Advances in Psychology
Vol. 09  No. 02 ( 2019 ), Article ID: 28888 , 8 pages
10.12677/AP.2019.92038

Advances in the Application of Non-Invasive Brain Stimulation in the Treatment of Depression

Xiaowan Wang1,2

1Faculty of Psychology, Southwest University, Chongqing

2Key Laboratory of Cognition and Personality, Southwest University, Chongqing

Received: Jan. 29th, 2019; accepted: Feb. 11th, 2019; published: Feb. 18th, 2019

ABSTRACT

Depression is one of the most common mental health problems, and is a major contributor to the overall global burden of disease. The etiology of depression is not completely understood and there are different types of depressive disorders, which brings many difficulties to treatment. The non-invasive brain stimulation (NiBS) techniques, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), have shown great potential in the treatment of depression. In this paper, the basic principles of the two techniques and their clinical application in the treatment of depression are summarized. Overall, rTMS and tDCS can significantly alleviate depressive symptoms and improve structural and functional abnormalities in the brain. In order to provide more accurate and effective therapies for depression, future studies can focus on three aspects: experimental design, target selection and individualized treatment.

Keywords:NiBS, rTMS, tDCS, Depression

无创脑刺激技术在抑郁症治疗中的应用进展

王晓婉1,2

1西南大学心理学部,重庆

2西南大学人格与认知教育部重点实验室,重庆

收稿日期:2019年1月29日;录用日期:2019年2月11日;发布日期:2019年2月18日

摘 要

抑郁症是一种常见的精神障碍,也是在全球范围内造成人类疾病负担的主要原因之一。抑郁症病因复杂不明确,临床表现形式繁多,给治疗带来了很多困难。近些年发展起来的无创脑刺激技术(Non-invasive Brain Stimulation, NiBS)在抑郁症的治疗中显示出了巨大的潜力。重复经颅磁刺激(repetitive Transcranial Magnetic Stimulation, rTMS)和经颅直流电刺激(transcranial Direct Current Stimulation, tDCS)是最常用的两种NiBS技术。本文对rTMS和tDCS的基本原理、临床应用及其治疗抑郁的脑机制研究进展进行了总结和归纳。总的来说,rTMS和tDCS能在不同程度上缓解抑郁症状并改善抑郁患者大脑结构和功能上的异常。针对NiBS在抑郁治疗中存在的问题,未来可从实验设计、靶点选择和个体化治疗三个方面作进一步研究,以期为抑郁症提供更为精准有效的治疗方案。

关键词 :无创脑刺激,重复经颅磁刺激,经颅直流电刺激,抑郁症

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

抑郁症是一种常见的精神疾病,影响着全球超过3亿的人口,是造成全球范围内人类疾病负担的主要原因之一(Kessler & Bromet, 2013; Vos et al., 2017)。其中,中国的抑郁症患病率高达6.14% (Phillips et al., 2009)。抑郁症的典型症状包括:情绪低落,对以往喜爱的活动丧失兴趣,自尊心不足,注意力涣散,思维迟缓,记忆力减退,并伴有失眠和食欲紊乱等症状(Association, 2013)。这些症状严重影响了抑郁患者的身心健康,甚至会使患者产生自杀行为(Cassano & Fava, 2002; Chesney, Goodwin, & Fazel, 2014)。

抑郁症的临床表现形式复杂多样,仅目前可以确认的亚型就有五种:忧郁型抑郁症、非典型抑郁症、紧张性抑郁症、产后抑郁症和季节性情绪失调(Association, 2013)。而且抑郁症常常并发焦虑等精神障碍,给治疗带来了很大困难(Whooley & Wong, 2013)。近些年来,无创脑刺激(Non-invasive Brain Stimulation, NiBS)技术在抑郁症的实验性和应用性治疗研究中表现出了巨大价值。NiBS通过非侵入技术对头皮施加刺激,不损伤大脑结构,具有无痛、无创、操作简便、安全可靠等优点(Dayan, Censor, Buch, Sandrini, & Cohen, 2013; Rossini et al., 2015)。重复经颅磁刺激(repetitive Transcranial Magnetic Stimulation, rTMS)和经颅直流电刺激(transcranial Direct Current Stimulation, tDCS)是在抑郁症的治疗中最常用的两种NiBS技术 (Wagner, Valero-Cabre, & Pascual-Leone, 2007)。鉴于NiBS技术在抗抑郁治疗中的重要作用,本文先总结了rTMS和tDCS的基本原理,然后讨论了这两种脑刺激技术治疗抑郁的有效性和神经机制,最后对NiBS研究所面临的问题进行阐释,并提出了可能的解决方案。

2. 重复经颅磁刺激

2.1. 基本原理

经颅磁刺激TMS是一种基于电磁感应的无创脑刺激技术(Barker, Jalinous, & Freeston, 1985)。TMS装置中的刺激线圈可以在极短的时间内释放大量电荷以产生一个正交于线圈的磁场,磁信号穿过颅骨在大脑皮层内部产生能够影响脑内代谢和神经活动的感应电流,从而引起相应的外显行为(Rossini et al., 2015)。TMS的刺激线圈有很多种(Deng, Lisanby, & Peterchev, 2014)。早期用的是大的圆形线圈,其边缘部分能够产生很强的刺激,因此作用面积较大,但中心部分效应很弱;而后来发明的小型8字线圈能够在两个圆圈的连接处产生最强的刺激,所以空间局限性较好,但穿透性不如圆形线圈。此外,还有H型线圈、核心-C线圈以及圆形冠状线圈可供选择。目前,TMS有三种主要刺激模式:单脉冲TMS、双脉冲TMS和重复性TMS (repetitive TMS, rTMS)。其中在临床精神病领域应用最多的是rTMS,它可以在一段时间内以一定的频率连续重复地向刺激靶点发出一连串的TMS脉冲,通过电磁感应刺激脑部神经细胞,调节病变脑区的皮质兴奋性(Hallett, 2000; Kobayashi & Pascual-Leone, 2003; Rossini et al., 2015)。rTMS的刺激模式主要包括高频刺激(HF-rTMS, 5~20 Hz)、低频刺激(LF-rTMS, ≤1 Hz)、间歇性θ爆发刺激(intermittent theta burst stimulation, iTBS)以及连续性θ爆发刺激(Continuous theta burst stimulation, cTBS) (Lefaucheur et al., 2014)。每种刺激模式都会产生相应的神经电生理效应:LF-rTMS和cTBS模式能够引起大脑皮层抑制,HF-rTMS和iTBS模式则会引起大脑皮层兴奋。

2.2. 重复经颅磁刺激在抗抑郁治疗中的应用

迄今为止,已经有多项元分析研究对rTMS的抗抑郁疗效进行了评估(Berlim, Van den Eynde, Tovar-Perdomo, & Daskalakis, 2014; Ellis, 2010; Hovington, McGirr, Lepage, & Berlim, 2013)。这些研究结果证实,不同形式的rTMS对抑郁症状存在着轻度到中度的改善效果。其中,HF-rTMS应用最为广泛,被评定为是一种绝对有效(level-A)的抗抑郁方式(Lefaucheur et al., 2014)。尤其值得注意的是,一些对药物治疗和心理治疗无反应的难治性抑郁患者在经过rTMS治疗后抑郁症状得到了显著改善。美国食品药品监督管理局FDA于2008年正式批准将rTMS应用于难治性抑郁患者的治疗。rTMS的抗抑郁疗效受到其治疗参数的影响,比如刺激部位、刺激频率、刺激强度以及刺激时长等(Lefaucheur et al., 2014)。背外侧前额叶(dorsolateral prefrontal cortex, DLPFC)与情绪调节活动密切相关,是rTMS治疗抑郁症的主要靶点 (Downar & Daskalakis, 2013)。目前公认的治疗模式是使用兴奋性rTMS (HF-rTMS或iTBS)刺激抑郁个体的左侧DLPFC,或者使用抑制性rTMS (LF-rTMS或cTBS)刺激右侧DLPFC。此外,rTMS的治疗周期通常为4~5周,而强化型的治疗方案可以将该周期缩短至一周之内,大大提高了其治疗效率(Hadley et al., 2011; Holtzheimer III et al., 2010)。

rTMS也有一些缺点(Duecker & Sack, 2015)。第一,刺激线圈尺寸较大会阻碍大脑区域间交互作用的研究;第二,这种非侵入式的刺激技术无法刺激比较深的脑组织;第三,虽然其危险性很低,但仍然伴有一些心理上和感觉上的副作用。比如,刺激线圈中的电流会产生很明显的咔嗒声,即使佩戴带有被动消噪装置的听力保护器也很难完全消除。此外,刺激线圈产生的磁场刺激头皮会引发躯体感觉效应,而外周神经受到刺激会进一步导致面部肌肉的强烈抽搐。

2.3. 重复经颅磁刺激治疗抑郁症的脑机制

现有研究主要使用结构和功能脑成像技术对rTMS治疗抑郁症的脑机制进行探讨。基于结构磁共振成像技术(Structural Magnetic Resonance Imaging, sMRI)的研究表明,抑郁患者脑结构的病变主要包括前额叶(包括DLPFC)、眶额叶(orbitofrontal cortex, OFC)、吻侧前扣带回(rostral anterior cingulate, rACC)、膝下前扣带回(subgenual anterior cingulate, sgACC)、背侧前扣带回(dorsal anterior cingulate, dACC)、纹状体、脑岛、丘脑、杏仁核和海马体等(Otte et al., 2016)。相比于健康人,抑郁患者在这些脑区的皮层厚度可能会变薄,灰质体积也会产生一定程度的萎缩。虽然rTMS的刺激靶点只涉及DLPFC,但研究表明它不仅可以改善DLPFC的结构异常,还可以进一步调节更深层脑区结构的可塑性,比如rACC、dACC、内侧前额叶皮层以及海马体等(Hayasaka et al., 2017; Lan, Chhetry, Liston, Mann, & Dubin, 2016; May et al., 2006)。这可能意味着,rTMS并不只是影响着单个脑区,而是通过影响不同脑区之间的协变来达到改善抑郁的目的。这一推测在功能模态的研究上得到了印证。基于功能磁共振成象技术(functional Magnetic Resonance Imaging, fMRI)的研究表明,经rTMS治疗后,抑郁患者默认网络(default mode network, DMN)、额顶控制网络(frontoparietal network, FPN)和突显网络(salience network, SN)内部及网络间的异常功能连接趋于正常化(Anderson, Hoy, Daskalakis, & Fitzgerald, 2016)。在这三大脑网络中,DMN的关键脑区是rACC和后扣带回,负责情绪加工和自我信息加工(Raichle, 2015);FPN的关键脑区是DLPFC和顶下小叶,负责多种高级认知控制活动(Fox et al., 2005);SN的关键脑区是dACC和脑岛,负责注意力和情感加工 (Menon, 2015)。它们的异常功能连接被认为与抑郁患者的认知功能缺陷和情感障碍密切相关(Williams, 2016)。总的来说,rTMS可能是通过改善这些脑网络的功能异常以及这些脑网络关键脑区的结构异常来达到改善抑郁情绪的效果。

3. 经颅直流电刺激

3.1. 基本原理

经颅直流电刺激tDCS是一种利用微弱电流(1~2 mA)调节大脑皮质神经细胞活动的非侵入式脑刺激技术(Gandiga, Hummel, & Cohen, 2006)。在使用tDCS设备时,通常需将它的两个凝胶/海绵电极(阴极cathodal electrode和阳极anodal electrode)置于头皮上。如果使用的是浸泡过盐水的海绵电极,其面积通常在25~35 cm2之间。相应地,tDCS设备会输出阳极刺激和阴极刺激。通常来说,阳极刺激能够去极化并使皮质兴奋性增高,而阴极刺激则有助于超极化和降低皮质兴奋性(Nitsche et al., 2003; Nitsche & Paulus, 2000)。一般认为,tDCS的调节作用与电流的强度、持续时间和方向有关(Nitsche & Paulus, 2000)。相比于rTMS,tDCS成本更低、便携性高且易于操作,因此在实际的临床治疗中应用范围更广(Priori, Hallett, & Rothwell, 2009)。不过tDCS也有一些副作用,比如轻微的恶心、痒感、疲劳和刺痛等(Brunoni et al., 2011)。

3.2. 经颅直流电刺激在抑郁症治疗中的应用

早期使用tDCS治疗抑郁症时,研究者一般会选择1 mA的强度,并将阳极置于左侧DLPFC,将阴极置于右侧眶额皮层(Fregni, Boggio, Nitsche, Rigonatti, & Pascual-Leone, 2006)。近年来的研究则倾向于使用更高强度(2 mA)的tDCS,并且将阴极改置于右侧DLPFC (Brunoni et al., 2013; Valiengo et al., 2013)。无论是哪种刺激方式,tDCS的治疗周期通常为5~15天。到目前为止,大量研究已经对tDCS治疗抑郁的疗效进行了评估,并多以汉密尔顿量表得分下降50%为有效标准(Berlim, Van den Eynde, & Daskalakis, 2013; Meron, Hedger, Garner, & Baldwin, 2015)。最近有研究者将这些分析结果整合后进行了二次评估,结果表明:使用tDCS阴极刺激右侧眶额皮层的治疗模式被评定为可能有效(level-B)的抗抑郁方式(Lefaucheur et al., 2017);而目前尚无足够的证据证明用tDCS阴极刺激右侧DLPFC的模式是否是一种有效的抗抑郁方式。值得注意的是,虽然已有证据表明tDCS可以提升健康人的认知功能,比如工作记忆、长时记忆和学习能力等(Kuo & Nitsche, 2012);但很少有研究发现tDCS对抑郁患者存在认知层面的影响(Lefaucheur et al., 2017)。此外,和rTMS类似,tDCS是一种有效的辅助治疗手段,能够显著促进抗抑郁药物舍曲林的治疗效果(Brunoni et al., 2013)。

3.3. 经颅直流电刺激治疗抑郁症的脑机制

鉴于tDCS的作用原理,它对大脑最直观的改善就是可以增强左侧DLPFC的神经活动以及减弱右侧DLPFC的神经活动(Brunoni, Ferrucci, Fregni, Boggio, & Priori, 2012)。如上所述,DLPFC在执行控制和注意力加工活动中起着重要作用。tDCS可能是通过调节DLPFC的神经活动来消除患者的消极认知偏差和注意力涣散等症状。有研究者指出,tDCS对DLPFC的刺激还能够增强抑郁患者对情绪调节的认知控制,改善情绪刺激的加工过程(Feeser, Prehn, Kazzer, Mungee, & Bajbouj, 2014)。除了DLPFC,神经影像学的研究还表明,tDCS和rTMS类似,都可以进一步影响深层脑结构,比如边缘系统中的杏仁核和海马体等(Bikson, Rahman, & Datta, 2012; Keeser et al., 2011; Peña-Gómez et al., 2012)。其中,杏仁核与负性情绪有关,海马与记忆和情感控制有关;杏仁核的过度活跃和海马体的萎缩是抑郁症的典型表现(Williams, 2016)。特别值得注意的是,前额叶-边缘系统被认为是情绪和认知加工中心(Banks, Eddy, Angstadt, Nathan, & Phan, 2007)。也就是说,tDCS可以通过刺激DLPFC间接影响边缘系统的活动,以此实现改善抑郁情绪的目的。在脑网络方面,tDCS对抑郁相关脑网络的异常功能连接有一定的改善作用(Keeser et al., 2011)。但这方面的研究不多,证据并不充分;未来的研究应该在这方面的工作上作进一步推动。

4. rTMS和tDCS治疗抑郁症的异同比较

rTMS和tDCS是抑郁症治疗中最为常用的两种NiBS技术,并且二者之间存在相似之处。其一,二者的主要刺激靶点都位于DLPFC。不过值得注意的是,rTMS对刺激靶点的准确性要求更高,通常需要专门的神经导航系统进行定位。而tDCS的电极面积较大,只需要粗略定位即可。其二,就目前的研究结果来看,二者对大脑活动的调节都不仅仅局限于刺激靶点,而是可以进一步间接影响更为深层的脑结构,尤其是那些负责情绪加工的脑区(比如边缘系统)。这为揭示抑郁的病理机制提供了有力证据。其三,二者的抗抑郁疗效都存在很大的个体差异。相对地,rTMS和tDCS之间也有一些差异。首先,二者的作用原理不同。rTMS是通过电磁感应间接调节大脑皮层内部活动,而tDCS则是直接对头皮进行电刺激。其次,二者的副作用不同。tDCS的副作用很轻微,几乎可以忽略不计;而rTMS的副作用则更为强烈,甚至有可能会导致癫痫。最后,二者临床应用的范围不同。rTMS在美国已经被FDA批准可以用于抑郁症的治疗;而tDCS只在欧洲获批用于抑郁症和疼痛的治疗。就目前而言,tDCS的抗抑郁效果在整体上略低于rTMS。但这也和tDCS相关研究较少有关,未来仍需继续探讨tDCS是否还有更为有效的治疗模式。

5. 结论和展望

综上所述,rTMS和tDCS作为最常用的两种NiBS技术,在治疗抑郁方面应用前景广泛;但二者基本原理不尽相同,各有所长。tDCS最大的优点是便携、成本低和易操作;而rTMS比tDCS刺激更深,疗效更好。与此同时,二者作为辅助治疗手段,可以有效促进抗抑郁药物的治疗效果。神经影像学的研究则发现,rTMS和tDCS不仅可以影响刺激靶点的神经活动,还可以改善深层脑区以及大尺度功能脑网络的异常,以实现治疗抑郁的目的。不过目前关于NiBS治疗抑郁的研究仍然存在一些不足,这些不足影响着我们对其作用机制的认识。

为了更好地发挥NiBS技术临床应用价值,未来的研究可以从如下三个方面着手:第一,使用伪刺激对照实验设计。虽然大部分关于NiBS的行为研究都使用了伪刺激技术进行对比,但关于NiBS治疗抑郁的脑机制研究大多都缺乏伪刺激的对照试验。因此,增加伪刺激对照组有助于明确NiBS技术的真实作用机制。更为有趣的是,目前关于rTMS和tDCS的研究都发现其临床疗效是由特异性的神经电生理效应和非特异性的安慰剂效应共同组成的。基于此,如果能够在伪刺激对照的基础上再加入健康被试对照组,就可以进一步排除无关因素的干扰,从而优化治疗方案的设计。第二,寻找新的刺激靶点。如上所述,虽然rTMS和tDCS最常用的刺激靶点都是DLPFC,但相关研究发现这两种刺激技术所改善的脑区都不局限于该区域。如果将那些也受到影响的脑区作为候选刺激靶点,并针对不同个体对靶点进行选择,有助于将这些脑刺激技术的疗效发挥到最大。第三,无论是rTMS还是tDCS,其抗抑郁疗效都存在着很大的个体差异。如果能为它们的临床疗效提供客观可靠的预测性生物标志物,将有助于改善临床试验设计,为患者提供更具针对性的治疗措施,对实现抑郁的精准医疗意义重大。

文章引用

王晓婉. 无创脑刺激技术在抑郁症治疗中的应用进展
Advances in the Application of Non-Invasive Brain Stimulation in the Treatment of Depression[J]. 心理学进展, 2019, 09(02): 293-300. https://doi.org/10.12677/AP.2019.92038

参考文献

  1. 1. Anderson, R. J., Hoy, K. E., Daskalakis, Z. J., & Fitzgerald, P. B. (2016). Repetitive Transcranial Magnetic Stimulation for Treatment Resistant Depression: Re-Establishing Connections. Clinical Neurophysiology, 127, 3394-3405. https://doi.org/10.1016/j.clinph.2016.08.015

  2. 2. Association, A. P. (2013). Diagnostic and Statistical Manual of Mental Disorders (DSM-5?). Arlington, VA: American Psychiatric Pub. https://doi.org/10.1176/appi.books.9780890425596

  3. 3. Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala-Frontal Connectivity during Emotion Regulation. Social Cognitive and Affective Neuroscience, 2, 303-312. https://doi.org/10.1093/scan/nsm029

  4. 4. Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-Invasive Magnetic Stimulation of Human Motor Cortex. The Lancet, 325, 1106-1107. https://doi.org/10.1016/S0140-6736(85)92413-4

  5. 5. Berlim, M. T., Van den Eynde, F., & Daskalakis, Z. J. (2013). Clinical Utility of Transcranial Direct Current Stimulation (tDCS) for Treating Major Depression: A Systematic Review and Meta-Analysis of Randomized, Double-Blind and Sham-Controlled Trials. Journal of Psychiatric Research, 47, 1-7. https://doi.org/10.1016/j.jpsychires.2012.09.025

  6. 6. Berlim, M., Van den Eynde, F., Tovar-Perdomo, S., & Daskalakis, Z. (2014). Response, Remission and Drop-Out Rates Following High-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) for Treating Major Depression: A Systematic Review and Meta-Analysis of Randomized, Double-Blind and Sham-Controlled Trials. Psychological Medicine, 44, 225-239. https://doi.org/10.1017/S0033291713000512

  7. 7. Bikson, M., Rahman, A., & Datta, A. (2012). Computational Models of Transcranial Direct Current Stimulation. Clinical EEG and Neuroscience, 43, 176-183. https://doi.org/10.1177/1550059412445138

  8. 8. Brunoni, A. R., Ferrucci, R., Fregni, F., Boggio, P. S., & Priori, A. (2012). Transcranial Direct Current Stimulation for the Treatment of Major Depressive Disorder: A Summary of Preclinical, Clinical and Translational Findings. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 39, 9-16. https://doi.org/10.1177/1550059412445138

  9. 9. Brunoni, A. R., Valiengo, L., Baccaro, A., Zanao, T. A., de Oliveira, J. F., Goulart, A., Boggio, P. S., Lotufo, P. A., Bensenor, I. M., & Fregni, F. (2013). The Sertraline vs Electrical Current Therapy for Treating Depression Clinical Study: Results from a Factorial, Randomized, Controlled Trial. JAMA Psychiatry, 70, 383-391. https://doi.org/10.1001/2013.jamapsychiatry.32

  10. 10. Brunoni, A. R., Valiengo, L., Baccaro, A., Zanao, T. A., de Oliveira, J. F., Vieira, G. P., Bueno, V. F., Goulart, A. C., Boggio, P. S., & Lotufo, P. A. (2011). Sertraline vs. Electrical Current Therapy for Treating Depression Clinical Trial-SELECT TDCS: Design, Rationale and Objectives. Contemporary Clinical Trials, 32, 90-98. https://doi.org/10.1016/j.cct.2010.09.007

  11. 11. Cassano, P., & Fava, M. (2002). Depression and Public Health: An Overview. Journal of Psychosomatic Research, 53, 849-857. https://doi.org/10.1016/S0022-3999(02)00304-5

  12. 12. Chesney, E., Goodwin, G. M., & Fazel, S. (2014). Risks of All-Cause and Suicide Mortality in Mental Disorders: A Meta-Review. World Psychiatry, 13, 153-160. https://doi.org/10.1002/wps.20128

  13. 13. Dayan, E., Censor, N., Buch, E. R., Sandrini, M., & Cohen, L. G. (2013). Noninvasive Brain Stimulation: From Physiology to Network Dynamics and Back. Nature Neuroscience, 16, 838. https://doi.org/10.1038/nn.3422

  14. 14. Deng, Z.-D., Lisanby, S. H., & Peterchev, A. V. (2014). Coil Design Considerations for Deep Transcranial Magnetic Stimulation. Clinical Neurophysiology, 125, 1202-1212. https://doi.org/10.1016/j.clinph.2013.11.038

  15. 15. Downar, J., & Daskalakis, Z. J. (2013). New TARGETS for rTMS in Depression: A Review of Convergent Evidence. Brain Stimulation, 6, 231-240. https://doi.org/10.1016/j.clinph.2013.11.038

  16. 16. Duecker, F., & Sack, A. T. (2015). Rethinking the Role of Sham TMS. Frontiers in Psychology, 6, 210. https://doi.org/10.3389/fpsyg.2015.00210

  17. 17. Ellis, P. D. (2010). The Essential Guide to Effect Sizes: An Introduction to Statistical Power. Meta-Analysis and the Interpretation of Research Results. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511761676

  18. 18. Feeser, M., Prehn, K., Kazzer, P., Mungee, A., & Bajbouj, M. (2014). Transcranial Direct Current Stimulation Enhances Cognitive Control during Emotion Regulation. Brain Stimulation, 7, 105-112. https://doi.org/10.1016/j.brs.2013.08.006

  19. 19. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The Human Brain Is Intrinsically Organized into Dynamic, Anticorrelated Functional Networks. Proceedings of the National Academy of Sciences, 102, 9673-9678. https://doi.org/10.1073/pnas.0504136102

  20. 20. Fregni, F., Boggio, P. S., Nitsche, M. A., Rigonatti, S. P., & Pas-cual-Leone, A. (2006). Cognitive Effects of Repeated Sessions of Transcranial Direct Current Stimulation in Patients with Depression. Depression and Anxiety, 23, 482-484. https://doi.org/10.1002/da.20201

  21. 21. Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC Stimulation (tDCS): A Tool for Double-Blind Sham-Controlled Clinical Studies in Brain Stimulation. Clinical Neurophysiology, 117, 845-850. https://doi.org/10.1016/j.clinph.2005.12.003

  22. 22. Hadley, D., Anderson, B. S., Borckardt, J. J., Arana, A., Li, X., Nahas, Z., & George, M. S. (2011). Safety, Tolerability, and Effectiveness of High Doses of Adjunctive Daily Left Prefrontal Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression in a Clinical Setting. The Journal of ECT, 27, 18-25. https://doi.org/10.1097/YCT.0b013e3181ce1a8c

  23. 23. Hallett, M. (2000). Transcranial Magnetic Stimulation and the Human Brain. Nature, 406, 147. https://doi.org/10.1038/35018000

  24. 24. Hayasaka, S., Nakamura, M., Noda, Y., Izuno, T., Saeki, T., Iwanari, H., & Hirayasu, Y. (2017). Lateralized Hippocampal Volume Increase Following High-Frequency Left Prefrontal Repetitive Transcranial Magnetic Stimulation in Patients with Major Depression. Psychiatry and Clinical Neurosciences, 71, 747-758. https://doi.org/10.1111/pcn.12547

  25. 25. Holtzheimer III, P. E., McDonald, W. M., Mufti, M., Kelley, M. E., Quinn, S., Corso, G., & Epstein, C. M. (2010). Accelerated Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression. Depression and Anxiety, 27, 960-963. https://doi.org/10.1002/da.20731

  26. 26. Hovington, C. L., McGirr, A., Lepage, M., & Berlim, M. T. (2013). Repetitive Transcranial Magnetic Stimulation (rTMS) for Treating Major Depression and Schizophrenia: A Systematic Review of Recent Meta-Analyses. Annals of Medicine, 45, 308-321. https://doi.org/10.3109/07853890.2013.783993

  27. 27. Keeser, D., Meindl, T., Bor, J., Palm, U., Pogarell, O., Mulert, C., Brunelin, J., M?ller, H.-J., Reiser, M., & Padberg, F. (2011). Prefrontal Transcranial Direct Current Stimulation Changes Connectivity of Resting-State Networks during fMRI. Journal of Neuroscience, 31, 15284-15293. https://doi.org/10.1523/JNEUROSCI.0542-11.2011

  28. 28. Kessler, R. C., & Bromet, E. J. (2013). The Epidemiology of Depression across Cultures. Annual Review of Public Health, 34, 119-138. https://doi.org/10.1146/annurev-publhealth-031912-114409

  29. 29. Kobayashi, M., & Pascual-Leone, A. (2003). Transcranial Magnetic Stimulation in Neurology. The Lancet Neurology, 2, 145-156. https://doi.org/10.1016/S1474-4422(03)00321-1

  30. 30. Kuo, M.-F., & Nitsche, M. A. (2012). Effects of Transcranial Electrical Stimulation on Cognition. Clinical EEG and Neuroscience, 43, 192-199. https://doi.org/10.1177/1550059412444975

  31. 31. Lan, M. J., Chhetry, B. T., Liston, C., Mann, J. J., & Dubin, M. (2016). Transcranial Magnetic Stimulation of Left Dorsolateral Prefrontal Cortex Induces Brain Morphological Changes in Regions Associated with a Treatment Resistant Major Depressive Episode: An Exploratory Analysis. Brain Stimulation, 9, 577-583. https://doi.org/10.1016/j.brs.2016.02.011

  32. 32. Lefaucheur, J.-P., André-Obadia, N., Antal, A., Ayache, S. S., Baeken, C., Benninger, D. H., Cantello, R. M., Cincotta, M., de Carvalho, M., & De Ridder, D. (2014). Evidence-Based Guidelines on the Therapeutic Use of Repetitive Transcranial Magnetic Stimulation (rTMS). Clinical Neurophysiology, 125, 2150-2206. https://doi.org/10.1016/j.clinph.2014.05.021

  33. 33. Lefaucheur, J.-P., Antal, A., Ayache, S. S., Benninger, D. H., Brunelin, J., Cogiamanian, F., Cotelli, M., De Ridder, D., Ferrucci, R., & Langguth, B. (2017). Evidence-Based Guidelines on the Therapeutic Use of Transcranial Direct Current Stimulation (tDCS). Clinical Neurophysiology, 128, 56-92. https://doi.org/10.1016/j.clinph.2016.10.087

  34. 34. May, A., Hajak, G., G?nssbauer, S., Steffens, T., Langguth, B., Kleinjung, T., & Eichhammer, P. (2006). Structural Brain Alterations Following 5 Days of Intervention: Dynamic Aspects of Neuroplasticity. Cerebral Cortex, 17, 205-210. https://doi.org/10.1093/cercor/bhj138

  35. 35. Menon, V. (2015). Salience Network.

  36. 36. Meron, D., Hedger, N., Garner, M., & Baldwin, D. S. (2015). Transcranial Direct Current Stimulation (tDCS) in the Treatment of Depression: Systematic Review and Meta-Analysis of Efficacy and Tolerability. Neuroscience & Biobehavioral Reviews, 57, 46-62. https://doi.org/10.1016/j.neubiorev.2015.07.012

  37. 37. Nitsche, M. A., & Paulus, W. (2000). Excitability Changes Induced in the Human Motor Cortex by Weak Transcranial Direct Current Stimulation. The Journal of Physiology, 527, 633-639. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x

  38. 38. Nitsche, M., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., Henning, S., Tergau, F., & Paulus, W. (2003). Pharmacological Modulation of Cortical Excitability Shifts Induced by Transcranial Direct Current Stimulation in Humans. The Journal of Physiology, 553, 293-301. https://doi.org/10.1113/jphysiol.2003.049916

  39. 39. Otte, C., Gold, S. M., Penninx, B. W., Pariante, C. M., Etkin, A., Fava, M., Mohr, D. C., & Schatzberg, A. F. (2016). Major Depressive Disorder. Nature Reviews Disease Primers, 2, 16065. https://doi.org/10.1038/nrdp.2016.65

  40. 40. Pe?a-Gómez, C., Sala-Lonch, R., Junqué, C., Clemente, I. C., Vidal, D., Bargalló, N., Falcón, C., Valls-Solé, J., Pascual-Leone, á., & Bartrés-Faz, D. (2012). Modulation of Large-Scale Brain Networks by Transcranial Direct Current Stimulation Evidenced by Resting-State Functional MRI. Brain Stimulation, 5, 252-263. https://doi.org/10.1016/j.brs.2011.08.006

  41. 41. Phillips, M. R., Zhang, J., Shi, Q., Song, Z., Ding, Z., Pang, S., Li, X., Zhang, Y., & Wang, Z. (2009). Prevalence, Treatment, and Associated Disability of Mental Disorders in Four Provinces in China during 2001-05: An Epidemiological Survey. The Lancet, 373, 2041-2053. https://doi.org/10.1016/S0140-6736(09)60660-7

  42. 42. Priori, A., Hallett, M., & Rothwell, J. C. (2009). Repetitive Transcranial Magnetic Stimulation or Transcranial Direct Current Stimulation? Brain Stimulation, 2, 241-245. https://doi.org/10.1016/j.brs.2009.02.004

  43. 43. Raichle, M. E. (2015). The Brain’s Default Mode Network. Annual Review of Neuroscience, 38, 433-447. https://doi.org/10.1146/annurev-neuro-071013-014030

  44. 44. Rossini, P. M., Burke, D., Chen, R., Cohen, L., Daskalakis, Z., Di Iorio, R., Di Lazzaro, V., Ferreri, F., Fitzgerald, P., & George, M. (2015). Non-Invasive Electrical and Magnetic Stimulation of the Brain, Spinal Cord, Roots and Peripheral Nerves: Basic Principles and Procedures for Routine Clinical and Research Application. An Updated Report from an IFCN Committee. Clinical Neurophysiology, 126, 1071-1107. https://doi.org/10.1016/j.clinph.2015.02.001

  45. 45. Valiengo, L., Bense?or, I. M., Goulart, A. C., de Oliveira, J. F., Zanao, T. A., Boggio, P. S., Lotufo, P. A., Fregni, F., & Brunoni, A. R. (2013). The Sertraline versus Electrical Current Therapy for Treating Depression Clinical Study (Select-TDCS): Results of the Crossover and Follow-Up Phases. Depression and Anxiety, 30, 646-653. https://doi.org/10.1002/da.22079

  46. 46. Vos, T., Abajobir, A. A., Abate, K. H., Abbafati, C., Abbas, K. M., Abd-Allah, F., Abdulkader, R. S., Abdulle, A. M., Abebo, T. A., & Abera, S. F. (2017). Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 328 Diseases and Injuries for 195 Countries, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet, 390, 1211-1259. https://doi.org/10.1016/S0140-6736(17)32154-2

  47. 47. Wagner, T., Valero-Cabre, A., & Pascual-Leone, A. (2007). Noninvasive Human Brain Stimulation. Annual Review of Biomedical Engineering, 9, 527-565. https://doi.org/10.1146/annurev.bioeng.9.061206.133100

  48. 48. Whooley, M. A., & Wong, J. M. (2013). Depression and Cardiovascular Disorders. Annual Review of Clinical Psychology, 9, 327-354. https://doi.org/10.1146/annurev-clinpsy-050212-185526

  49. 49. Williams, L. M. (2016). Precision Psychiatry: A Neural Circuit Taxonomy for Depression and Anxiety. The Lancet Psychiatry, 3, 472-480. https://doi.org/10.1016/S2215-0366(15)00579-9

期刊菜单