Advances in Clinical Medicine
Vol. 13  No. 10 ( 2023 ), Article ID: 73883 , 7 pages
10.12677/ACM.2023.13102285

Gd-EOB-DTPA增强核磁与CDT1蛋白在 肝细胞癌诊疗中的研究进展

赵亚龙1,温生宝2*

1青海大学临床医学院,青海 西宁

2青海大学附属医院影像中心,青海 西宁

收稿日期:2023年9月17日;录用日期:2023年10月11日;发布日期:2023年10月18日

摘要

肝细胞癌(hepatocellular carcinoma, HCC)具有高发病率及死亡率、预后差的临床特点。为控制不良的临床结果及改善早期诊断和治疗方法,我们必须在细胞水平上加深对肝细胞癌的了解。CDT1在肝细胞癌的发生、发展和预后方面发挥了重要作用,有望成为潜在的肝细胞癌生物标志物。本文概述了CDT1在DNA复制起始中的功能以及其在肿瘤发生和发展中的作用,着重讨论了CDT1在肝细胞癌中的表达情况。此外,还总结了Gd-EOB-DTPA增强核磁共振成像的基本原理及其在肝细胞癌诊断、分化程度和预后评估中的应用,强调了其无创性和定量分析方法。最后,我们推测了Gd-EOB-DTPA核磁共振与肝细胞癌CDT1表达的相关性:作为一种无创性手段,Gd-EOB-DTPA MR对术前预测肝细胞癌CDT1的表达具有极大的应用价值。

关键词

肝细胞癌,CDT1,Gd-EOB-DTPA,磁共振成像,相关性

Research Progress of Gd-EOB-DTPA-Enhanced Nuclear Magnetic Resonance and CDT1 Protein in the Diagnosis and Treatment of Hepatocellular Carcinoma

Yalong Zhao1, Shengbao Wen2*

1Clinical Medical School of Qinghai University, Xining Qinghai

2Imaging Center, The Affiliated Hospital of Qinghai University, Xining Qinghai

Received: Sep. 17th, 2023; accepted: Oct. 11th, 2023; published: Oct. 18th, 2023

ABSTRACT

Hepatocellular carcinoma (HCC) is characterized by high morbidity, mortality and poor prognosis. In order to control adverse clinical outcomes and improve early diagnosis and treatment, we must deepen our understanding of hepatocellular carcinoma at the cellular level. CDT1 plays an important role in the occurrence, development and prognosis of hepatocellular carcinoma, and is expected to become a potential biomarker of hepatocellular carcinoma. This article summarizes the function of CDT1 in the initiation of DNA replication and its role in tumorigenesis and development, with emphasis on the expression of CDT1 in hepatocellular carcinoma. In addition, the basic principle of Gd-EOB-DTPA-enhanced magnetic resonance imaging and its application in the diagnosis, differentiation and prognosis of hepatocellular carcinoma were summarized, and its non-invasive and quantitative methods were emphasized. Finally, we speculated the correlation between Gd-EOB-DTPA NMR and the expression of CDT1 in hepatocellular carcinoma: as a non-invasive method, Gd-EOB-DTPAMR has great application value in predicting the expression of CDT1 in hepatocellular carcinoma before operation.

Keywords:Hepatocellular Carcinoma, CDT1, Gd-EOB-DTPA, Magnetic Resonance Imaging, Correlation

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肝癌是世界上第六种常见的恶性肿瘤,全球肿瘤病死率居第四位,其中肝细胞癌(hepatocellular carcinoma, HCC)是最常见的类型,约占肝癌的75%~85% [1] ,每年有一半以上的新病例和死亡发生在中国 [2] 。因此,肝癌仍是严重威胁我国人民健康的重大疾病。随着肿瘤生物学研究的不断深入及进展,生物治疗有望为肝细胞癌的综合防治带来希望,寻求新靶标、并设计更有效安全的生物靶向诊疗方法,是目前肝细胞癌在内的大多数恶性肿瘤主要研究方向之一。

多项研究表明,CDT1作为参与DNA复制起始的许可因子,与肝癌的发生、发展及不良预后相关,有望成为潜在的肝癌相关生物标志物 [3] [4] [5] 。然而,目前评估其表达依赖于免疫组织化学检查。除了是侵入性的检查,还具有一定的局限性 [6] [7] ,而且这种检测方法的结果通常在手术后获得的。因此,使用一种无创性的方法在术前检测CDT1表达,可以为临床治疗方案的制订起到积极作用。

钆塞酸二钠(gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid, Gd-EOB-DTPA)作为一种无创、非电离辐射检测方法,已广泛应用于肝脏疾病的诊断 [8] 。本文概述了CDT1及Gd-EOB-DTPA MRI在肝细胞癌方面的研究进展,以期为探讨两者的相关性提供证据。

2. CDT1的研究进展

2.1. CDT1在DNA复制调控中发挥重要作用

DNA复制许可有严格的调控机制,从而确保整个基因组在每个细胞周期中精确复制 [9] [10] 。真核细胞周期中DNA起始调控需要多个蛋白质复合体之间的协调。起初,起始识别复合体(Origin recognition complex, ORC)直接与DNA复制位点结合形成ORC-DNA,然后招募CDT1和细胞分裂周期6 (CDC6)形成复制前复合体(PreRC),进一步将微小染色体维持蛋白(MCM)加载到染色质上 [11] 。ORC、CDC6、CDT1和MCM在复制开始时的协同作用确保了DNA复制的有序进行。而主要调控机制是复制许可蛋白CDT1在细胞周期中的活性或蛋白质水平 [12] 。CDT1的过度表达使基因在一个细胞周期内过度复制,DNA的含量增多,导致细胞肿胀变形,胞核扭曲,细胞周期明显异常;而CDT1失活的细胞会出现DNA复制缺陷 [13] ,导致胚胎死亡。

CDT1 (Cdc10 dependent transcript 1, Cdc10依赖性转录因子1)是一65 kDa蛋白质,包含有546个氨基酸,是细胞分裂、增殖的细胞周期的S期参与DNA复制起始许可因子之一 [14] 。研究表明 [15] :正常情况下,人类CDT1功能在细胞周期G1期活跃,而在S期开始后明显下降,在S或G2期的早期,细胞中几乎探测不到它。而CDT1在G2期的表达可引发DNA过度复制 [16] ,进而可能导致细胞发生恶性转化。

2.2. CDT1在肿瘤中的表达

严格的DNA复制调控对维持基因组的稳定性具有重要意义 [12] 。异常复制许可会对基因组稳定性构成主要威胁,促进肿瘤发生。CDT1的过度表达很可能通过导致基因组不稳定而导致肿瘤的发生。Michalis等 [17] 建立的可诱导hCdt1细胞系统表明:解除CDT1的调控,使其在癌前细胞中长时间过表达,会绕过衰老和凋亡的抗肿瘤屏障,导致其向更具侵袭性的方向发展。

另有研究表明,CDT1在许多癌细胞系中的表达均高于正常水平 [18] [19] ,如:前列腺细胞中CDT1的过表达增强了细胞迁移、侵袭、肿瘤转移的能力 [20] ;而在小鼠结肠中过表达CDT1,也导致其体内基因组和染色体不稳定性增加,利于癌症的发展 [21] 。然而,结合Cai等 [3] 的一项联合公共数据库数据及临床标本的全面分析:CDT1不仅在原发性肝癌(HCC)中异常高表达,而且其表达程度相对高于其他肿瘤细胞;另外,CDT1与患者的病理分级、分期、甲胎蛋白水平等临床特征显著相关,其高表达提示预后不良;最后,CDT1基因敲除会显著抑制LM3和Hep3B细胞的增殖、迁移和侵袭,而过表达则起促进作用。Yu等 [5] 采用加权相关网络分析和蛋白质–蛋白质相互作用分析检测AFP相关生物标志物,结果发现包含CDT1在内的五个潜在的生物标记物与AFP基因在肝细胞癌组织中共表达,使用这些生物标志物作为AFP的补充可能有助于更准确的肝细胞癌的早期诊断。以上这些结果表明,CDT1在促进HCC的发生发展中具有重要作用,为确定新的生物标志物和治疗靶点提供了新见解。

3. Gd-EOB-DTPA在肝癌方面的应用现状

3.1. Gd-EOB-DTPA的基本原理

钆塞酸二钠是在非特异性对比剂钆喷酸葡胺(Gd-DTPA)结构基础上添加脂溶性的EOB基团乙氧苯甲基(ethoxybenzyl, EOB)形成的衍生物 [22] 。与分布在血管内和间质间隙的细胞外造影剂不同,Gd-EOB-DTPA具有双重清除途径 [23] 。经静脉注射后,约有50%的剂量通过肝窦面的有机阴离子转运多肽1B1 (OATP1B1)和有机阴离子转运多肽1B3 (OATP1B3)被具有正常功能的肝细胞主动摄入,然后经由胆道面的小管膜多药耐药性蛋白2(MRP2)排泄到胆道系统。剩下50%则由肾脏排泄清除。当两条途径中任一种排泄受阻时可经另一途径进行代偿,故肝或肾功能有轻、中度损害的患者都可以安全使用。在注射对比剂后大约10~20 min后,正常肝细胞吸收并积聚对比剂达到峰值,肝实质在此过程中相对于血管增强,呈高信号。缺乏正常功能肝细胞的肿瘤病变部分相对于肝实质是无强化的,呈相对低信号。因此,Gd-EOB-DTPA增强MRI一方面具备普通钆剂的动态增强功能——评价血供信息;又能呈现肝胆系统特异期图像(Hepatobiliary phase images, HBP)——提供肝细胞功能信息 [24] [25] 。

3.2. HCC的早期诊断

肝细胞肝癌的发生经历了多步骤的癌变,在肝纤维化至肝硬化病理改变的前提下进展为非异型再生结节(regenerating nodule, RN)、低级别不典型增生结节(low grade displastic nodule, LGDN)、高级别不典型增生结节(high gradedisplastic nodule, HGDN)逐渐发展为早期的小肝癌(small HCC, sHCC),最终演变为HCC [26] 。高度发育不良结节或早期肝细胞肝癌属于乏血供型肝癌,而在典型的肝细胞性肝癌阶段,新生的小动脉明显增多,肿瘤形成富血供病灶。此时,具有典型征象的HCC在常规磁共振成像表现为动脉期明显强化,门静脉期或平衡期相较于背景肝实质强化程度逐步或明显下降。上述检查方法对诊断进展期HCC的特异度较高,但难以检出≤2 cm的小病灶 [27] 。Gd-EOB-DTPA增强磁共振成像不但可以提供动态增强期间肝脏血流动力学的影像特征,而且经静脉注射20 min后采集到的肝胆特异期图像,对诊断乏血供病变有极大的帮助,尤其适用于≤2 cm的肝脏病变 [28] 。多个研究证实,在小HCC检测中,Gd-EOB-DTPA增强MRI较MDCT、其他对比剂增强MRI显示出更高的灵敏度,能够发现更多更早期的病灶并提高诊断准确性 [29] [30] ,有利于临床进一步采取积极治疗。

3.3. Gd-EOB-DTPA评估HCC的分化程度

病理活检是评估HCC分化程度的金标准,但其作为一种有创侵入性检查,容易造成出血和肝癌细胞沿针道种植转移等风险,且对于直径 ≤ 2 cm的病灶假阴性率较高 [31] 。于是有学者对Gd-EOB-DTPA HBP信号强度和HCC分化程度之间相关性进行研究,以期用无创性的影像检查方法对HCC分化程度进行评估。

莫志英等 [32] 以竖脊肌信号作参照,测量肝胆期相对信号强度(RSI) = SI瘤灶/SI竖脊肌,对不同分化程度的HCC的EOB-MRI肝胆期信号特征进行了定量分析,结果发现HCC肝胆期RSI与病理分化程度有较好的相关性,肿瘤的分化程度越高,肝胆期对应信号强度越高,在高、中、低分化HCC各组间差异具有统计学意义(P < 0.01)。Yang等 [33] 基于两种EOB-MRI成像特征(显著的HBP低信号和LR-M分类)及血清AFP水平提出的术前HCC分化评分模型,预测分数在训练集和验证集上的AUC可达0.802和0.830,该模型能准确预测术前低分化型HCC,因此可能有助于指导个性化治疗决策。Peng等 [34] 测量44例不同分化程度HCC注射Gd-EOB-DTPA前后的T1绝对下降值(T1d)和下降率(T1d%),结果表明T1d%是最有助于评估肝细胞肝癌分级的因素,T1 mapping技术能够评估肝细胞肝癌分化程度。综上,Gd-EOB-DTPA肝胆期的信号强度及相关定量指标与HCC分化程度之间有一定的相关性。

3.4. Gd-EOB-DTPA评估HCC的预后相关因素

Choi等 [35] 报道称,在Gd-EOB-DTPA和弥散加权MR成像中,肿瘤边缘不规则、动脉期边缘增强、较低的肿瘤–肝脏ADC比率、较低的肝胆期成像肿瘤–肝脏SI比值等影像征象可能有助于预测CK19阳性HCC根治性切除术后的早期复发(<2年)。一些研究表明Gd-EOB-DTPA增强MRI对肝细胞癌MVI有一定的预测价值,肿瘤直径、肿瘤边缘不光整、肝胆期瘤周增强及瘤周低信号为MVI的独立危险因素 [36] [37] [38] 。Liu等 [39] 对148名接受术前Gd-EOB-DTPA增强MRI T1mappping技术检查并经手术确诊为HCC的患者进行了回顾性研究:Gd-EOB-DTPA增强MRI结合T1mappping列线图中的预测因子,如瘤周增强、瘤周低信号、T1rt-20 min和肿瘤边缘,可以有效预测HCC中Ki-67的高表达。而Yang等 [40] 的研究分析了258名HCC患者的数据,使用Gd-EOB-DTPA增强MRI放射组学特征开发了一个随机森林模型,用于预测孤立性HCC中的Ki-67表达。结果显示,血清AFP水平、肿瘤大小、生长类型和瘤周强化是预测Ki-67高表达HCC的独立因素。该模型在预测Ki-67表达方面表现良好,有助于为HCC患者制定个体化的治疗方案。将Gd-EOB-DTPA增强MR各期相图像特征与影像组学的结合应用正处于快速探索和发展阶段,必将进一步帮助临床提示HCC患者预后,以期在早期阶段对肿瘤实现干预,提高患者的生存率及生存质量。

4. 总结及展望

Gd-EOB-DTPA增强MRI不仅可以从宏观的形态学成像上对肿瘤进行诊断与定性,更进一步从微观病理角度为肿瘤术前及预后评估等方面提供多种可行的定量分析方法。可见,通过Gd-EOB-DTPA增强MRI来预测肝癌CDT1的表达,具有很大的可行性。但目前将宏观影像和分子机制联系起来研究的相关成果较少,缺乏系统的阐述,仍需更多的研究探讨。

文章引用

赵亚龙,温生宝. Gd-EOB-DTPA增强核磁与CDT1蛋白在肝细胞癌诊疗中的研究进展
Research Progress of Gd-EOB-DTPA-Enhanced Nuclear Magnetic Resonance and CDT1 Protein in the Diagnosis and Treatment of Hepatocellular Carcinoma[J]. 临床医学进展, 2023, 13(10): 16332-16338. https://doi.org/10.12677/ACM.2023.13102285

参考文献

  1. 1. 国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版) [J]. 临床肝胆病杂志, 2022, 38(2): 288-303.

  2. 2. Llovet, J.M., Kelley, R.K., Villanueva, A., et al. (2021) Hepatocellular Carcinoma. Nature Reviews Disease Primers, 7, Article No. 6. https://doi.org/10.1038/s41572-020-00240-3

  3. 3. Cai, C., Zhang, Y., Hu, X., et al. (2021) CDT1 Is a Novel Prognostic and Predictive Biomarkers for Hepatocellular Carcinoma. Frontiers in Oncology, 11, Article ID: 721644. https://doi.org/10.3389/fonc.2021.721644

  4. 4. Jiang, Z., Wei, Z., Chen, J., et al. (2022) BZW2, CDT1 and IVD Act as Biomarkers for Predicting Hepatocellular Carcinoma. Current Cancer Drug Targets.

  5. 5. Yu, Z., Wang, R., Chen, F., et al. (2018) Five Novel Oncogenic Signatures Could Be Utilized as AFP-Related Diagnostic Biomarkers for Hepatocellular Carcinoma Based on Next-Generation Sequencing. Digestive Diseases and Sciences, 63, 945-957. https://doi.org/10.1007/s10620-018-4961-3

  6. 6. Dube, J.P., Azzi, Z., Semionov, A., et al. (2019) Imaging of Post Transthoracic Needle Biopsy Complications. The Canadian Association of Radiologists Journal, 70, 156-163. https://doi.org/10.1016/j.carj.2018.08.006

  7. 7. Tian, G., Kong, D., Jiang, T., et al. (2020) Complications after Per-cutaneous Ultrasound-Guided Liver Biopsy: A Systematic Review and Meta-Analysis of a Population of More than 12,000 Patients from 51 Cohort Studies. Journal of Ultrasound in Medicine, 39, 1355-1365. https://doi.org/10.1002/jum.15229

  8. 8. Chen, Y., Qin, X., Long, L., et al. (2020) Diagnostic Value of Gd-EOB-DTPA-Enhanced MRI for the Expression of Ki67 and Microvascular Density in Hepatocellular Carcinoma. Journal of Magnetic Resonance Imaging, 51, 1755-1763. https://doi.org/10.1002/jmri.26974

  9. 9. Maslowska, K.H., Makiela-Dzbenska, K., Mo, J.Y., et al. (2018) High-Accuracy Lagging-Strand DNA Replication Mediated by DNA Polymerase Dissociation. Proceedings of the Na-tional Academy of Sciences of the United States of America, 115, 4212-4217. https://doi.org/10.1073/pnas.1720353115

  10. 10. Costa, A. and Diffley, J.F.X. (2022) The Initiation of Eukaryotic DNA Replication. Annual Review of Biochemistry, 91, 107-131. https://doi.org/10.1146/annurev-biochem-072321-110228

  11. 11. Guerrero-Puigdevall, M., Fernandez-Fuentes, N. and Frigola, J. (2021) Stabilisation of Half MCM Ring by Cdt1 during DNA Insertion. Nature Communications, 12, Ar-ticle No. 1746. https://doi.org/10.1038/s41467-021-21932-8

  12. 12. Zhang, H. (2021) Regulation of DNA Replication Licensing and Re-Replication by Cdt1. International Journal of Molecular Sciences, 22, Article No. 5195. https://doi.org/10.3390/ijms22105195

  13. 13. Karantzelis, N., Petropoulos, M., De Marco, V., et al. (2022) Small Molecule Inhibitor Targeting CDT1/Geminin Protein Complex Promotes DNA Damage and Cell Death in Cancer Cells. Frontiers in Pharmacology, 13, Article ID: 860682. https://doi.org/10.3389/fphar.2022.860682

  14. 14. Rona, G. and Pagano, M. (2023) CDT1, a Licensing Factor That Limits Rereplication. Molecular Cell, 83, 1-3. https://doi.org/10.1016/j.molcel.2022.11.019

  15. 15. Lin, Y.C. and Prasanth, S.G. (2021) Replication Initiation: Im-plications in Genome Integrity. DNA Repair, 103, Article ID: 103131. https://doi.org/10.1016/j.dnarep.2021.103131

  16. 16. Houben, R., Ebert, M., Hesbacher, S., et al. (2020) Merkel Cell Polyomavirus Large T Antigen Is Dispensable in G2 and M-Phase to Promote Proliferation of Merkel Cell Carcinoma Cells. Viruses, 12, Article No. 1162. https://doi.org/10.3390/v12101162

  17. 17. Liontos, M., Koutsami, M., Sideridou, M., et al. (2007) Deregulated Overexpression of hCdt1 and hCdc6 Promotes Malignant Behavior. Cancer Research, 67, 10899-10909. https://doi.org/10.1158/0008-5472.CAN-07-2837

  18. 18. Siril, Y.J., Kouketsu, A., Oikawa, M., et al. (2019) Im-munohistochemical Assessment of Chromatin Licensing and DNA Replication Factor 1, Geminin, and Gamma-H2A.X in Oral Epithelial Precursor Lesions and Squamous Cell Carcinoma. Journal of Oral Pathology & Medicine, 48, 888-896. https://doi.org/10.1111/jop.12925

  19. 19. Mahadevappa, R., Neves, H., Yuen, S.M., et al. (2017) The Prognostic Significance of Cdc6 and Cdt1 in Breast Cancer. Scientific Reports, 7, Article No. 985. https://doi.org/10.1038/s41598-017-00998-9

  20. 20. Wang, C., Che, J., Jiang, Y., et al. (2022) CDT1 Facilitates Me-tastasis in Prostate Cancer and Correlates with Cell Cycle Regulation. Cancer Biomarkers, 34, 459-469. https://doi.org/10.3233/CBM-210389

  21. 21. Petropoulos, M., Champeris, T.S., Nikou, S., et al. (2022) Cdt1 Over-expression Drives Colorectal Carcinogenesis through Origin Overlicensing and DNA Damage. The Journal of Pathology, 259, 10-20. https://doi.org/10.1002/path.6017

  22. 22. 饶圣祥, 胡道予, 宦怡, 等. 肝胆特异性MRI对比剂钆塞酸二钠临床应用专家共识[J]. 临床肝胆病杂志, 2016, 32(12): 2236-2241.

  23. 23. Inchingolo, R., Faletti, R., Grazioli, L., et al. (2018) MR with Gd-EOB-DTPA in Assessment of Liver Nodules in Cirrhotic Patients. World Journal of Hepa-tology, 10, 462-473. https://doi.org/10.4254/wjh.v10.i7.462

  24. 24. Li, J., Wang, J., Lei, L., et al. (2019) The Diag-nostic Performance of Gadoxetic Acid Disodium-Enhanced Magnetic Resonance Imaging and Contrast-Enhanced Mul-ti-Detector Computed Tomography in Detecting Hepatocellular Carcinoma: A Meta-Analysis of Eight Prospective Stud-ies. European Radiology, 29, 6519-6528. https://doi.org/10.1007/s00330-019-06294-6

  25. 25. Murakami, T., Sofue, K. and Hori, M. (2022) Diagnosis of Hepatocellular Carcinoma Using Gd-EOB-DTPA MR Imaging. Magnetic Resonance in Medical Sciences, 21, 168-181. https://doi.org/10.2463/mrms.rev.2021-0031

  26. 26. Motosugi, U., Bannas, P., Sano, K., et al. (2015) Hepatobiliary MR Contrast Agents in Hypovascular Hepatocellular Carcinoma. Journal of Magnetic Resonance Imaging, 41, 251-265. https://doi.org/10.1002/jmri.24712

  27. 27. Choi, J.Y., Lee, J.M. and Sirlin, C.B. (2014) CT and MR Imaging Diagno-sis and Staging of Hepatocellular Carcinoma: Part II. Extracellular Agents, Hepatobiliary Agents, and Ancillary Imaging Features. Radiology, 273, 30-50. https://doi.org/10.1148/radiol.14132362

  28. 28. Ding, F., Huang, M., Ren, P., et al. (2023) Quantitative Information from Gadobenate Dimeglumine-Enhanced MRI Can Predict Proliferative Subtype of Solitary Hepatocellular Carcinoma: A Multicenter Retrospective Study. European Radiology. https://doi.org/10.1007/s00330-023-10227-9

  29. 29. Ichikawa, S., Morisaka, H., Omiya, Y., et al. (2022) Distinction between Hepatocellular Carcinoma and Hypervascular Liver Metastases in Non-Cirrhotic Patients Using Gadoxetate Disodium-Enhanced Magnetic Resonance Imaging. The Canadian Association of Radiologists Journal, 73, 639-646. https://doi.org/10.1177/08465371221085516

  30. 30. Semaan, S., Vietti Violi, N., Lewis, S., et al. (2020) Hepatocel-lular Carcinoma Detection in Liver Cirrhosis: Diagnostic Performance of Contrast-Enhanced CT vs. MRI with Extracel-lular Contrast vs. Gadoxetic Acid. European Radiology, 30, 1020-1030. https://doi.org/10.1007/s00330-019-06458-4

  31. 31. Haimerl, M., Utpatel, K., Gotz, A., et al. (2021) Quantification of Contrast Agent Uptake in the Hepatobiliary Phase Helps to Differentiate Hepatocellular Carcinoma Grade. Scientific Re-ports, 11, Article No. 22991. https://doi.org/10.1038/s41598-021-02499-2

  32. 32. 莫志英, 廖锦元. 钆塞酸二钠增强MRI肝胆期评估肝细胞癌分化程度的价值[J]. 医学影像学杂志, 2022, 32(8): 1301-1305.

  33. 33. Yang, T., Wei, H., Wu, Y., et al. (2023) Pre-dicting Histologic Differentiation of Solitary Hepatocellular Carcinoma Up to 5 cm on Gadoxetate Disodium-Enhanced MRI. Insights Imaging, 14, Article No. 3. https://doi.org/10.1186/s13244-022-01354-w

  34. 34. Peng, Z., Jiang, M., Cai, H., et al. (2016) Gd-EOB-DTPA-Enhanced Magnetic Resonance Imaging Combined with T1 Mapping Predicts the Degree of Differenti-ation in Hepatocellular Carcinoma. BMC Cancer, 16, Article No. 625. https://doi.org/10.1186/s12885-016-2607-4

  35. 35. Choi, S.Y., Kim, S.H., Park, C.K., et al. (2018) Imaging Features of Gadoxetic Acid-Enhanced and Diffusion-Weighted MR Imaging for Identifying Cytokeratin 19-Positive Hepatocellu-lar Carcinoma: A Retrospective Observational Study. Radiology, 286, 897-908. https://doi.org/10.1148/radiol.2017162846

  36. 36. 陈闯, 何健, 伏旭, 等. 术前普美显增强核磁共振成像对肝细胞癌微血管侵犯的预测价值[J]. 中国普通外科杂志, 2022, 31(7): 896-904.

  37. 37. Min, J.H., Lee, M.W., Park, H.S., et al. (2020) Interobserver Variability and Diagnostic Performance of Gadoxetic Acid-Enhanced MRI for Predicting Mi-crovascular Invasion in Hepatocellular Carcinoma. Radiology, 297, 573-581. https://doi.org/10.1148/radiol.2020201940

  38. 38. Yang, Y., Fan, W., Gu, T., et al. (2021) Radiomic Features of Multi-ROI and Multi-Phase MRI for the Prediction of Microvascular Invasion in Solitary Hepatocellular Carcinoma. Frontiers in Oncology, 11, Article ID: 756216. https://doi.org/10.3389/fonc.2021.756216

  39. 39. Liu, Z., Yang, S., Chen, X., et al. (2022) Nomogram Development and Validation to Predict Ki-67 Expression of Hepatocellular Carcinoma Derived from Gd-EOB-DTPA-Enhanced MRI Combined with T1 Mapping. Frontiers in Oncology, 12, Article ID: 954445. https://doi.org/10.3389/fonc.2022.954445

  40. 40. Yan, Y., Lin, X.S., Ming, W.Z., et al. (2023) Radiomic Analysis Based on Gd-EOB-DTPA Enhanced MRI for the Preoperative Prediction of Ki-67 Expression in Hepatocellular Carci-noma. Academic Radiology. https://doi.org/10.1016/j.acra.2023.07.019

  41. NOTES

    *通讯作者。

期刊菜单