Advances in Clinical Medicine
Vol. 12  No. 11 ( 2022 ), Article ID: 58444 , 7 pages
10.12677/ACM.2022.12111563

糖尿病并发症中MCP-1发病机制及治疗的研究进展

王 珏1,谢毅强2*

1贵州中医药大学,贵州 贵阳

2海南医学院,海南 海口

收稿日期:2022年10月23日;录用日期:2022年11月18日;发布日期:2022年11月28日

摘要

糖尿病并发症是由于血糖控制不佳,糖尿病(DM)病程延长而导致多组织、多器官的慢性病变,致死致残率极高,严重危害人类健康。研究发现高糖环境下会引起单核细胞趋化蛋白-1 (MCP-1)的上调,使其在糖尿病中引发一系列炎症反应,导致糖尿病并发症的发生。因此了解MCP-1在糖尿病并发症中的发病机制以及了解通过抑制MCP-1治疗糖尿病并发症的研究现状,为积极治疗和有效干预糖尿病并发症的发生发展提供了更多方向。

关键词

单核细胞趋化蛋白-1,糖尿病,糖尿病并发症,发病机制

Advances in the Pathogenesis and Treatment of MCP-1 in Diabetic Complications

Jue Wang1, Yiqiang Xie2*

1Guizhou University of Traditional Chinese Medicine, Guiyang Guizhou

2Hainan Medical University, Haikou Hainan

Received: Oct. 23rd, 2022; accepted: Nov. 18th, 2022; published: Nov. 28th, 2022

ABSTRACT

The complications of diabetes mellitus are chronic lesions of multiple tissues and organs caused by poor blood glucose control and prolonged course of diabetes mellitus (DM), which has a high mortality and disability rate and seriously endangers human health. Studies have found that high glucose environment can lead to the upregulation of monocyte chemotactic protein-1 (MCP-1), which causes a series of inflammatory reactions in diabetes, leading to the occurrence of diabetic complications. Therefore, understanding the pathogenesis of MCP-1 in diabetic complications and the research status of MCP-1 inhibition in the treatment of diabetic complications will provide more directions for active treatment and effective intervention of the occurrence and development of diabetic complications.

Keywords:Monocyte Chemoattractant Protein-1, Diabetes, Diabetic Complications, Pathogenesis

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

糖尿病并发症是指随着糖尿病病程的延长而导致眼、肾、血管、神经及心脏等多器官和多脏腑组织发生慢性病变,致残、致死率极高。据统计我国目前是世界上糖尿病患者发病率最高的国家,根据《国家基层糖尿病防治管理指南(2022)》最新调查数据显示,近年来我国城市成人DM患病率已累计高达约11.9%,呈逐年上升的趋势,且糖尿病患者日趋年轻化 [1]。越来越多的研究发现MCP-1与糖尿病并发症的关系非常密切,在高糖环境下,蛋白激酶C (protein kinase C, PKC)通过信号传导途径可以在内皮细胞和系膜细胞中刺激MCP-1基因的表达,将大量单核细胞和巨噬细胞募集到各器官组织,引发炎症反应 [2]。本文就MCP-1在糖尿病并发症中的发病机制及如何通过抑制MCP-1治疗糖尿病并发症的研究进展作一综述。

2. MCP-1介绍

MCP-1,也称为Chemokine (CC-motif)配体2 (CCL2),来自于CC趋化因子家族。MCP-1由多种不同类型细胞产生,包括小胶质细胞、星形胶质细胞、上皮细胞、内皮细胞、单核细胞、巨噬细胞、系膜细胞及神经平滑肌细胞等 [3]。MCP-1基因表达的主要诱导剂有促炎细胞因子,如白细胞介素-1 (IL-1)、白细胞介素-4 (IL-4)、肿瘤坏死因子(TNF-α)、干扰素(IFNγ)等;还包括多种促生长因子,如白细胞单核–巨噬细胞集落刺激因子(M-CSF)、粒细胞–巨噬细胞集落刺激因子(GM-CSF)、血小板衍生激活素促生长因子(PDGF)、血管内皮激素促生长因子(VEGF)等;还有脂多糖、活性氧(ROS)、氧化低密度脂蛋白(ox-LDL)和免疫复合物等也都是MCP-1表达的主要诱导剂 [4]。

3. MCP-1来源与结构

MCP-1是最早发现、研究最为广泛和深入的人类CC趋化因子之一,它是由功能正常的人真皮成纤维细胞受到IL-1或TNF的强烈刺激诱导下产生。MCP-1位于17号染色体(chr.17, q11.2),由76个氨基酸和4个半胱氨酸残基组成,分子量为8685 Da,其特点是4个半胱氨酸残基构成分子内二硫化物稳定肽然后形成折叠的桥梁。MCP-1的主要受体CCR2,是一种具有特异性高亲和力的G蛋白偶联受体,由两种同种型CRR2A和CCR2B组成,是一种七跨网膜结构域受体。MCP-1通过与受体CCR2结合诱导受体二聚化和内化,并激活特定的细胞内信号通路,促进靶细胞活化和趋化性,引起炎症反应 [5]。

4. MCP-1的作用

MCP-1在炎症和免疫反应过程中发挥着至关重要的作用,它可以吸引或增强其他炎症因子和细胞的表达,通过将单核细胞、巨噬细胞募集到炎症部位,引起组织器官炎症反应。还可以通过直接机制或对炎症细胞的激活,介导细胞凋亡、调节神经炎症并促进疾病的发展 [6]。MCP-1还能通过调节细胞旁分泌与自分泌发挥调控作用,它可以直接调节单核细胞、记忆T淋巴细胞和自然杀伤(NK)细胞的迁移和浸润,并通过将以上细胞释放入血产生类激素作用发挥远端效应。MCP-1还是导致早期动脉粥样硬化病变的关键趋化因子之一,它可以通过介导单核细胞进入血管内膜下层,促进单核细胞转化增殖为巨噬细胞,巨噬细胞产生的慢性炎症因子黏附于血管内皮细胞分子表面,在动脉管壁中产生局部慢性炎症反应,使管壁内皮细胞表面发生损伤,导致内皮细胞通透性降低、细胞内膜脂质沉积,最终导致动脉粥样硬化的发生。此外MCP-1还可以促进血管平滑肌细胞(vascular smooth muscle cell, VSMC)的定向移动和发育增殖,使VSMC表型发生变化,导致血管损伤 [7]。

5. 糖尿病并发症中MCP-1的发病机制及治疗方法

5.1. MCP-1在糖尿病肾病中的发病机制及治疗

糖尿病肾病(DKD)是糖尿病患者发病和死亡的首要原因,也是全球终末期肾病发生的主要原因。DKD最典型的标志物是白蛋白尿,与全身性和局部肾脏炎症有关,并伴有关键炎症细胞、分子和通路的参与,其中巨噬细胞、核转录因子-kappa B (NF-κB)、janus激酶/信号换能器和转录激活剂(JAK/STAT)通路以及MCP-1/CCL2等都在DKD的发生和发展中起到关键作用 [8]。研究发现,高糖环境下会诱导MCP-1与细胞表面受体CCR2结合,使大量单核细胞和巨噬细胞在肾脏募集,引发肾小球和肾间质组织浸润,导致肾间质炎症水肿和肾小管慢性萎缩坏死。同时过量的葡萄糖还会导致人细胞外基质(ECM)的过量积累,诱发肾小球硬化水肿坏死和间质纤维化的形成 [9]。

Han SY等发现,高糖可以迅速刺激上调小鼠肾脏中足细胞的MCP-1 mRNA和蛋白质的表达,引发肾组织损伤,而维甲酸处理后可有效抑制MCP-1基因的表达,在DKD早期阶段可以抑制炎症变化并改善肾功能 [10];研究还发现,高糖刺激下会导致大鼠肾脏系膜细胞中MCP-1和细胞内细胞粘附分子-1 (ICAM-1)的高表达,导致肾脏肥厚、肾纤维化和炎症反应的发生,经五荣散治疗后高糖诱导的大鼠肾系膜细胞中MCP-1的表达显著降低,且肾纤维化和基质沉积情况也得到了明显缓解 [11];Zhao T等使用中药汤参方(TSF)对糖尿病大鼠进行治疗后发现,TSF可以阻断TGF-β/Smad3炎症通路,从而抑制MCP-1的表达,减轻肾脏炎症,改善肾纤维化 [12]。另外,Chen FD等发现,通过上调锌指E-box结合同源框1 (Zeb1)的表达可以抑制MiR-192,使MCP-1 mRNA的水平显著降低,起到保护肾小球系膜细胞,减轻肾脏纤维化的作用 [13]。

5.2. MCP-1在糖尿病足溃疡中的发病机制及治疗

糖尿病足溃疡(DFU)是糖尿病严重的临床并发症之一,它可引起神经、血管、皮肤、肌腱,甚至骨骼的病变。DFU通常由DM患者的血管、神经病变及下肢感染引起。此外,DM患者皮肤表面伤口的长期炎症会引起皮下巨噬细胞激活和细胞因子功能障碍,导致局部肉芽组织形成延迟,伤口组织收缩强度降低,出现摇摆性疼痛,伤口难以愈合,严重可导致截肢 [14]。DFU的发病机制普遍认为与相关炎症反应因子有关,其中MCP-1在DFU的发生发展中起到关键作用。Su N等发现,位于MCP-1基因启动子区-2518位点的Rs1024611多态性,是MCP-1转染的重要调控区域,该区域的基因突变可以改变MCP-1基因的转染和功能,从而诱发糖尿病患者出现一系列炎症级联反应,导致DFU的发生 [15]。Afarideh M等研究发现,DM患者中MCP-1的上调会导致溃疡组织中白细胞的异常浸润,从而加速DFU的发展 [16]。

Kasiewicz LN等对DFU体内外共培养模型进行研究发现,siRNA脂质类纳米颗粒可以通过沉默炎症巨噬细胞中TNFα的过表达来下调MCP-1基因的表达,从而阻断DFU伤口愈合过程中炎症信号通路 [17]。

5.3. MCP-1在糖尿病视网膜病变中的发病机制及治疗

糖尿病视网膜病变(DR)是糖尿病常见的微血管并发症之一,表现为以慢性视网膜微血管渗漏浸润和血管阻塞为特征的一系列眼底病变,如眼底微血管瘤、棉絮斑、视网膜黄斑水肿、新生血管、视网膜硬性渗出、玻璃体异常增殖、视网膜脱离坏死等。DR的病变特征主要在于神经元变性、神经胶质过度激活,并常常伴有弥漫性血管异常 [18]。研究发现,MCP-1可以激活小胶质细胞(DR的主要组织病理学改变细胞)的产生,导致视神经元再生功能障碍 [19],且在高糖环境下MCP-1基因表达上调,诱导大量单核细胞及异常白细胞进入视网膜组织,引起视网膜炎性病变 [20];Rangasamy S等 [21] 发现,糖尿病患者视网膜中MCP-1活性持续增加,使白细胞向视网膜的募集速率增快,导致眼底血管细胞通透性降低,进而影响血视网膜屏障细胞功能,加重DR病情。

Wei JC等通过敲低LncRNA ANRIL阻断了NF-κB信号通路,使MCP-1表达降低,从而抑制了DR大鼠视网膜组织中P65磷酸化水平,明显改善了DR大鼠的视网膜病变 [22];研究发现,在DR患者玻璃体内注射雷珠单抗(IVR)后,可以有效降低玻璃体内MCP-1等炎症因子水平,改善黄斑水肿,患者视力也得到了恢复 [23];Vorob'eva用羟苯磺酸钙对DR患者进行治疗后发现患者泪液中VEGF-A和MCP-1浓度显著降低,且患者视网膜厚度变薄,黄斑光敏度也得到改善 [24]。

5.4. MCP-1在糖尿病视网膜病变中的发病机制及治疗

糖尿病性心肌病(DCM)的特征性病理改变表现为广泛的心肌微血管病变、心肌变性、心肌退行性病变、心肌广泛局灶性坏死以及心肌纤维化等,严重者可出现心力衰竭、心律失常、心源性休克,甚至发生心源性猝死 [25]。

Younce CW等研究发现,自由基的早期释放会触发细胞炎症因子TNF-α、IL-6和MCP-1的表达,导致大鼠心肌收缩力降低,且高血糖产生的MCP-1还会诱导MCP-1锌指蛋白的产生,二者共同作用导致氧化应激、ER应激、自噬和心肌细胞死亡的发生。而SME1EC2对心肌的预处理可减少心血管炎症反应,恢复心肌功能,减轻心脏毒性 [26] [27];研究发现,扶芳镇柱条芝(FTZ)可以抑制AKT,ERK和STAT3的部分信号通路,降低MCP-1 mRNA水平,进而改善高血糖诱导的炎症反应和心肌纤维化,且经FTZ治疗后的DCM小鼠,体重及血糖水平显著降低,小鼠心功能异常也得到明显改善 [28];Guo X等发现,经曲托利特治疗后的DCM大鼠,促炎细胞因子TNF-α、IL-1β及趋化因子MCP-1水平均显著降低,大鼠心功能得到明显改善,是曲托利特通过抑制NF-κB/IL-1β免疫途径、NF-κB/TNF-α/VCAM-1炎症途径及TGF-β1/α-SMA/Vimentin纤维化途径实现的 [29]。

5.5. MCP-1在糖尿病周围神经病变中的发病机制及治疗

糖尿病周围神经病变(DPN)是指糖尿病患者出现与周围神经功能障碍相关的伴随症状,如肢体运动感觉障碍、跟腱及膝腱反射减弱、神经传导速度减退、触觉与皮肤温度觉降低、肌肉紧张无力及肌萎缩等。该病发病原因较多,目前认为可能与炎症免疫反应、氧化应激、多元醇合成诱导酶途径表达异常等因素相关,其中炎症反应在诱发DPN过程中发挥着重要的调控作用。

研究发现,高糖环境会激活p38 MAPK/NF-κB炎症信号通路,从而上调MCP-1等促炎细胞因子的表达,导致DPN大鼠坐骨神经功能障碍。而GLP-1R激动剂可以降低大鼠坐骨神经中MCP-1等促炎细胞因子mRNA的表达,通过抑制炎症信号通路来治疗DPN [30];Adki KM等发现,经芍药醇治疗后糖尿病大鼠周围神经病变中NF-κB、MCP-1的表达及血浆葡萄糖的浓度明显降低,且DM大鼠运动中枢神经和感觉神经信号传导速率增强,大鼠机械性异常疼痛、机械性痛觉及热痛觉也得到明显改善 [31]。

5.6. MCP-1在糖尿病性骨质疏松症中的发病机制及治疗

长期高血糖会导致人体骨骼微环境结构发生整体性的改变,且老年糖尿病患者更易并发骨代谢异常及骨质疏松症。糖尿病性骨质疏松症(DOP)现已成为引起DM严重并发症的危险因素之一。DOP会引起骨密度值(BMD)降低,骨骼微环境发生破坏,骨骼脆性增加,骨强度降低,甚至导致骨折或病理性骨固脱 [32] [33]。Kim MS等研究发现,高糖环境下人体血清内MCP-1可直接诱导阳性端粒酶,使人骨髓单核细胞在骨髓内巨噬细胞集落刺激因子的间接诱导下产生破骨细胞,提示人体血清内MCP-1可直接通过此诱导途径参与DOP的形成转化过程 [34];黄晶等研究发现,DOP患者血清中MCP-1基因表达明显增高,且随着MCP-1基因表达水平的逐渐升高,骨矿物质密度水平指数(BMD)呈逐渐下降的趋势,该实验再次证实了MCP-1在DOP发病机制中起到关键调控作用 [35];还有研究发现,DOP的初期阶段患者外周血中MCP-1表达水平显著增高,血清铁含量水平明显减少,提示MCP-1和血清铁可能进一步参与并推动了DOP后期阶段病程的发生发展 [36]。

研究发现,硫酸软骨素可以通过上调骨保护素(osteoprotegerin, OPG)与人核因子KB受体活化因子配体(Human Nuclear Factor KB Receptor Activator Ligand, RANKL)的比值,达到抗氧化、抗炎、调节骨代谢的作用,还可以迅速修复骨骼微结构的破坏,并有效降低人体TNF-α,IL-1,IL-6和MCP-1等骨骼内炎症因子的表达水平 [37];Shen CL等发现,胭脂树橙中提取的生育三烯酚(TT)可以改善葡萄糖稳态,促进骨形成,增强骨吸收水平,还可以抑制炎症标志物IL-2,IL-23,IFN-γ,MCP-1,TNF-α等的表达,在DM小鼠中发挥着骨保护、抗炎、调节葡萄糖的作用 [38]。

6. 小结与展望

糖尿病并发症是糖尿病患者致死和终身致残的重要原因,严重威胁糖尿病患者的身心健康和生活质量,因此控制血糖、减少并发症的发生至关重要。MCP-1作为炎症趋化因子在糖尿病并发症的发生发展中起到关键的推动作用,它可以激活炎症信号通路,引起糖尿病并发症的发生。

很多学者对因多种致病机制导致的MCP-1等炎症因子上调而诱发的糖尿病并发症进行了研究,发现了很多治疗糖尿病并发症有效的药物及制剂,且随着基因组学、代谢组学、转录组学、分子生物学等相关学科的发展,更有助于深入探索MCP-1、炎症反应和糖尿病并发症之间相互作用的机制,为探索基于抑制炎症细胞因子和炎症相关通路治疗糖尿病并发症的方法提供新的思路和途径。

文章引用

王 珏,谢毅强. 糖尿病并发症中MCP-1发病机制及治疗的研究进展
Advances in the Pathogenesis and Treatment of MCP-1 in Diabetic Complications[J]. 临床医学进展, 2022, 12(11): 10856-10862. https://doi.org/10.12677/ACM.2022.12111563

参考文献

  1. 1. 《国家基层糖尿病防治管理指南(2022)》发布[J]. 中医健康养生, 2022, 8(5): 2.

  2. 2. Wu, Y., Wu, G., Qi, X., et al. (2006) Protein Kinase C Beta Inhibitor LY333531 Attenuates Intercellular Adhesion Molecule-1 and Monocyte Chemotactic Protein-1 Expression in the Kidney in Diabetic Rats. Journal of Pharmacological Sciences, 101, 335-343. https://doi.org/10.1254/jphs.FP0050896

  3. 3. Ihm, C.G., Park, J.K., Hong, S.P., et al. (1998) A High Glucose Concentration Stimulates the Expression of Monocyte Chemotactic Peptide 1 in Human Mesangial Cells. Nephron, 79, 33-37. https://doi.org/10.1159/000044988

  4. 4. Haller, H., Bertram, A., Nadrowitz, F. and Menne, J. (2016) Mon-ocyte Chemoattractant Protein-1 and the Kidney. Current Opinion in Nephrology and Hypertension, 25, 42-49. https://doi.org/10.1097/MNH.0000000000000186

  5. 5. Naruse, K., Ueno, M., Satoh, T., Nomiyama, H., Tei, H., Takeda, M., et al. (1996) A YAC Contig of the Human CC Chemokine Genes Clustered on Chromosome 17q11.2. Genomics, 34, 236-240. https://doi.org/10.1006/geno.1996.0274

  6. 6. Yoshimura, T., Yuhki, N., Moore, S.K., Appella, E., Lerman, M.I., et al. (1989) Human Monocyte Chemoattractant Protein-1 (MCP-1). Full-Length cDNA Cloning, Expression in Mito-gen-Stimulated Blood Mononuclear Leukocytes, and Sequence Similarity to Mouse Competence Gene JE. FEBS Letters, 244, 487-493. https://doi.org/10.1016/0014-5793(89)80590-3

  7. 7. López-Franco, O., Hernández-Vargas, P., Ortiz-Muñoz, G., Sanjuán, G., Suzuki, Y., et al. (2006) Parthenolide Modulates the NF-kappaB-Mediated Inflammatory Responses in Ex-perimental Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1864-1870. https://doi.org/10.1161/01.ATV.0000229659.94020.53

  8. 8. García-García, P.M., Getino-Melián, M.A., Dominguez-Pimentel, V. and Navarro-González, J.F. (2014) Inflammation in Diabetic Kidney Disease. World Journal of Diabetes, 5, 431-443. https://doi.org/10.4239/wjd.v5.i4.431

  9. 9. Morii, T., Fujita, H., Narita, T., et al. (2003) Association of Monocyte Chemoattractant Protein-1 with Renal Tubular Damage in Diabetic Nephropathy. Journal of Diabetic Complications, 17, 11-15. https://doi.org/10.1016/S1056-8727(02)00176-9

  10. 10. Han, S.Y., So, G.A., Jee, Y.H., et al. (2004) Effect of Ret-inoic Acid in Experimental Diabetic Nephropathy. Immunology & Cell Biology, 82, 568-576. https://doi.org/10.1111/j.1440-1711.2004.01287.x

  11. 11. Yoon, J.J., Lee, Y.J., Lee, S.M., Kang, D.G. and Lee, H.S. (2015) Oryeongsan Suppressed High Glucose-Induced Mesangial Fibrosis. BMC Complementary and Alternative Medicine, 15, Article No. 30. https://doi.org/10.1186/s12906-015-0542-6

  12. 12. Zhao, T., Sun, S., Zhang, H., et al. (2016) Therapeutic Effects of Tangshen Formula on Diabetic Nephropathy in Rats. PLOS ONE, 11, e0147693. https://doi.org/10.1371/journal.pone.0147693

  13. 13. Chen, F.Q., Wei, G.Z., Zhou, Y., Ma, X.Y. and Wang, Q.Y. (2019) The Mechanism of miR-192 in Regulating High Glucose-Induced MCP-1 Expression in Rat Glomerular Mesangial Cells. Endocrine, Metabolic & Immune Disorders—Drug Targets, 19, 1055-1063. https://doi.org/10.2174/1871530319666190301154640

  14. 14. Kanter, J.E., Kramer, F., Barnhart, S., et al. (2012) Di-abetes Promotes an Inflammatory Macrophage Phenotype and Atherosclerosis through acyl-CoA Synthetase 1. Proceedings of the National Academy of Sciences of the United States of America, 109, E715-E724. https://doi.org/10.1073/pnas.1111600109

  15. 15. Su, N., Zhao, N., Wang, G., et al. (2018) Association of MCP-1 rs1024611 Polymorphism with Diabetic Foot Ulcers. Medicine (Baltimore), 97, e11232. https://doi.org/10.1097/MD.0000000000011232

  16. 16. Afarideh, M., Ghanbari, P., Noshad, S., et al. (2016) Raised Serum 25-Hydroxyvitamin D Levels in Patients with Active Diabetic Foot Ulcers. British Journal of Nutrition, 115, 1938-1946. https://doi.org/10.1017/S0007114516001094

  17. 17. Kasiewicz, L.N. and Whitehead, K.A. (2016) Si-lencing TNFα with Lipidoid Nanoparticles Downregulates both TNFα and MCP-1 in an in Vitro Co-Culture Model of Diabetic Foot Ulcers. Acta Biomaterialia, 32, 120-128. https://doi.org/10.1016/j.actbio.2015.12.023

  18. 18. Lieth, E., Gardner, T.W., Barber, A.J. and Antonetti, D.A. (2000) Retinal Neurodegeneration: Early Pathology in Diabetes. Clinical & Experimental Ophthalmology, 28, 3-8. https://doi.org/10.1046/j.1442-9071.2000.00222.x

  19. 19. Dong, N., Li, X., Xiao, L., Yu, W., Wang, B., et al. (2012) Upregulation of Retinal Neuronal MCP-1 in the Rodent Model of Diabetic Retinopathy and Its Function in Vitro. Inves-tigative Ophthalmology and Visual Science, 53, 7567-7575. https://doi.org/10.1167/iovs.12-9446

  20. 20. Feng, C., Wang, X., Liu, T., Zhang, M., Xu, G. and Ni, Y. (2017) Ex-pression of CCL2 and Its Receptor in Activation and Migration of Microglia and Monocytes Induced by Photoreceptor Apoptosis. Molecular Vision, 23, 765-777.

  21. 21. Rangasamy, S., McGuire, P.G., Franco Nitta, C., Monickaraj, F., Oruganti, S.R. and Das, A. (2014) Chemokine Mediated Monocyte Trafficking into the Retina: Role of Inflammation in Alteration of the Blood-Retinal Barrier in Diabetic Retinopathy. PLOS ONE, 9, e108508. https://doi.org/10.1371/journal.pone.0108508

  22. 22. Wei, J.C., Shi, Y.L. and Wang, Q. (2019) LncRNA ANRIL Knockdown Ameliorates Retinopathy in Diabetic Rats by Inhibiting the NF-κB Pathway. European Review for Medical and Pharmacological Sciences, 23, 7732-7739.

  23. 23. Yin, H., Fang, X., Ma, J., et al. (2016) Idiopathic Choroidal Neovascularization: Intraocular Inflammatory Cytokines and the Effect of Intravitreal Ranibizumab Treatment. Scientific Reports, 6, Article No. 31880. https://doi.org/10.1038/srep31880

  24. 24. Vorob’eva, I.V. (2016) Sovremennye podkhody k rannei diagnostike, patogeneticheskomu lecheniyu diabeticheskoi retinopatii [Modern Approach to Early Diagnosis and Pathogenetic Treatment of Diabetic Retinopathy]. Vestnik Oftalmologii, 132, 60-67. https://doi.org/10.17116/oftalma2016132560-67

  25. 25. Athithan, L., Gulsin, G.S., McCann, G.P. and Levelt, E. (2019) Diabetic Cardiomyopathy: Pathophysiology, Theories and Evidence to Date. World Journal of Diabetes, 10, 490-510. https://doi.org/10.4239/wjd.v10.i10.490

  26. 26. Younce, C.W., Wang, K. and Kolattukudy, P.E. (2010) Hyperglycaemia-Induced Cardiomyocyte Death Is Mediated via MCP-1 Production and Induction of a Novel Zinc-Finger Protein MCPIP. Cardiovascular Research, 87, 665-674. https://doi.org/10.1093/cvr/cvq102

  27. 27. Drimal, J., Knezl, V., Navarova, J., et al. (2008) Role of Inflammatory Cytokines and Chemoattractants in the Rat Model of Streptozotocin-Induced Diabetic Heart Failure. Endocrine Regu-lations, 42, 129-135.

  28. 28. Wang, L., Wu, H., Deng, Y., et al. (2021) FTZ Ameliorates Diabetic Cardiomyopathy by Inhibiting Inflammation and Cardiac Fibrosis in the Streptozotocin-Induced Model. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 5582567. https://doi.org/10.1155/2021/5582567

  29. 29. Guo, X., Xue, M., Li, C.J., et al. (2016) Protective Effects of Triptolide on TLR4 Mediated Autoimmune and Inflammatory Response Induced Myocardial Fibrosis in Diabetic Cardiomyopathy. Journal of Ethnopharmacology, 193, 333-344. https://doi.org/10.1016/j.jep.2016.08.029

  30. 30. Ma, J., Shi, M., Zhang, X., et al. (2018) GLP-1R Agonists Ame-liorate Peripheral Nerve Dysfunction and Inflammation via p38 MAPK/NF-κB Signaling Pathways in Streptozotocin-Induced Diabetic Rats. International Journal of Molecular Medicine, 41, 2977-2985. https://doi.org/10.3892/ijmm.2018.3509

  31. 31. Adki, K.M. and Kulkarni, Y.A. (2021) Neuroprotective Effect of Paeonol in Streptozotocin-Induced Diabetes in Rats. Life Sciences, 271, Article ID: 119202. https://doi.org/10.1016/j.lfs.2021.119202

  32. 32. Ferrari, S.L., Abrahamsen, B., Napoli, N., et al. (2018) Diagnosis and Management of Bone Fragility in Diabetes: An Emerging Challenge. Osteoporosis International, 29, 2585-2596. https://doi.org/10.1007/s00198-018-4650-2

  33. 33. Yamamoto, M., Yamauchi, M. and Sugimoto, T. (2019) Prevalent Vertebral Fracture Is Dominantly Associated with Spinal Microstructural Deterioration Rather than Bone Mineral Density in Patients with Type 2 Diabetes Mellitus. PLOS ONE, 14, e0222571. https://doi.org/10.1371/journal.pone.0222571

  34. 34. Kim, M.S., Day, C.J. and Morrison, N.A. (2005) MCP-1 Is In-duced by Receptor Activator of Nuclear Factor-{kappa}B Ligand, Promotes Human Osteoclast Fusion, and Rescues Granulocyte Macrophage Colony-Stimulating Factor Suppression of Osteoclast Formation. Journal of Biological Chem-istry, 280, 16163-16169. https://doi.org/10.1074/jbc.M412713200

  35. 35. 黄晶, 方丁, 王亮, 刘安宁, 张高生. 2型糖尿病合并骨质疏松症患者外周血中MCP-1表达水平及意义[J]. 中国卫生检验杂志, 2015, 25(7): 1013-1014.

  36. 36. 梁洁, 宋文琦. MCP-1、血清铁与老年糖尿病性骨质疏松的相关性分析[J]. 临床合理用药杂志, 2016, 9(10): 111-112.

  37. 37. Qi, S.S., Shao, M.L., Sun, Z., et al. (2021) Chondroitin Sulfate Alleviates Diabetic Osteoporosis and Repairs Bone Micro-structure via Anti-Oxidation, Anti-Inflammation, and Regulating Bone Metabolism. Frontiers in Endocrinology (Lau-sanne), 12, Article ID: 759843. https://doi.org/10.3389/fendo.2021.759843

  38. 38. Shen, C.L., Kaur, G., Wanders, D., et al. (2018) Annatto-Extracted Tocotrienols Improve Glucose Homeostasis and Bone Properties in High-Fat Di-et-Induced Type 2 Diabetic Mice by Decreasing the Inflammatory Response. Scientific Reports, 8, Article No. 11377. https://doi.org/10.1038/s41598-018-29063-9

  39. NOTES

    *通讯作者。

期刊菜单