROS产生过多,使位于线粒体内膜的高电导和非特异性通道即线粒体通透性过渡孔(mPTP)开放,线粒体肿胀直至细胞死亡 [26] [34] 。因此SGLT2抑制剂在调节线粒体Ca2+是受到多方面限制的。此外,有研究发现,恩格列净可以上调三羧酸循环周期中基因的转录,增加线粒体呼吸链复合物的蛋白表达水平 [35] 。

3.3. 对自噬(Autophagy)的双向调节作用

1963年,由Christian de Duve首次提出自噬的概念以描述胞内细胞器和部分细胞质包入溶酶体的过程。在此基础上,Liu等人提出了自死亡(Autosis),定义其为一种新形式的自噬基因依赖性、Na+-K+ATP酶特异性调节的非凋亡细胞死亡,由自噬诱导肽、饥饿和缺氧缺血诱导,其特征是细胞基质粘附增强,核周间隙的局灶性球囊化,内质网扩张和断裂 [36] 。自噬清除在基线和应激反应时受损/错误折叠的蛋白质和无功能的细胞器。参与蛋白质平衡、代谢和防御机制,传统上被归类为细胞功能和生存的有益适应性过程 [37] 。有相关临床前研究已证实自噬参与到脑、心脏、肾的缺血再灌注损伤之中,需要注意的是,自噬不足或过度自噬都会加重细胞损伤。目前而言,自噬在心肌梗死中是有益还是有害仍存在争议。XIN等人发现,下调自噬标志蛋白LC3II/LC3I,减少自噬体数量,在急性期可以减少心肌梗死面积 [38] ,抑制自死亡也可以减轻心脏I/R作用 [39] 。也有研究认为,慢性心肌梗死模型小鼠中,促进自噬,增加自噬通量发挥心肌保护作用 [40] [41] 。自噬在心肌梗死动物模型的急慢性治疗中扮演了不同的角色。Matsui [42] 等人指出, 自噬可能主要用于维持急性缺血期间的能量产生,但在慢性缺血或再灌注期间,会转而清除受损的细胞器。在缺血期间,自噬可以表现出心肌保护性作用,而在再灌注期间则可能有害。此外,小鼠心脏中的自噬被缺血诱导,并在再灌注阶段持续存在且增强 [39] [43] ,缺血期间自噬以AMPK依赖性方式增强,而在缺血/再灌注期间以Beclin-1依赖性机制进一步强化,并且伴随着mTOR的下游靶点p70S6K的Thr389磷酸化,该通路的激活同样会刺激自噬。使用Beclin杂合敲除小鼠发现其I/R后的心肌梗死/危险区域的面积较对照组(野生型小鼠)有明显减少,因此下调beclin 1抑制自噬具有保护作用。

一些动物实验进一步论证了SGLT2抑制剂在缺血/再灌注损伤动物模型中自噬的特征及疗效。有研究发现 [44] ,把急性高血糖小鼠冠脉结扎后3天,EMPA治疗显著降低小鼠心脏LC3II/I的表达水平,并通过Beclin1依赖性自噬途径降低自噬,从而在急性高血糖心肌梗死(MI)中发挥心脏保护作用。类似试验均得出了相同的结论,即抑制自噬让SGLT2抑制剂改善了MI模型小鼠的心肌损伤 [45] [46] 。

AMPK-mTOR(哺乳动物雷帕霉素靶蛋白)信号通路是自噬的经典途径之一,AMPK磷酸化Ser317和Ser777激活Ulk1来促进自噬,触发自噬级联的启动,mTOR则通过直接磷酸化Ulk1的Ser757位点来阻止Ulk1的激活强烈抑制自噬;AMPK除了直接激活ULK1,还可以通过负调控mTORCI并阻断其对ULKI的抑制作用,而促进自噬 [43] [47] [48] [49] 。恩格列净可恢复SNT诱导的AMPK抑制和mTOR激活,从而逆转SNT的心肌毒性作用,因此恩格列净通过AMPK-mTOR信号调节途径调节心肌细胞自噬水平。.达格列净诱导的自噬激活通过AMPK/ mTOR途径减少心肌细胞凋亡,抗心室重构,从而延缓HF的进展 [43] 。简言之,心肌缺血后AMPK被激活,抑制雷帕霉素(mTOR)的机制靶点活性诱导自噬,从而发挥心肌细胞保护作用,但再灌注使AMPK迅速失活,从而损害心脏 [41] 。

Beclin 1是酵母Atg6的直系同源物,是自噬途径的关键调节因子之一。Beclin 1与PI3KC3和空泡蛋白分选15 (VPS15)结合形成PI3KC2复合物,介导囊泡运输和自噬。Beclin的功能受到Bcl-2、caspase、Atg14L、等因子的调控。Deng [44] 等人发现,急性高糖小鼠在冠脉结扎前后使用恩格列净,增加了Beclin1和Beclin1的磷酸化水平,增加了高血糖诱导的心脏组织中Bcl2 (负向调控Beclin-1)的表达水平和未被Bcl2抑制的Caspase-3的切割水平,表明恩格列净抑制了其自噬水平。当细胞不处于饥饿状态时,独立于mTOR (抑制)和依赖于Beclin 1的自噬可能是一个有害的过程 [42] 。我们有理由推测,SGLT2抑制剂在缺血期间激活AMPK-mTOR以激活自噬,在再灌注期间抑制Beclin-1减少自噬,双重调节自噬在心肌缺血再灌注损伤中的平衡。

SIRT1是一种烟酰胺腺嘌呤二核苷酸(NAD)反应脱乙酰酶,在营养缺乏时被AMPK激活,促进脂肪酸氧化和糖异生,抑制糖酵解,促进生酮,介导减轻细胞损伤及抗氧化应激 [50] 。经SGLT2相互作用网络集中分析,SIRT与SGLT2的交互最为密切 [51] 有研究发现,SIRT1能增加自噬相关蛋白如LC3、ATGs以上调自噬水平 [52] ,也可以通过抑制mTOR,激活HIF-2α,增强自噬。当机体处于营养过剩状态,例如肥胖、2型糖尿病,细胞则下调SIRT1、AMPK和HIF-2α,减少自噬,由于该路径作为溶酶体依赖的降解途径,可以清除受损的线粒体和过氧化物酶体,下调该路径会加重机体的氧化应激,SGLT2抑制剂通过改善营养过剩状态,激活SIRT1、AMPK和HIF-2α,增强自噬通量,恢复线粒体内稳态。此外,SIRT1、AMPK和HIF-2α还调节钠转运机制,其靶点包括了NHE、ENaC、Na+-K+ atp酶 [53] 。目前尚未有研究来指明SIRT与缺血再灌注时期的自噬之间是否存在关联。

4. 结语

在这篇综述中概述了一些可能解释SGLT2抑制剂在心肌缺血动物模型中心脏保护作用的关键机制,除了其本身降糖作用以外,还有其它如在调整改善心肌底物利用的“节约燃料”假说、利尿利钠、抗心肌纤维化、调节脂肪因子动力学、增加红细胞容量等,从不同角度及程度上阐述了SGLT2抑制剂的心血管及肾脏保护作用,其中许多途径可能是互相连接、互相依赖的。到目前为止,在心肌梗死临床前模型中展开的诸多研究限于实验对象品种差距、方法差异等,对于减小梗死面积的机制和心力衰竭的预防仍需要更多临床试验的加入,亟待更多的研究来描述SGLT2抑制剂心脏保护的主要机制,为心血管危险因素患者带来新的治疗靶点。

文章引用

黎人榕,佘 强. SGLT2抑制剂在动物模型中治疗心肌缺血再灌注损伤的机制
Mechanisms of SGLT2 Inhibitors in the Treatment of Myocardial Ischemia-Reperfusion Injury in Animal Models[J]. 临床医学进展, 2023, 13(02): 2232-2240. https://doi.org/10.12677/ACM.2023.132313

参考文献

  1. 1. Neal, B., Perkovic, V., Mahaffey, K.W., et al. (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Dia-betes. New England Journal of Medicine, 377, 644-657. https://doi.org/10.1056/NEJMoa1611925

  2. 2. Zinman, B., Wanner, C., Lachin, J.M., et al. (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine, 373, 2117-2128. https://doi.org/10.1056/NEJMoa1504720

  3. 3. Birkeland, K.I., Jørgensen, M.E., Carstensen, B., et al. (2017) Cardiovascular Mortality and Morbidity in Patients with Type 2 Diabetes Following Initiation of Sodium-Glucose Co-Transporter-2 Inhibitors versus Other Glucose-Lowering Drugs (CVD-REAL Nordic): A Multinational Observational Analysis. The Lancet Diabetes & Endocrinology, 5, 709-717. https://doi.org/10.1016/S2213-8587(17)30258-9

  4. 4. Seefeldt, J.M., Lassen, T.R., Hjortbak, M.V., et al. (2021) Cardioprotective Effects of Empagliflozin after Ischemia and Reperfusion in Rats. Scientific Reports, 11, Article No. 9544. https://doi.org/10.1038/s41598-021-89149-9

  5. 5. Lahnwong, S., Palee, S., Apaijai, N., et al. (2020) Acute Dapagliflozin Administration Exerts Cardioprotective Effects in Rats with Cardiac Ischemia/Reperfusion Injury. Cardio-vascular Diabetology, 19, Article No. 91. https://doi.org/10.1186/s12933-020-01066-9

  6. 6. Baker, H.E., Tune, J.D., Mather, K.J., et al. (2022) Acute SGLT-2i Treatment Improves Cardiac Efficiency during Myocardial Ischemia Independent of Na+/H+ Exchanger-1. In-ternational Journal of Cardiology, 363, 138-148. https://doi.org/10.1016/j.ijcard.2022.06.054

  7. 7. Nikolaou, P.E., Efentakis, P., Abu Qourah, F., et al. (2021) Chronic Empagliflozin Treatment Reduces Myocardial Infarct Size in Nondiabetic Mice Through STAT-3-Mediated Pro-tection on Microvascular Endothelial Cells and Reduction of Oxidative Stress. Antioxidants & Redox Signaling, 34, 551-571. https://doi.org/10.1089/ars.2019.7923

  8. 8. Lee, S.Y., Lee, T.W., Park, G.T., et al. (2021) Sodi-um/Glucose Co-Transporter 2 Inhibitor, Empagliflozin, Alleviated Transient Expression of SGLT2 after Myocardial In-farction. Korean Circulation Journal, 51, 251-262. https://doi.org/10.4070/kcj.2020.0303

  9. 9. Andreadou, I., Efentakis, P., Balafas, E., et al. (2017) Empagliflozin Limits Myocardial Infarction in Vivo and Cell Death in Vitro: Role of STAT3, Mitochondria, and Redox Aspects. Fron-tiers in Physiology, 8, Article 1077. https://doi.org/10.3389/fphys.2017.01077

  10. 10. Connelly, K.A., Zhang, Y., Desjardins, J.-F., Thai, K. and Gilbert, R.E. (2018) Dual Inhibition of Sodium-Glucose Linked Cotransporters 1 and 2 Exacerbates Cardiac Dysfunction Fol-lowing Experimental Myocardial Infarction. Cardiovascular Diabetology, 17, Article No. 99. https://doi.org/10.1186/s12933-018-0741-9

  11. 11. Karmazyn, M., Kilic, A. and Javadov, S. (2008) The Role of NHE-1 in Myocardial Hypertrophy and Remodelling. Journal of Molecular and Cellular Cardiology, 44, 647-653. https://doi.org/10.1016/j.yjmcc.2008.01.005

  12. 12. Roberts, B.N. and Christini, D.J. (2011) NHE Inhibition Does Not Improve Na+ or Ca2+ Overload during Reperfusion: Using Modeling to Illuminate the Mechanisms Underlying a Therapeutic Failure. PLOS Computational Biology, 7, e1002241. https://doi.org/10.1371/journal.pcbi.1002241

  13. 13. Karmazyn, M. (1998) The Myocardial Sodium-Hydrogen Ex-changer (NHE) and Its Role in Mediating Ischemic and Reperfusion Injury. The Keio Journal of Medicine, 47, 65-72,( https://doi.org/10.2302/kjm.47.65

  14. 14. Miura, T., Ogawa, T., Suzuki, K., Goto, M. and Shimamoto, K. (1997) Infarct Size Limitation by a New Na-H Exchange Inhibitor, Hoe 642: Difference from Preconditioning in the Role of Protein Kinase C. Journal of the American College of Cardiology, 29, 693-701. https://doi.org/10.1016/S0735-1097(96)00522-0

  15. 15. Theroux, P., Chaitman, B.R., Danchin, N., Erhardt, L., Meinertz, T., Schroeder, J.S., et al. (2000) Inhibition of the Sodium-Hydrogen Exchanger with Cariporide to Prevent Myocardial Infarction in High-Risk Ischemic Situations: Main Results of the GUARDIAN Trial. Circulation, 102, 3032-3038.( https://doi.org/10.1161/01.CIR.102.25.3032

  16. 16. Zeymer, U., Suryapranata, H., Monassier, J.P., et al. (2001) The Na+/H+ Exchange Inhibitor Eniporide as an Adjunct to Early Reperfusion Therapy for Acute Myocardial In-farction. Results of the Evaluation of the Safety and Cardioprotective Effects of Eniporide in Acute Myocardial Infarction (ESCAMI) Trial. Journal of the American College of Cardiology, 38, 1644-1650. https://doi.org/10.1016/S0735-1097(01)01608-4

  17. 17. Chung, Y.J., Park, K.C., Tokar, S., et al. (2021) Off-Target Effects of Sodium-Glucose Co-Transporter 2 Blockers: Empagliflozin Does Not Inhibit Na+/H+ Exchanger-1 or Lower [Na+]i in the Heart. Cardiovascular Research, 117, 2794-2806. https://doi.org/10.1093/cvr/cvaa323

  18. 18. Zuurbier, C.J., Baartscheer, A., Schumacher, C.A., Fiolet, J. and Coronel, R. (2021) Sodium-Glucose Co-Transporter 2 Inhibitor Empagliflozin Inhibits the Cardiac Na+/H+ Exchanger 1: Persistent Inhibition under Various Experimental Conditions. Cardiovascular Research, 117, 2699-2701. https://doi.org/10.1093/cvr/cvab129

  19. 19. Uthman, L., Baartscheer, A., Bleijlevens, B., et al. (2018) Class Effects of SGLT2 Inhibitors in Mouse Cardiomyocytes and Hearts: Inhibition of Na+/H+ Exchanger, Lowering of Cytosolic Na+ and Vasodilation. Diabetologia, 61, 722-726. https://doi.org/10.1007/s00125-017-4509-7

  20. 20. Lee, T.-I., Chen, Y.-C., Lin, Y.-K., et al. (2019) Empagliflozin Attenuates Myocardial Sodium and Calcium Dysregulation and Reverses Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats. International Journal of Molecular Sciences, 20, Article No. 1680. https://doi.org/10.3390/ijms20071680

  21. 21. Baartscheer, A., Schumacher, C.A., Wüst, R.C.I., et al. (2017) Em-pagliflozin Decreases Myocardial Cytoplasmic Na+ through Inhibition of the Cardiac Na+/H+ Exchanger in Rats and Rabbits. Diabetologia, 60, 568-573. https://doi.org/10.1007/s00125-016-4134-x

  22. 22. Trum, M., Riechel, J., Lebek, S., et al. (2020) Empagliflozin In-hibits Na+ /H+ Exchanger Activity in Human Atrial Cardiomyocytes. ESC Heart Failure, 7, 4429-4437. https://doi.org/10.1002/ehf2.13024

  23. 23. Osaka, N., Mori, Y., Terasaki, M., et al. (2022) Luseogliflozin Inhibits High Glucose-Induced TGF-β2 Expression in Mouse Cardiomyocytes by Suppressing NHE-1 Activity. Journal of In-ternational Medical Research, 50, Article ID: 3000605221097490. https://doi.org/10.1177/03000605221097490

  24. 24. Goerg, J., Sommerfeld, M., Greiner, B., et al. (2021) Low-Dose Empagliflozin Improves Systolic Heart Function after Myocardial Infarction in Rats: Regulation of MMP9, NHE1, and SERCA2a. International Journal of Molecular Sciences, 22, Article No. 5337. https://doi.org/10.3390/ijms22115437

  25. 25. Takagi, S., Li, J., Takagaki, Y., et al. (2018) Ipragliflozin Improves Mitochondrial Abnormalities in Renal Tubules Induced by a High-Fat Diet. Journal of Diabetes Investigation, 9, 1025-1032. https://doi.org/10.1111/jdi.12802

  26. 26. Maejima, Y. (2019) SGLT2 Inhibitors Play a Salutary Role in Heart Failure via Modulation of the Mitochondrial Function. Frontiers in Cardiovascular Medicine, 6, Article 186. https://doi.org/10.3389/fcvm.2019.00186

  27. 27. Ong, S.-B., Subrayan, S., Lim, S-Y., et al. (2010) Inhibiting Mito-chondrial Fission Protects the Heart against Ischemia/Reperfusion Injury. Circulation, 121, 2012-2022. https://doi.org/10.1161/CIRCULATIONAHA.109.906610

  28. 28. Shiraki, A., Oyama, J.-I., Shimizu, T., et al. (2022) Empagliflozin Improves Cardiac Mitochondrial Function and Survival through Energy Regulation in a Murine Model of Heart Failure. European Journal of Pharmacology, 931, Article ID: 175194. https://doi.org/10.1016/j.ejphar.2022.175194

  29. 29. Mizuno, M., Kuno, A., Yano, T., et al. (2018) Empagliflozin Normalizes the Size and Number of Mitochondria and Prevents Reduction in Mitochondrial Size after Myocardial Infarc-tion in Diabetic Hearts. Physiological Reports, 6, e13741. https://doi.org/10.14814/phy2.13741

  30. 30. Zhou, H., Wang, S., Zhu, P., et al. (2018) Empagliflozin Rescues Diabetic Myocardial Microvascular Injury via AMPK-Mediated Inhibition of Mitochondrial Fission. Redox Biology, 15, 335-346. https://doi.org/10.1016/j.redox.2017.12.019

  31. 31. Yu, J.D. and Miyamoto, S. (2021) Molecular Signaling to Pre-serve Mitochondrial Integrity against Ischemic Stress in the Heart: Rescue or Remove Mitochondria in Danger. Cells, 10, Article No. 3330. https://doi.org/10.3390/cells10123330

  32. 32. Durak, A., Olgar, Y., Degirmenci, S., et al. (2018) A SGLT2 Inhibitor Dapagliflozin Suppresses Prolonged Ventricular-Repolarization through Augmentation of Mitochondrial Function in In-sulin-Resistant Metabolic Syndrome Rats. Cardiovascular Diabetology, 17, Article No. 144. https://doi.org/10.1186/s12933-018-0790-0

  33. 33. Olgar, Y., Tuncay, E., Degirmenci, S., et al. (2020) Age-ing-Associated Increase in SGLT2 Disrupts Mitochondrial/Sarcoplasmic Reticulum Ca2+ Homeostasis and Promotes Cardiac Dysfunction. Journal of Cellular and Molecular Medicine, 24, 8567-8578. https://doi.org/10.1111/jcmm.15483

  34. 34. Williams, G.S., Boyman, L., Chikando, A. C., Khairallah, R.J. and Le-derer, W.J. (2013) Mitochondrial Calcium Uptake. Proceedings of the National Academy of Sciences of the United States of America, 110, 10479-10486. https://doi.org/10.1073/pnas.1300410110

  35. 35. Xu, L., Xu, C., Liu, X., et al. (2021) Empagliflozin Induces White Adipocyte Browning and Modulates Mitochondrial Dynamics in KK Cg-Ay/J Mice and Mouse Adipocytes. Frontiers in Physiology, 12, Article 745058. https://doi.org/10.3389/fphys.2021.745058

  36. 36. Liu, Y. and Levine, B. (2015) Autosis and Autophagic Cell Death: The Dark Side of Autophagy. Cell Death & Differentiation, 22, 367-376. https://doi.org/10.1038/cdd.2014.143

  37. 37. Nah, J., Zablocki, D. and Sadoshima, J. (2022) The Role of Autophagic Cell Death in Cardiac Disease. Journal of Molecular and Cellular Cardiology, 173, 16-24. https://doi.org/10.1016/j.yjmcc.2022.08.362

  38. 38. Shan, X., Lv, Z.-Y., Yin, M.-J., et al. (2021) The Protective Ef-fect of Cyanidin-3-Glucoside on Myocardial Ischemia-Reperfusion Injury through Ferroptosis. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 8880141. https://doi.org/10.1155/2021/8880141

  39. 39. Nah, J., Zhai, P., Huang, C.-Y., et al. (2020) Upregulation of Rubicon Promotes Autosis during Myocardial Ischemia/Reperfusion Injury. Journal of Clinical Investigation, 130, 2978-2991. https://doi.org/10.1172/JCI132366

  40. 40. Wang, D., Lv, L., Xu, Y., et al. (2021) Cardioprotection of Panax Noto-ginseng Saponins against Acute Myocardial Infarction and Heart Failure through Inducing Autophagy. Biomedicine & Pharmacotherapy, 136, Article ID: 111287. https://doi.org/10.1016/j.biopha.2021.111287

  41. 41. Aisa, Z., Liao, G.-C., Shen, X.-L., Chen, J., Li, L. and Jiang, S.-B. (2017) Effect of Autophagy on Myocardial Infarction and Its Mechanism. European Review for Medical and Pharmacological Sciences, 21, 3705-3713.

  42. 42. Matsui, Y., Takagi, H., Qu, X., et al. (2007) Distinct Roles of Autoph-agy in the Heart during Ischemia and Reperfusion: Roles of AMP-Activated Protein Kinase and Beclin 1 in Mediating Autophagy. Circulation Research, 100, 914-922. https://doi.org/10.1161/01.RES.0000261924.76669.36

  43. 43. Ma, H. and Ma, Y. (2022) Dapagliflozin Inhibits Ven-tricular Remodeling in Heart Failure Rats by Activating Autophagy through AMPK/mTOR Pathway. Computational and Mathematical Methods in Medicine, 2022, Article ID: 6260202. https://doi.org/10.1155/2022/6260202

  44. 44. Deng, R., Jiang, K., Chen, F., et al. (2022) Novel Cardioprotective Mechanism for Empagliflozin in Nondiabetic Myocardial Infarction with Acute Hyperglycemia. Biomedicine & Pharmacotherapy, 154, Article ID: 113606. https://doi.org/10.1016/j.biopha.2022.113606

  45. 45. Jiang, K., Xu, Y., Wang, D., et al. (2021) Cardioprotective Mechanism of SGLT2 Inhibitor against Myocardial Infarction is through Reduction of Autosis. Protein & Cell, 13, 336-359. https://doi.org/10.1007/s13238-020-00809-4

  46. 46. Ren, C., Sun, K., Zhang, Y., et al. (2021) Sodi-um-Glucose CoTransporter-2 Inhibitor Empagliflozin Ameliorates Sunitinib-Induced Cardiac Dysfunction via Regulation of AMPK-mTOR Signaling Pathway-Mediated Autophagy. Frontiers in Pharmacology, 12, Article 664181. https://doi.org/10.3389/fphar.2021.664181

  47. 47. Egan, D.F., Shackelford, D.B., Mihaylova, M.M., et al. (2011) Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy. Science, 331, 456-61. https://doi.org/10.1126/science.1196371

  48. 48. Mack, H.I., Zheng, B., Asara, J.M. and Thomas, S.M. (2012) AMPK-Dependent Phosphorylation of ULK1 Regulates ATG9 Localization. Autophagy, 8, 1197-1214. https://doi.org/10.4161/auto.20586

  49. 49. Kim, S.-J., Tang, T., Abbott, M., et al. (2016) AMPK Phosphorylates Desnutrin/ATGL and Hormone-Sensitive Lipase To Regulate Lipolysis and Fatty Acid Oxidation within Adipose Tissue. Molecular and Cellular Biology, 36, 1961- 1976. https://doi.org/10.1128/MCB.00244-16

  50. 50. Packer, M. (2020) Autophagy Stimulation and Intracellular Sodium Reduction as Mediators of the Cardioprotective Effect of Sodi-um-Glucose Cotransporter 2 Inhibitors. European Journal of Heart Failure, 22, 618-628. https://doi.org/10.1002/ejhf.1732

  51. 51. Wicik, Z., Nowak, A., Jarosz-Popek, J., et al. (2021) Characterization of the SGLT2 Interaction Network and Its Regulation by SGLT2 Inhibitors: A Bioinformatic Analysis. Frontiers in Pharma-cology, 13, Article 901340 https://doi.org/10.3389/fphar.2022.901340

  52. 52. Kume, S., Uzu, T., Horiike, K., et al. (2010) Calorie Restriction Enhances Cell Adaptation to Hypoxia through Sirt1- Dependent Mitochondrial Autophagy in Mouse Aged Kidney. Journal of Clinical Investigation, 120, 1043-1055. https://doi.org/10.1172/JCI41376

  53. 53. Packer, M. (2020) Role of Deranged Energy Deprivation Signaling in the Pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance. Circulation, 141, 2095-2105. https://doi.org/10.1161/CIRCULATIONAHA.119.045561

  54. NOTES

    *通讯作者。

期刊菜单