Advances in Clinical Medicine
Vol. 14  No. 02 ( 2024 ), Article ID: 81112 , 9 pages
10.12677/ACM.2024.142474

高血压合并阻塞性睡眠呼吸暂停低通气综合征患者发生左心室肥厚的研究进展

祖柏旦·阿布汉,阿丽亚·阿不力孜,邱璇,陈玉岚*,王星晨,姚艳丽,古丽米热·艾麦提

新疆医科大学第一附属医院高血压科,新疆 乌鲁木齐

收稿日期:2024年1月23日;录用日期:2024年2月16日;发布日期:2024年2月23日

摘要

高血压是成年人群常见病,与心血管疾病及靶器官损害关系密切。阻塞性睡眠呼吸暂停低通气综合征(Obstructive sleep apnea-hypopnea syndrome, OSAHS)是睡眠时反复发生部分或全部上呼吸导致夜间打鼾、反复的呼吸暂停或低通气、低氧血症、高碳酸血症和睡眠结构紊乱以及白天嗜睡等一系列临床特征的呼吸障碍性疾病。当高血压合并OSAHS时,血压呈“非杓型”,甚至出现“反杓型”改变,血压波动性较大,造成高血压合并OSAHS患者靶器官损害程度比单纯高血压更为严重,也可造成心、脑、肾等脏器并发症的加重。高血压合并OSAHS患者心脏靶器官损害的重要病理改变为左心室肥厚(Left ventricular hypertrophy, LVH),LVH会进而导致慢性心功能不全等心血管事件的发生。该文章就高血压合并OSAHS发生LVH研究进展做一综述,以期提高对高血压合并OSAHS的关注,并最终降低发生LVH风险。

关键词

高血压,阻塞性睡眠呼吸暂停低通气综合征,左心室肥厚

Research Progress in Left Ventricular Hypertrophy in Hypertension Patients with Obstructive Sleep Apnea Hypopnea Syndrome

Zubaidan Abuhan, Aliya Abulizi, Xuan Qiu, Yulan Chen*, Xingchen Wang, Yanli Yao, Gulimire Aimaiti

Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Jan. 23rd, 2024; accepted: Feb. 16th, 2024; published: Feb. 23rd, 2024

ABSTRACT

Hypertension is a common disease in the adult population and is closely related to cardiovascular disease and target organ damage. Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a respiratory disorder characterized by a series of clinical features, such as nocturnal snoring, recurrent apnea or hypoventilation, hypoxemia, hypercapnia, and structural disorders of sleep, as well as daytime somnolence, which occurs repeatedly with partial or total upper respiration during sleep. OSAHS is a disorder of respiration with a series of clinical features. When hypertension with OSAHS, the blood pressure is “non-dippers” or even “riser”, and the blood pressure fluctuation is large, which results in more serious damage to the target organs of patients than simple hypertension, and also causes complications in organs such as the heart, brain and kidneys and other organs. The most important pathology of cardiac target organ damage in patients with hypertension with OSAHS is left ventricular hypertrophy (LVH), which in turn leads to the occurrence of cardiovascular events such as chronic cardiac insufficiency. This article reviews the progress of research on the development of LVH in hypertension with OSAHS, with the aim of raising awareness of hypertension with OSAHS and ultimately reducing the risk of LVH.

Keywords:Hypertension, Obstructive Sleep Apnea Hypopnea Syndrome, Left Ventricular Hypertrophy

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

高血压是最常见的慢性病,也是心脑血管病最主要的危险因素,其患病率、致残率、致死率高,严重威胁着人类的健康生活,给家庭和国家造成沉重负担 [1] 。阻塞性睡眠呼吸暂停低通气综合征(Obstructive sleep apnea-hypopnea syndrome, OSAHS)是指在睡眠期间,上气道组织塌陷阻塞导致患者反复呼吸暂停或低通气,出现鼾声、低氧血症、高碳酸血症及睡眠中反复微觉醒引起日间疲劳、嗜睡等症状的一组症候群 [2] 。研究表明OSAHS和高血压之间具有很强的相关性,大于30%的高血压患者患有OSAHS,OSAHS中高血压的发病率高达50%~80% [3] 。OSAHS与高血压之间存在多种共同危险因素,两种疾病相互作用,最终导致冠心病、左心室肥厚、心律失常、心力衰竭等多种心血管疾病的发生。左心室肥厚(Left ventricular hypertrophy, LVH)是高血压合并OSAHS患者心脏靶器官损害的重要病理改变 [4] [5] [6] ,可引起慢性心功能不全等心血管事件的发生,而慢性心功能不全是各种心血管疾病的终末阶段,预后差。因此探究高血压合并OSAHS与LVH之间的关系很有必要,该文就高血压合并OSAHS患者血压特点、发生LVH的机制,以及治疗等方面的研究进展做一综述,为OSAHS合并高血压提供治疗依据。

2. 高血压合并OSAHS的血压特点

2.1. 血压昼夜变化规律

正常人24 h血压的变化表现为在一定波动范围内,夜间睡眠后血压逐渐降低,白天醒后逐渐升高,被称为杓形改变。高血压患者可表现为血压昼夜变化规律的异常,即血压的非杓形改变。而相比于单纯高血压患者,此非杓型血压更常见于高血压合并OSAHS患者,有时,甚至呈现为反杓型血压昼夜节律。HOBZOVA等的一项前瞻性多中心研究发现,OSAHS患者常出现夜间血压升高,并以非杓型的模式出现,即使是轻微的OSAHS也可能阻止夜间血压的生理下降,甚至可能使夜间血压上升,即使没有高血压,一些OSAHS患者夜间血压也会升高 [7] 。H. Martynowicz等的研究将58名患者分为两组:重度OSAHS (AHI > 29次/小时,平均2.2 ± 19.0次/小时),轻中度OSAHS (AHI = 5~30,平均20.2 7.8次/小时),进行24小时无创血压监测。与轻至中度OSAHS患者相比,重度OSAHS患者的平均夜间收缩压(133.2 ± 17.4 mmHg vs. 117.7 ± 31.2 mmHg, p < 0.05)和舒张压(80.9 ± 13.1 mmHg vs. 73.8 ± 9.2, p < 0.01) [8] 。一项纳入14项研究2519名患者的荟萃分析显示大多数OSAHS患者都存在非杓型血压模式,合并患病率为59.0% [9] 。威斯康星睡眠队列研究对323名患者进行了调查,在随访期间(平均7.2年),AHI为5至15次/小时的患者非勺型血压的风险增加了三倍 [10] 。

2.2. 血压变异性

血压变异性定义为随时间发生的血压波动。研究表明,新诊断的OSAHS患者与无OSAHS的患者相比,24小时SBP变异性显着较高,在OSAHS患者中,与24小时SBP变异性较低的OSA患者相比,24小时SBP变异性较高的患者的心血管疾病(Cardiovascular disease, CVD)患病率更高 [11] 。张双双等在研究中纳入高血压患者153例,给予多导睡眠呼吸监测及动态血压监测,根据睡眠呼吸暂停低通气指数将患者分四组:对照组(单纯高血压41例)、高血压合并轻度OSAHS组(36例)、高血压合并中度OSAHS组(36例)、高血压合并重度OSAHS组(40例),研究结果显示高血压患者合并OSAHS时容易出现夜间短时时血压变异性(BVP)增加,OSAHS严重程度是高血压合并OSAHS患者夜间短时BVP增加的主要因素 [12] 。Misaka等人报告了在242名疑似睡眠呼吸障碍的日本患者中使用脉搏转运时间(PTT)测量的血压变异性与亚临床器官损伤之间的关系。他们的研究结果表明,PTT指数与AHI、氧减饱和度指数(Oxygen Desaturation Index, ODI)和最低血氧饱和度显著相关。此外,定义为PTT指数舒张压部分标准偏差的极短时间血压变异与慢性肾病和心脏肥大的存在有关 [13] 。

睡眠期间上呼吸道反复阻塞导致间歇性血氧饱和度降低、胸内压变化和反复觉醒,通过不同的协同机制促进靶器官损伤。交感神经活性增强源于发作性低氧血症触发的颈动脉体化学感受器的激活或睡眠碎片化引起的全身应激,导致儿茶酚胺激增和压力感受器敏感性受损。此外,肾素–血管紧张素–醛固酮和心房钠尿肽系统因肾素水平升高和胸内压力波动而上调,促进了体液的重新分布。最重要的是,随着时间的推移,这些自主神经和神经体液失调会延续到睡眠呼吸暂停事件之后,并持续到白天,从而导致整体昼夜节律性血压紊乱以及血压变异性升高。

3. 高血压合并OSAHS与左心室肥厚

大量证据表明,动脉高血压是普通人群LVH的主要决定因素。LVH的发病机制可能是多因素的,面对异常负荷条件,尤其是长期升高的后负荷,左心室肥厚可使左心室壁应力恢复正常并保持左心室的机械功能。心肌细胞肥大是心脏抵消心室壁压力(或负荷)长期增加的主要机制 [14] 。根据拉普拉斯定律,壁应力与左室腔大小和腔内压力直接相关,与室壁厚度成反比。因此,壁增厚将至少部分地抵消由压力或容量超负荷引起的压力和需氧量的增加,另一方面,长期处于动脉高血压,其他一些非血流动力学因素,包括肾素血管紧张素醛固酮系统活性增加,循环中的血管紧张素Ⅱ (angiotensin Ⅱ, AngⅡ)强力收缩小动脉、刺激醛固酮分泌而扩容、促进儿茶酚胺释放,从而显著升压。局部组织中的AngⅡ则发挥长期效应,通过结合其Ang Ⅱ1型受体( angiotensin Ⅱ receptor type 1, AT1R),调控原癌基因和相关蛋白表达,使心肌细胞肥大、胶原增生,进而导致心脏纤维重构和LV [15] 。交感神经兴奋性升高引起去甲肾上腺素(norepinephrine, NE)增多,NE通过兴奋α1肾上腺素能受体使心肌细胞蛋白合成增多,促使心肌细胞总蛋白和非收缩蛋白合成,出现心肌细胞肥大 [16] 。同时,交感神经系统活性升高也导致炎症因子入侵心脏,引发心肌纤维化,进一步加重心肌肥厚 [17] 。上述涉及LVH发病机制的大多数因素在合并OSAHS患者中经常存在。睡眠心脏健康研究(SHHS)是迄今为止已发表的最大规模的研究,以2058名中老年人为样本进行,结果显示,在对几个混杂因素进行充分调整后,左心室质量指数与AHI和低氧血症指数显著相关 [18] 。与没有OSAHS 的患者相比,AHI > 30的患者的LVH调整后比值比显著增加(OR = 1.78, 95% CI 1.14~2.79)。Muxfeld等人对422名难治性高血压患者(82% OSAHS)进行了横断面分析。研究表明,中度/重度OSAHS患者的LVH患病率(76%)高于无/轻度OSA患者 [19] 。一项大型荟萃分析(纳入39项研究的5550名OSAHS患者和2329名非OSAHS对照患者)表明,发生LVH的可能性随着OSAHS严重程度的增加而增加,并呈连续关系 [20] 。

4. 高血压合并OSAHS介导LVH的可能机制

4.1. 胸内压波动

OSAHS病人在睡眠期间会出现反复的上呼吸道部分或完全性阻塞,通过用力吸气,使呼吸道恢复通畅,诱导胸腔内负压的波动,增加心脏跨壁压,增加左心室舒张功能障碍、左室壁张力及后负荷,引起心室肥厚。使用穆勒手法模拟胸内压增高,健康受试者左心室后负荷急剧增加 [21] 。

4.2. 交感神经兴奋性增高

OSAHS患者长期间歇性缺氧引起的低氧血症、高碳酸血症和酸中毒可激活交感神经系统。先前的研究表明,由OSAHS引起的间歇性缺氧和高碳酸血症会在睡眠期间急性增加肌肉交感神经活动(MSNA) [22] ,即使在去除缺氧刺激后,交感神经系统的过度激活仍会持续。左心室后负荷增加和心率(HR)增加共同促进了心肌的氧需求,从而带来了更高的心脏缺血和心律失常风险,并长期导致左心室肥厚和衰竭。一项荟萃分析提出OSAHS病人经过持续气道正压给氧(CPAP)治疗后,可能会降低交感神经活动并增加副交感神经活性,同时指出,CPAP治疗至少1个月,可能改善交感神经及副交感神经的平衡 [23] 。

4.3. 氧化应激与炎症反应

OSAHS引发的全身炎症在间歇性缺氧诱导的左心室重塑中起着重要作用,OSAHS患者血浆中肿瘤坏死因子-α (TNF-α)和白细胞介素-6 (IL-6)水平升高证实了这一点 [24] 。炎症反应和自由基的产生会导致心肌氧化和抗氧化活性失衡,造成心肌损伤,增加心肌缺血的易感性 [25] 。随之而来的心肌缺血导致ATP生成不足、无机磷酸盐蓄积和心肌酸中毒,从而抑制兴奋–收缩耦联,引起区域性心室收缩功能障碍 [26] 。间歇性低氧通过在缺氧时期降低抗氧化机制及再氧化时期增加活性氧(ROS)产生而导致氧化应激。有研究表明,LVH可能不是由高血压引起,而与反复低氧、复氧引起的氧化应激直接损伤心肌细胞有关 [27] 。氧化应激在左室重构过程中起重要作用,主要与ROS的过量产生有关。还原型辅酶Ⅱ (NADPH)氧化酶为ROS的主要来源,有研究表明,含有gp91phox的NADPH氧化酶通过增加氧化应激参与间歇性低氧诱导的心室重构 [28] 。氧化应激可以促进成纤维细胞向肌成纤维细胞的活化,导致血管周围和间质纤维化的沉积,可以引起转化生长因子-β (TGF-β)过度表达,促进纤维母细胞增殖,引起LVH。持续气道正压(CPAP)治疗后,缺氧诱发的这些心室重塑恢复正常。

4.4. 肥胖相关血流动力学变化

与肥胖相关的血液动力学变化可能是导致OSAHS患者左心室质量增加的原因之一。Parisi等人指出,患有睡眠呼吸障碍的高血压患者的心外膜脂肪组织(EAT)厚度值高于无夜间呼吸暂停的高血压患者 [29] ,这表明EAT可能是OSAHS与心血管风险增加之间的病理生理联系 [30] 。此外,CPAP治疗可减少EAT,明显改善肥胖OSAHS患者的心脏代谢指标 [31] 。暴露于缺氧环境会导致因子-1a和Fos样抗原(FOSL)2生成增加,导致EAT中瘦素表达上调,同时血管化、炎症和纤维化也会增加 [32] 。

4.5. 内皮功能障碍

在实验模型中,间歇性缺氧被证明会增加内皮功能障碍 [33] 。在一大群老年人中,血流介导的扩张显示动脉直径与缺氧严重程度之间存在统计学上显着的关系 [34] 。Gjørup等人发现与健康对照相比,患有OSAHS的个体血浆内皮素-1水平升高,并且内皮素的夜间平均水平与OSAHS的严重程度和动态血压升高相关 [35] 。研究还表明,成功治疗OSAHS后,内皮功能得到改善 [36] 。

5. 高血压合并OSAHS的治疗

5.1. 行为措施

包括戒酒、避免仰卧位睡姿、定期有氧运动和减肥。对于体位性OSAHS (即主要在仰卧位时AHI升高)的患者,限制侧卧或俯卧位睡眠可能是足够的治疗方法 [37] 。减肥可改善OSAHS [38] ,并应建议所有超重或肥胖患者与其他疗法联合使用。减肥被认为是无症状或症状轻微患者的唯一初始治疗。生活方式干预、减肥手术和减肥药物均与改善OSAHS严重程度相关。改善OSAHS严重程度所需的体重减轻没有明显的阈值,减肥效果越明显,益处越大 [39] 。运动可以独立于体重减轻而改善OSAHS。在中度至重度OSAHS患者的小型随机临床试验中,运动与OSAHS严重程度降低24%至34%相关,但体重没有显着变化 [40] 。这种与体重无关的益处的机制尚不清楚,脂肪重新分配、夜间液体吸收减少、咽部肌肉力量增加和睡眠质量改善是潜在的机制。

5.2. 气道正压通气

气道正压通气(PAP)是任何严重程度的OSAHS症状患者的主要治疗方法。PAP使90%以上的患者在佩戴该装置时AHI恢复正常 [41] 。益处取决于对治疗的坚持,每晚使用时间越长,症状改善越明显和血压降低幅度越大。一份涉及2014年至2017年间超过260万名开始PAP治疗的患者的报告中,其中75%的患者在治疗的前90天内达到了充分的依从性。93%的患者夜间使用了PAP平均时间为每晚6.0小时 [42] 。大约65%至80%开始PAP治疗的患者在4年后继续使用该治疗 [43] 。提高PAP依从性的因素包括关于OSAHS风险的教育和PAP治疗的预期益处,监测PAP的使用,并加强和支持技术问题,行为干预,包括认知行为疗法和动机增强疗法。这些因素中的每一个都会使PAP依从性每晚增加30分钟以上,行为干预的平均效果高达每晚80分钟 [44] 。

5.3. 口腔矫治器

口腔矫治器是有效的治疗选择,特别是对于患有轻度至中度OSAHS的个体。这些装置由适合上牙和下牙的板组成。这些板的位置可以调整,使下颌骨相对于上颌骨前进,从而增加上气道容量,从而减少气道塌陷 [45] 。

5.4. 手术治疗

尽管在PAP治疗出现之前气管切开术曾用于治疗严重OSAHS,但现在很少用于治疗OSAHS。研究最广泛的手术是悬雍垂腭咽成形术,涉及切除悬雍垂和部分软腭。一项随机对照试验发现,悬雍垂腭咽成形术比对照组更能显着降低AHI [46] 。其他手术包括侧壁咽成形术和舌头缩小手术。还可以修改面部的骨骼结构来控制OSAHS。研究最好的手术是上颌前移术,对45项研究(包括455名接受治疗前和治疗后睡眠检查的患者)进行的荟萃分析发现,上颌前移手术与AHI平均降低80%相关 [47] 。

5.5. 舌下神经刺激

舌下神经刺激是一种较新的外科手术,可增加睡眠期间咽部扩张肌的张力。目前美国食品和药物管理局批准的唯一设备包括在舌下神经内侧分支单侧放置一个电极以增强舌头突出,在内外肋间肌之间放置一个压力传感器以检测吸气力度,以及一个小型神经刺激器植入胸壁,根据呼吸努力触发舌下电极。在该设备的减少呼吸暂停刺激疗法(STAR)试验中,该治疗将中位AHI从每小时29.3次事件减少到9.0次,并且在治疗5年后仍能维持疗效 [48] 。虽然舌下神经刺激在某些患者中似乎有效且耐受性良好,但它需要外科手术,并且比PAP和口腔矫治器更昂贵。

5.6. 降压治疗

对于高血压合并OSAHS患者,选择合理的降压药是十分必要的。一项从欧洲睡眠呼吸暂停数据库(ESADA)队列中招募了5970名接受当前抗高血压治疗的阻塞性睡眠呼吸暂停(OSAHS)高血压患者的研究显示,β受体阻滞剂在尚未接受治疗的年轻OSAHS患者中具有优势 [49] 。一种可能的解释是,之前的研究结果表明,高血压发展的早期阶段,由于心率和心输出量的增加,会出现与高收缩压(Systolic blood pressure, SBP)相关的循环状态 [50] 。可以推测,β-受体阻滞剂降低心率是一种交感溶解作用,与通过血管扩张作用的化合物相比,它能更好地控制OSAHS患者的血压。在合并有OSAHS的高血压后期,动脉硬化和高血压可能会导致永久性血管重塑,而通过其他机制(如调节肾素–血管紧张素系统)发挥作用的药物可以更好的降压。就联合疗法而言,与血管紧张素受体阻滞剂(ARB)和利尿剂或ARB和钙通道阻滞剂(CCB)等其他更常用的联合疗法相比,利尿剂治疗和β受体阻滞剂的联合疗法可大幅降低SBP和舒张压(Diastolic blood pressure, DBP)水平。包括降低心脏交感神经活动、减少血容量和具有利尿特性的药物的直接血管扩张特性在内的机制可能解释了为什么这种联合疗法对OSAHS患者特别有用。女性OSAHS患者在接受这种联合疗法后似乎能更好地控制SBP [49] 。

6. 展望

长期未控制的高血压患者,其左心室肥厚损伤的风险较正常血压患者高,当合并OSAHS时,两者相互影响并形成恶性循环,使得左心室肥厚更为显著。因此当发现有血压升高合并存在OSAHS时,明确高血压伴OSAHS患者左心室结构及其功能的影响因素,从而做到更有针对性的早预防、早治疗,针对不同病因及病理机制,选择合理有效的防控措施,对减少左心室肥厚的发生具有重要意义。

文章引用

祖柏旦·阿布汉,阿丽亚·阿不力孜,邱 璇,陈玉岚,王星晨,姚艳丽,古丽米热·艾麦提. 高血压合并阻塞性睡眠呼吸暂停低通气综合征患者发生左心室肥厚的研究进展
Research Progress in Left Ventricular Hypertrophy in Hypertension Patients with Obstructive Sleep Apnea Hypopnea Syndrome[J]. 临床医学进展, 2024, 14(02): 3368-3376. https://doi.org/10.12677/ACM.2024.142474

参考文献

  1. 1. 中国高血压防治指南(2018年修订版) [J]. 中国心血管杂志, 2019, 24(1): 24-56.

  2. 2. Wu, Z.H., Yang, X.P., Niu, X., et al. (2019) The Relationship between Obstructive Sleep Apnea Hypopnea Syndrome and Gastroesophageal Reflux Disease: A Meta-Analysis. Sleep and Breathing, 23, 389-397. https://doi.org/10.1007/s11325-018-1691-x

  3. 3. Rossi, G.P., Bisogni, V., Rossitto, G., et al. (2020) Practice Recommendations for Diagnosis and Treatment of the Most Common Forms of Secondary Hypertension. High Blood Pressure & Cardiovascular Prevention, 27, 547-560. https://doi.org/10.1007/s40292-020-00415-9

  4. 4. 周绮, 余振球. 原发性高血压伴阻塞性睡眠呼吸暂停低通气综合征对左心室结构的影响[J]. 心肺血管病杂志, 2012, 31(6): 681-686.

  5. 5. Cuspidi, C., Tadic, M., Gherbesi, E., et al. (2021) Targeting Subclinical Organ Damage in Obstructive Sleep Apnea: A Narrative Review. Journal of Human Hypertension, 35, 26-36. https://doi.org/10.1038/s41371-020-00397-0

  6. 6. 严治涛, 程维平, 毕云伟, 等. 高血压合并阻塞性睡眠呼吸暂停低通气综合征患者左心室结构与收缩功能的影响因素[J]. 中华高血压杂志, 2011, 19(3): 273-277.

  7. 7. Hobzova, M., Sonka, K., Pretl, M., et al. (2018) Sleep Apnoea in Patients with Nocturnal Hyper-tension—A Multicenter Study in the Czech Republic. Physiological Research, 67, 217-231. https://doi.org/10.33549/physiolres.933570

  8. 8. Martynowicz, H., Porębska, I., Poręba, R., et al. (2016) Nocturnal Blood Pressure Variability in Patients with Obstructive Sleep Apnea Syndrome. In: Pokorski, M., Ed., Advancements in Clinical Research, Springer, Berlin, 9-15. https://doi.org/10.1007/5584_2016_64

  9. 9. Cuspidi, C., Tadic, M., Sala, C., et al. (2019) Blood Pressure Non-Dipping and Obstructive Sleep Apnea Syndrome: A Meta-Analysis. Journal of Clinical Medicine, 8, Article No. 1367. https://doi.org/10.3390/jcm8091367

  10. 10. Hla, K.M., Young, T., Finn, L., et al. (2008) Longitudinal Associa-tion of Sleep-Disordered Breathing and Nondipping of Nocturnal Blood Pressure in the Wisconsin Sleep Cohort Study. Sleep, 31, 795-800. https://doi.org/10.1093/sleep/31.6.795

  11. 11. Ke, X., Sun, Y., Yang, R., et al. (2017) Association of 24H-Systolic Blood Pressure Variability and Cardiovascular Disease in Patients with Obstructive Sleep Apnea. BMC Cardiovascular Disorders, 17, Article No. 287. https://doi.org/10.1186/s12872-017-0723-y

  12. 12. 张双双, 胡申江. 高血压合并阻塞性睡眠呼吸暂停低通气综合征患者短时血压变异性的影响因素研究[J]. 中国循环杂志, 2020, 35(3): 282-287.

  13. 13. Misaka, T., Niimura, Y., Yoshihisa, A., et al. (2020) Clinical Impact of Sleep-Disordered Breathing on Very Short- Term Blood Pressure Varia-bility Determined by Pulse Transit Time. Journal of Hypertension, 38, 1703-1711. https://doi.org/10.1097/HJH.0000000000002445

  14. 14. Aimo, A., Vergaro, G., González, A., et al. (2022) Cardiac Remodelling—Part 2: Clinical, Imaging and Laboratory Findings. A Review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 24, 944-958.

  15. 15. Yildiz, M., Oktay, A.A., Stewart, M.H., et al. (2020) Left Ventricular Hypertrophy and Hypertension. Progress in Cardiovascular Diseases, 63, 10-21. https://doi.org/10.1016/j.pcad.2019.11.009

  16. 16. Al Katat, A. (2023) Modification of Ion Channel Auxiliary Subunits in Cardiac Disease.

  17. 17. Adamo, L., Rocha-Resende, C., Prabhu, S.D., et al. (2020) Reappraising the Role of Inflammation in Heart Failure. Nature Reviews Cardiology, 17, 269-285. https://doi.org/10.1038/s41569-019-0315-x

  18. 18. Chami, H.A., Devereux, R.B., Gottdiener, J.S., et al. (2008) Left Ventricular Morphology and Systolic Function in Sleep-Disordered Breathing: The Sleep Heart Health Study. Circula-tion, 117, 2599-607. https://doi.org/10.1161/CIRCULATIONAHA.107.717892

  19. 19. Muxfeldt, E.S., Margallo, V.S., Guimarães, G.M., et al. (2014) Prevalence and Associated Factors of Obstructive Sleep Apnea in Patients with Resistant Hypertension. American Journal of Hypertension, 27, 1069-1078. https://doi.org/10.1093/ajh/hpu023

  20. 20. Cuspidi, C., Tadic, M., Sala, C., et al. (2020) Obstructive Sleep Apnoea Syndrome and Left Ventricular Hypertrophy: A Meta-Analysis of Echocardiographic Studies. Journal of Hypertension, 38, 1640-1649. https://doi.org/10.1097/HJH.0000000000002435

  21. 21. Wszedybyl-Winklewska, M., Wolf, J., Swierblewska, E., et al. (2017) Increased Inspiratory Resistance Affects the Dynamic Relationship between Blood Pressure Changes and Subarachnoid Space Width Oscillations. PLOS ONE, 12, e0179503. https://doi.org/10.1371/journal.pone.0179503

  22. 22. Bradley, T.D. and Floras, J.S. (2003) Sleep Apnea and Heart Failure: Part I: Obstructive Sleep Apnea. Circulation, 107, 1671-1678. https://doi.org/10.1161/01.CIR.0000061757.12581.15

  23. 23. Guo, W., Lv, T., She, F., et al. (2018) The Impact of Continuous Positive Airway Pressure on Heart Rate Variability in Obstructive Sleep Apnea Patients during Sleep: A Meta-Analysis. Heart & Lung, 47, 516-524. https://doi.org/10.1016/j.hrtlng.2018.05.019

  24. 24. Matsumoto, C., Hayashi, T., Kitada, K., et al. (2009) Chymase Plays an Important Role in Left Ventricular Remodeling Induced by Intermittent Hypoxia in Mice. Hypertension, 54, 164-171. https://doi.org/10.1161/HYPERTENSIONAHA.109.131391

  25. 25. Andreadou, I., Daiber, A., Baxter, G.F., et al. (2021) Influence of Cardiometabolic Comorbidities on Myocardial Function, Infarction, and Cardioprotection: Role of Cardiac Redox Signaling. Free Radical Biology and Medicine, 166, 33-52. https://doi.org/10.1016/j.freeradbiomed.2021.02.012

  26. 26. Perrelli, M.-G., Pagliaro, P. and Penna, C. (2011) Ische-mia/Reperfusion Injury and Cardioprotective Mechanisms: Role of Mitochondria and Reactive Oxygen Species. World Journal of Cardiology, 3, 186-200. https://doi.org/10.4330/wjc.v3.i6.186

  27. 27. Wei, Q., Bian, Y., Yu, F., et al. (2016) Chronic Intermittent Hypoxia Induces Cardiac Inflammation and Dysfunction in a Rat Obstructive Sleep Apnea Model. The Journal of Biomedical Re-search, 30, 490-495. https://doi.org/10.7555/JBR.30.20160110

  28. 28. Hayashi, T., Yamashita, C., Matsumoto, C., et al. (2008) Role of Gp91phox-Containing NADPH Oxidase in Left Ventricular Remodeling Induced by Intermittent Hypoxic Stress. Amer-ican Journal of Physiology-Heart and Circulatory, 294, H2197-H2203. https://doi.org/10.1152/ajpheart.91496.2007

  29. 29. Parisi, V., Paolillo, S., Rengo, G., et al. (2018) Sleep-Disordered Breathing and Epicardial Adipose Tissue in Patients with Heart Failure. Nutrition, Metabolism and Cardiovascular Dis-eases, 28, 126-132. https://doi.org/10.1016/j.numecd.2017.09.012

  30. 30. Mariani, S., Fiore, D., Barbaro, G., et al. (2013) Association of Epicardial Fat Thickness with the Severity of Obstructive Sleep Apnea in Obese Patients. International Journal of Cardi-ology, 167, 2244-2249. https://doi.org/10.1016/j.ijcard.2012.06.011

  31. 31. Kostopoulos, K., Alhanatis, E., Pampoukas, K., et al. (2016) CPAP Therapy Induces Favorable Short-Term Changes in Epicardial Fat Thickness and Vascular and Metabolic Markers in Apparently Healthy Subjects with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS). Sleep and Breathing, 20, 483-493. https://doi.org/10.1007/s11325-015-1236-5

  32. 32. Drosos, I., Chalikias, G., Pavlaki, M., et al. (2016) Dif-ferences between Perivascular Adipose Tissue Surrounding the Heart and the Internal Mammary Artery: Possible Role for the Leptin-Inflammation-Fibrosis-Hypoxia Axis. Clinical Research in Cardiology, 105, 887-900. https://doi.org/10.1007/s00392-016-0996-7

  33. 33. Khalyfa, A., Zhang, C., Khalyfa, A.A., et al. (2016) Effect on In-termittent Hypoxia on Plasma Exosomal Micro RNA Signature and Endothelial Function in Healthy Adults. Sleep, 39, 2077-2090. https://doi.org/10.5665/sleep.6302

  34. 34. Nieto, F.J., Herrington, D.M., Redline, S., et al. (2004) Sleep Apnea and Markers of Vascular Endothelial Function in a Large Community Sample of Older Adults. American Journal of Respiratory and Critical Care Medicine, 169, 354- 360. https://doi.org/10.1164/rccm.200306-756OC

  35. 35. Gjørup, P.H., Sadauskiene, L., Wessels, J., et al. (2007) Ab-normally Increased Endothelin-1 in Plasma during the Night in Obstructive Sleep Apnea: Relation to Blood Pressure and Severity of Disease. American Journal of Hypertension, 20, 44-52. https://doi.org/10.1016/j.amjhyper.2006.05.021

  36. 36. Hernández, R., Vallejo-Vaz, A., Medrano-Campillo, P., et al. (2015) Obstructive Sleep Apnoea Syndrome, Endothelial Function and Markers of Endothelialization. Changes after Cpap. Atherosclerosis, 241, e153. https://doi.org/10.1016/j.atherosclerosis.2015.04.788

  37. 37. Clebak, K.T., Demetriou, T.J. and Carey, S. (2020) Posi-tional Therapy for Obstructive Sleep Apnea. American Family Physician, 101, 16-17.

  38. 38. Hudgel, D.W., Patel, S.R., Ahasic, A.M., et al. (2018) The Role of Weight Management in the Treatment of Adult Obstructive Sleep Apnea. An Of-ficial American Thoracic Society Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medi-cine, 198, e70-e87. https://doi.org/10.1164/rccm.201807-1326ST

  39. 39. Blackman, A., Foster, G.D., Zammit, G., et al. (2016) Effect of Liraglutide 3.0 mg in Individuals with Obesity and Moderate or Severe Obstructive Sleep Apnea: The SCALE Sleep Apnea Randomized Clinical Trial. International Journal of Obesity, 40, 1310-1319. https://doi.org/10.1038/ijo.2016.52

  40. 40. Iftikhar, I.H., Bittencourt, L., Youngstedt, S.D., et al. (2017) Comparative Efficacy of CPAP, MADs, Exercise-Training, and Dietary Weight Loss for Sleep Apnea: A Network Meta-Analysis. Sleep Medicine, 30, 7-14. https://doi.org/10.1016/j.sleep.2016.06.001

  41. 41. Patil, S.P., Ayappa, I.A., Caples, S.M., et al. (2019) Treatment of Adult Obstructive Sleep Apnea with Positive Airway Pressure: An American Academy of Sleep Medicine Systematic Review, Meta-Analysis, and GRADE Assessment. Journal of Clinical Sleep Medicine, 15, 301-334. https://doi.org/10.5664/jcsm.7638

  42. 42. Cistulli, P.A., Armitstead, J., Pepin, J.L., et al. (2019) Short-Term CPAP Adherence in Obstructive Sleep Apnea: A Big Data Analysis Using Real World Data. Sleep Medicine, 59, 114-116. https://doi.org/10.1016/j.sleep.2019.01.004

  43. 43. Jacobsen, A.R., Eriksen, F., Hansen, R.W., et al. (2017) Determi-nants for Adherence to Continuous Positive Airway Pressure Therapy in Obstructive Sleep Apnea. PLOS ONE, 12, e0189614. https://doi.org/10.1371/journal.pone.0189614

  44. 44. Askland, K., Wright, L., Wozniak, D.R., et al. (2020) Educa-tional, Supportive and Behavioural Interventions to Improve Usage of Continuous Positive Airway Pressure Machines in Adults with Obstructive Sleep Apnoea. Cochrane Database of Systematic Reviews, No. 4, CD007736. https://doi.org/10.1002/14651858.CD007736.pub3

  45. 45. Edwards, B.A., Andara, C., Landry, S., et al. (2016) Up-per-Airway Collapsibility and Loop Gain Predict the Response to Oral Appliance Therapy in Patients with Obstructive Sleep Apnea. American Journal of Respiratory and Critical Care Medicine, 194, 1413-1422. https://doi.org/10.1164/rccm.201601-0099OC

  46. 46. Sommer, U.J., Heiser, C., Gahleitner, C., et al. (2016) Tonsil-lectomy with Uvulopalatopharyngoplasty in Obstructive Sleep Apnea. Deutsches Ärzteblatt International, 113, 1-8. https://doi.org/10.3238/arztebl.2016.0001

  47. 47. Zaghi, S., Holty, J.E., Certal, V., et al. (2016) Maxillomandibular Advancement for Treatment of Obstructive Sleep Apnea: A Meta-Analysis. JAMA Otolaryngology, 142, 58-66. https://doi.org/10.1001/jamaoto.2015.2678

  48. 48. Woodson, B.T., Strohl, K.P., Soose, R.J., et al. (2018) Upper Airway Stimulation for Obstructive Sleep Apnea: 5-Year Outcomes. Otolaryngology—Head and Neck Surgery, 159, 194-202. https://doi.org/10.1177/0194599818762383

  49. 49. Svedmyr, S., Hedner, J., Bonsignore, M.R., et al. (2023) Hypertension Treatment in Patients with Sleep Apnea from the European Sleep Apnea Database (ESADA) Co-hort—Towards Precision Medicine. Journal of Sleep Research, 32, e13811. https://doi.org/10.1111/jsr.13811

  50. 50. Mancia, G. and Grassi, G. (2014) The Autonomic Nervous System and Hy-pertension. Circulation Research, 114, 1804-1814. https://doi.org/10.1161/CIRCRESAHA.114.302524

  51. NOTES

    *通讯作者。

期刊菜单