Advances in Clinical Medicine
Vol. 10  No. 04 ( 2020 ), Article ID: 35214 , 10 pages
10.12677/ACM.2020.104089

Research Progress on Polymorphisms and Phenotypic Characteristics of Parkinson’s Disease-Related Genes in Chinese Population

Shujuan Li1*, Yao Xu2#, Yingzhu Chen2

1The First Clinical College of Dalian Medical University, Dalian Liaoning

2Northern Jiangsu People’s Hospital, Yangzhou Jiangsu

Received: Apr. 1st, 2020; accepted: Apr. 16th, 2020; published: Apr. 23rd, 2020

ABSTRACT

Parkinson’s disease is a common neurodegenerative disease that seriously affects health and quality of life of millions of middle-aged and elderly people in China. The pathogenesis of Parkinson’s disease is closely related to environmental factors and genetic factors, and has different genetic methods. In the past two decades, research on PD genetics has made great progress. Studies have shown that there are differences in genetic polymorphisms and clinical phenotypes between different races. This article reviews the polymorphisms and phenotypic characteristics of PD-related genes in Chinese population. The aim is to provide clinical phenotypes and treatment references for different pathogenic gene carriers of PD.

Keywords:Parkinson’s Disease, Pathogenic Gene, China

帕金森病相关致病基因的多态性及表型特点在中国人群的研究进展

李书娟1*,徐耀2#,陈应柱2

1大连医科大学第一临床学院,辽宁 大连

2江苏省苏北人民医院神经内科,江苏 扬州

收稿日期:2020年4月1日;录用日期:2020年4月16日;发布日期:2020年4月23日

摘 要

帕金森病是一种常见的神经退行性疾病,严重影响了我国数百万中老年人的健康和生活质量。PD的发病机制与环境因素和遗传因素密切相关,具有不同的遗传方式。过去二十年来,PD遗传学的研究取得巨大进步,研究表明不同种族的基因多态性及临床表型存在差异。本文主要对多个PD相关突变基因的多态性及其表型特点在中国人群中的研究做一综述,旨在为PD的不同致病基因携带者提供临床表型及治疗参考。

关键词 :帕金森病,基因表型,中国

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 概述

帕金森病(Parkinson’s disease, PD)又名震颤麻痹,是仅次阿尔茨海默病(Alzheimer’s disease, AD)的第二大常见的神经退行性疾病。其患病率随着年龄的增长而增加,PD在50岁之前很少见,在60岁以上人群患病率1%以上,80岁以上人群4%左右 [1]。由于衰老是最重要的风险因素,随着社会老龄化的不断进展,预计我国PD患病率将在未来几十年内大幅增加。PD相关的症状和体征多达几十种,但最典型的运动症状包括静止性震颤、运动迟缓、肌强直和姿势步态异常,最常见的非运动症状包括嗅觉功能障碍、认知功能障碍、精神症状和自主神经功能障碍 [2]。研究发现,许多非运动症状出现在运动症状之前长达10年或更长时间 [3]。PD的主要神经病理学特征是与路易小体(Louis Body, LB)中α-突触核蛋白的积累和聚集相关的选择性神经元缺损 [4]。目前PD病因尚不清楚,大多认为是环境因素和遗传因素共同作用的结果。大多研究显示吸烟、咖啡和茶、农药等环境因素与PD存在一定联系 [5]。自22年前Polymeropoulos等人 [6] 发现编码α-突触核蛋白的SNCA (Alpha-Synuclein)基因突变导致帕金森病以来,PD的遗传学领域取得了实质性进展。迄今为止,已经鉴定了至少23个基因座和19个引起PD的致病基因,其中包括10个常染色体显性基因(SNCA,LRRK2,VPS35,GIGYF2,EIF4G1,CHCHD2等)和9个常染色体隐性基因(Parkin,PINK1,DJ1,ATP13A2,DNAJC6,VPS13C等),并且发现了与散发性PD (临床上将PD分为散发性PD和家族性PD,其中超过90%没有确切的病因称散发性PD)相关的各种遗传风险基因座和变异体 [7]。近年来,随着全世界范围内对PD相关致病基因的研究日益增加,发现同一基因的不同变异体在不同种族的表达情况存在异质性。例如,LRRK2最常见的突变G2019S在北非柏柏尔人和德系犹太人中尤为常见。1441核苷酸的突变在西班牙巴斯克人群中更为常见,而LRRK2 G2385A变异在亚洲人群中更常见 [8]。此外,不同基因携带者间的临床表型也存在差异,如GBA携带者发病年龄更早、认知功能及自主神经功能损害更重,而LRRK2突变携带者与非携带者相比表现出更轻的运动症状和认知障碍 [9]。为了解我国人群中常见的PD相关致病基因的多态性及其相应表型特点,我们就PD常见致病基因在中国人群的研究做一综述。

2. 常染色体显性PD基因

2.1. SNCA

SNCA基因即PARK1基因,定位于染色体4q21-23。由SNCA编码的α-突触核蛋白是LD的主要组成成分,它是一种具有内在聚集倾向的突触前磷蛋白,已被证明在遗传性和特发性PD中起重要作用。随着对SNCA的深入研究,目前已发现6个SNCA点突变位点(p.A53T,p.A30P,p.E46K,p.H50Q,p.G51D和p.A53E)和SNCA的全基因座的重复序列(包括二重,三重和四重) [10] [11],大多阳性结果集中在西方国家,且发现在错义突变中,A53T突变型是最常见的。国外研究显示SNCA突变携带者典型的临床特点包括早发、病情进展迅速、对左旋多巴反应良好、运动并发症早发、非运动症状(主要为嗅觉及自主神经功能障碍)突出 [9]。

近年来,为验证中国人群中SNCA基因变异情况及其与PD的相关性,国内许多大型研究也相继开展。关于中国汉族人群的SNCA基因突变筛查,极少数报道出阳性结果。2016年在一项对91例早发性PD患者或家族性PD先证者进行基因检测的研究中,发现了中国汉族人群中的第一个A53T突变,且该例患者表现出典型A53T突变型PD的临床特点 [12]。由于SNCA基因突变在中国人群中表现出极低的阳性率,因此无法寻得特别的规律。然而,国内新报道的证据表明启动子区域的单核苷酸多态性(Single Nucleotide Polymorphism, SNPs)和SNCA基因的3'UTR可能导致α-突触核蛋白的异常表达,迄今为止,国内已报道SNCA的一些SNPs与PD易感性相关。有多项研究发现SNCA rs356219多态性在中国人群中与PD易感性强烈相关 [13] [14]。同时,四川华西医院开展的一项针对中国汉族人群的大样本病例对照研究显示SNCArs356182位点多态性具有增加PD易感性的风险 [15]。由此可见,SNCA基因突变并非中国PD人群常见的遗传因素,但其启动子区域的SNPs与我国散发性PD关联甚密,这为研究中国散发性PD的病因提供了方向。然而,其中具体调控机制尚不清楚,需要更多的基础实验去探索。关于SNCA基因多态性与中国PD患者临床特征的关系,国内有几项研究表明SNCA基因多态性影响PD患者的发病年龄和运动症状,且与抑郁、嗅觉减退、便秘、快动眼睡眠行为障碍等非运动症状的发生相关 [16] [17] [18]。由于此类研究数量较少且结果不尽相同,并不能诠释国内PD人群SNCA突变携带者具体的临床特点,需要更多更大样本的临床研究去证实SNCA基因多态性与临床表型的相关性并找寻其中的奥秘。

2.2. LRRK2

富含亮氨酸的重复激酶2 (LRRK2)定位于染色体12q12,具有51个外显子并编码2527个氨基酸,该基因的突变也是常染色体显性的一种,被认为是家族性和散发性PD最常见的遗传因素。目前已经鉴定出多种致病突变,如p.N1437H,p.R1441G,p.R1441C,p.N1441H,p.Y1699C,p.G2019S和p.I2020T等,其中p.G2019S是LRRK2最常见的突变,国外多数研究聚焦于此。国际上许多国家研究大多表明LRRK2突变携带者相对于散发性PD表现出更良性的疾病形式,包括运动症状和非运动症状 [9]。

LRRK2突变的频率具有明显的种族性且种族分布和致病性因不同突变位点而异 [7]。那么我国PD人群中常见的突变类型是什么呢?又具有什么临床特征呢?一项15个国家和五大洲参与的大型研究显示LRRK2 R1628P和G2385R变异与中国人群中PD易感性增加有关 [19]。与此同时,国内多项针对中国大陆人群的研究也验证了这一观点 [20] [21]。此外,最近一项针对296名汉族PD患者进行的LRRK2全外显子组的测序中鉴定出18种罕见变异体,其中13种(M100T,L153W,A459S,S722N,R792K,C925Y,R981K,S1007T,V1447M,R1677S,N2308D,N2313S,S2350I)首次报道于PD [22],这一结果表明该基因在我国汉族人群的发病机制和表型中起重要作用,提示我们研究思路不能局限于LRRK2 R1628P和G2385R变异,也应该关注LRRK2的整个编码区。然而,国内关于LRRK2突变PD患者临床特征的研究数量相对较少,且结果不尽相同。有研究提示携带LRRK2 G2385R或R1628P帕金森病患者的发病年龄、运动和非运动特征与散发性PD患者相似,除了极少的非运动症状 [23]。而另一研究发现无论是携带LRRK2的常见或罕见变异的PD患者都更容易出现运动波动和非运动症状 [22]。同时有人得出结论,G2385R携带者的运动波动和运动障碍得分显著高于非携带者,且显示G2385R变异是女性运动波动的独立危险因素(P = 0.004) [24]。国内关于非运动症状方面的研究表明,LRRK2变体的携带者与非携带者相比,更容易出现疲劳而较少出现夜尿增多的症状 [25] [26]。上述研究结果虽不一致,但提示LRRK2基因的变异与中国PD患者的临床表型强烈相关,这为进一步了解PD分子学发病机制提供了思路,从而帮助找到新的疾病诊断和治疗的措施。

2.3. 其他常染色体显性PD基因

CHCHD2位于染色体7p11.2,2015年四个不相关的日本ADPD家族报告了关于CHCHD2的突变(包括p.T61I,p.R145Q)且推测其可能是PD的危险因素 [27]。随后Li等 [28] 通过荟萃分析显示杂合子p.P2L变体是亚洲人中PD的危险因子。最近几年,针对中国PD人群CHCHD2突变的筛查显示很少发现该基因变异体,这表明CHCHD2突变可能不是中国汉族人群PD的常见原因 [29] [30] [31]。然而,一项在18个家族性PD家系、364个散发性PD患者和384个健康对照中对CHCHD2基因突变筛查的研究表明CHCHD2中的Pro2Leu变异可能是中国人群中散发性PD的危险因素 [32]。由于数据有限,目前尚无CHCHD2基因突变与中国PD患者临床表型的相关研究。关于VPS35、GIGYF2、EIF4G1基因突变在中国人群的研究相对较少,但结果大多认为这些基因变异与中国PD人群无关 [33] [34] [35]。因此,提示我们在以后的研究中避免将有限的资源过多的使用于此类基因的探索上。

3. 常染色体隐性PD基因

3.1. Parkin

Parkin是一种E3连接酶,通过泛素–蛋白酶体系统参与特定底物的降解,与PD相关的具体机制尚不确定,但有证据表明Parkin参与线粒体自噬过程 [36]。Parkin基因也称PARK2基因,位于染色体6q25.2-27,是早发型常染色体隐性遗传性PD中最常见的突变基因,到目前为止,已经鉴定了Parkin基因100多种不同的突变,包括缺失、插入、重复、三次突变和点突变 [37]。

大约50%的Parkin突变是外显子剂量突变(即整个外显子的缺失或重复),2015年一项研究表明,Parkin基因的外显子剂量突变可能是中国散发性PD的主要原因,尤其是早发性PD [38]。最近,关于Parkin新的复合杂合突变在中国不同种族血统中被鉴定出来(包括p.S57Y、p.R997X、p.R945H、p.G284R和p.R275W等) [39] [40] [41],这些发现不但扩展了PARK2基因的突变谱,且提示PARK2基因的复合杂合突变可能是PD的重要致病因素。据国外相关报道,Parkin启动子中的单核苷酸多态性与PD相关,但中国人群的相关研究极少且结果不支持这种变异在早发型PD中的作用 [42]。

国外研究大多提示Parkin突变携带者病程进展缓慢,对左旋多巴或抗胆碱能药物反应良好,运动症状主要变现为肌张力障碍,非运动症状发生率低。有关Parkin突变携带者的临床症状在中国大陆人群中的研究极少。一项针对香港华人的研究显示其临床特点为静止性震颤、运动迟缓、强直、姿势不稳定、对左旋多巴反应良好、发病时不对称和睡眠获益现象。其中许多患者有运动并发症,抑郁症是最常见的非运动并发症 [43]。在消除其他PD相关基因的干扰后,Parkin突变携带者与非携带者相比嗅觉功能明显较好,但仍然比健康对照差 [44]。由此可见,在中国人群中Parkin基因的突变对PD运动症状影响较弱,似乎与非运动症状存在一定的联系。Parkin突变与PD非运动症状之间的联系及相关分子机制有待于进一步的研究。

3.2. PINK1

PINK1基因也叫PARK6,位于1p35-36,其功能缺失突变是多巴反应性早发型常染色体隐性遗传PD的第二大常见原因 [45]。PINK1是一种线粒体激酶,虽然其确切作用尚不清楚,但似乎作用于Parkin的上游,两者共同参与线粒体自噬途径 [46]。PINK1在不同种族的家庭中报道了不同突变形式,包括错义突变、无义突变、移码突变和多个外显子的大量缺失等。大多数报道的PINK1突变是错义和无义突变(如p.Gln129X,p.Gln129fsX157,p.Pro196Leu,p.Gly309Asp,pTrp437X,p.Gly440Glu,p.Gln456X),而结构缺失是罕见的 [47] [48]。

PINK1基因在我国PD患者中的筛查研究相对较少。一项在240名中国散发型早发PD患者中进行全基因组基因突变分析的研究只筛查出1名患者携带PINK1突变 [49]。与此同时,另一项研究在69名中国汉族早发型PD患者中没有发现PINK1的突变 [50]。PINK1突变作为早发型PD的常见遗传因素已经达成共识。有报道显示PINK1的基因多态性与中国人晚发型PD的发生风险明显相关。中国一项关于382名中国人晚发型PD (Late-onset PD, LOPD)的病例对照研究发现定位于PINK1基因第5外显子上游区域的IVS5-5G > A多态性增加了中国LOPD的风险 [51]。同时另一在中国汉族人群的大样本研究表明PINK1 A340T变异有可能是导致晚发型D的风险 [52]。对于PINK1基因所致PD患者的临床表型,目前公认的特点包括:起病早、病程长、进展慢、典型的PD症状(运动迟缓、肌强直、静止性震颤)较轻、良好和持久的左旋多巴反应、认知损害较轻、肌张力障碍、腱反射亢进和睡眠获益现象,精神障碍等症状和体征较为少见 [9]。而中国人群中PINK1相关PD患者的表现不同之处在于均有腱反射活跃、睡眠获益现象明显、由左旋多巴诱导的运动障碍少见的特点 [53]。目前国内尚缺乏针对PINK1相关PD的非运动症状方面的研究。因此,需要更多的研究去确认中国PD人群中PINK1相关的临床表型的不同之处。

3.3. 其他罕见常染色体隐性PD基因

DJ-1是常染色体隐性PD的罕见原因,定位于染色体1p36。DJ-1被认为可以抵抗氧化应激和线粒体损伤,可能参与了Parkin和PINK1蛋白的共同通路 [54]。DJ-1的突变导致1%~2%的常染色体隐性早发性PD患者 [55],但致病性DJ-1突变似乎仅限于某些人群。在中国各地区人群中很少筛查到该基因突变,这说明该基因可能与中国PD风险增加无关 [56]。然而有研究表明DJ-1的SNP405 GT基因型可能是四川汉族人群发病年龄较早的散发性PD的危险因素 [57]。ATP13A2、DNAJC6、VPS13C等罕见常染色体隐性PD基因在与中国人群的相关性研究较少,且大多得出的结果是阴性的 [58] [59] [60] [61]。对于这些突变率很低的基因,已有的研究并未得出有意义的结论,提示这些基因可能对中国PD影响极小。

4. 与PD相关的其他常见遗传风险因素

4.1. GBA

GBA基因编码葡糖脑苷脂酶,一种将葡糖脑苷脂分解为葡萄糖和神经酰胺的溶酶体酶,功能丧失的葡糖脑苷脂酶可能损害溶酶体酶功能,导致α-突触核蛋白的积累,从而增加PD的风险 [62]。一项大型荟萃分析显示GBA变异是与PD相关的最常见的遗传风险因素,使PD的发生风险增加了5倍 [63]。国际众多研究发现,最常见的GBA突变是N370S、L444P和E326K [64]。

GBA突变是继LRRK2变异之后,中国汉族或华裔人群中散发性PD发生的第二高频率突变 [65]。近年来,国内对GBA突变与PD关系的探索进行的如火如荼,不少研究表明GBA基因中的L444P变异是中国PD的独立危险因素且与其他PD相关致病基因协同具有累积致病作用 [66] [67]。2015年的一项在中国人群中对GBA基因完整测序的研究确定了三个新的(包括5-bp缺失、L264I和L314V)和九个已报道的GBA突变(R163Q、F213I、E326K、S364S、F347L、V375L、L444P、RecNciI和Q497R),并且发现新的突变与中国PD相关,这一结果提示了中国人群PD具有更多的遗传风险 [68]。GBA基因多态性影响中国PD患者的发病年龄,但不同突变形式在不同地区人群中表现出不同的结果。研究发现台湾地区GBA基因L444P突变可能与早发性PD的发生有关,而中国大陆汉族人群N370S突变可能与的晚发性PD相关 [69] [70] [71]。一项多中心的大型研究提示GBA PD和iPD之间的运动表型相似,GBA PD患者的运动迟缓和左旋多巴诱导的运动障碍可能更显著。相比之下,GBA PD患者的非运动症状似乎比iPD更突出,尤其是认知障碍 [72]。有关中国PD患者的运动和非运动方面,一项大样本研究数据显示,GBA-PD患者的发病年龄明显年轻,并且运动评分更高;GBA-PD患者更容易出现便秘、社交功能和角色情绪评分表现较差,常见的非运动症状包括认知功能下降和幻觉、性功能障碍 [23]。另外有研究证明GBA L444P变体与中国PD人群抑郁风险增加相关 [73]。综上,GBA突变似乎对中国PD人群影响颇深,运动症状及非运动症状均受到影响,随着日后研究的进一步加深和扩展,或能从此找到有关中国PD人群疾病特点的病理机制。

4.2. MAPT

MAPT基因编码微管相关蛋白tau,其主要在脑中表达,维持细胞骨架的稳定性和神经元中的轴突运输 [74]。tau蛋白的病理性积累与一些神经退行性疾病如进行性核上性麻痹、额颞叶痴呆和AD相关,目前已发现MAPT中的遗传变异与PD风险增加也存在关联 [75]。国外研究已经鉴定出跨越整个MAPT编码区的两个单倍型H1和H2,其代表由染色体17q21上的900kb的倒位产生的两个不同的亚型分类,其中H1单倍型与PD风险增加密切相关 [74] [76]。而国内的相关研究发现MAPT单核苷酸多态性与PD密切相关,如MAPT rs242562与MAPT H1/H1双倍型与中国中部PD人群有关 [77];位于MAPT启动子区域的功能性单核苷酸多态性IVS1 + 124 C > G与LRRK2基因相互作用,增强了中国人群PD的易感性 [78]。据报道,在中国人群中MAPT不影响PD发病年龄,而与临床严重程度相关 [16] [79]。

以上证据表明,中国PD人群中PD相关致病基因的变异体明显不同于其他国家,验证了基因表达在不同种族存在异质性的观点。提示我们要更加关注基因的多样性,且更有针对性的对我国PD人群的相关基因变异进行研究和探索。

5. 展望

PD是一种临床症状异质性和多样性的疾病,由环境和遗传等多种因素所致。在过去几年中,我国在PD遗传学领域取得了很大进展,一系列研究集中于检测中国PD人群的致病突变和风险变异。尽管进行了大量研究,但这些基因突变导致PD的机制仍然很大程度上是未知的,且PD的许多遗传学仍未被发现,若能大规模的补充不同临床表型和基因型之间联系的研究,将有助于更好地了解PD潜在的疾病机制和表型异质性。

现阶段临床上用于PD的治疗手段主要以药物、康复训练、脑深部电刺激等综合治疗为主,并不能控制疾病发展。但随着基因相关技术和药物遗传学领域的快速发展,可通过导入编码多巴胺合成过程中所需的酶类基因、编码神经营养因子的基因等,调整基底节环路相关酶类的功能活性以及与干细胞联合应用,从分子学层面上彻底治疗疾病。许多研究发现这些方法对敲除或敲入相关PD致病基因的动物模型的行为均有改善作用。PD致病基因相关的分子可能将作为一种生物学标记物,用以预测和诊断不同临床表型PD的风险人群,并增加了个体化治疗的前景。

基金项目

江苏省“六大人才”高峰培养资助项目(WSW-246);扬州市科技计划项目(YZ2016077);扬州市“十三五”科教强卫专项经费资助(LJRC20187)。

文章引用

李书娟,徐 耀,陈应柱. 帕金森病相关致病基因的多态性及表型特点在中国人群的研究进展
Research Progress on Polymorphisms and Phenotypic Characteristics of Parkinson’s Disease-Related Genes in Chinese Population[J]. 临床医学进展, 2020, 10(04): 568-577. https://doi.org/10.12677/ACM.2020.104089

参考文献

  1. 1. Tysnes, O.B. and Storstein, A. (2017) Epidemiology of Parkinson’s Disease. Journal of Neural Transmission (Vienna), 124, 901-905. https://doi.org/10.1007/s00702-017-1686-y

  2. 2. Reich, S.G. and Savitt, J.M. (2019) Parkinson’s Disease. Medical Clinics of North America, 103, 337-350. https://doi.org/10.1016/j.mcna.2018.10.014

  3. 3. Polo-Morales, A., et al. (2020) Association between Somatization and Nonmotor Symptoms Severity in People with Parkinson Disease. Journal of Geriatric Psychiatry and Neurology, 891988720901787.

  4. 4. Dickson, D.W. (2018) Neuropathology of Parkinson Disease. Parkinsonism & Related Disorders, 46, S30-S33. https://doi.org/10.1016/j.parkreldis.2017.07.033

  5. 5. Delamarre, A. and Meissner, W.G. (2017) Epidemiology, Environmental Risk Factors and Genetics of Parkinson’s Disease. La Presse Médicale, 46, 175-181. https://doi.org/10.1016/j.lpm.2017.01.001

  6. 6. Polymeropoulos, M.H., Lavedan, C., Leroy, E., et al. (1997) Muta-tion in the Alpha-Synuclein Gene Identified in Families with Parkinson’s Disease. Science, 276, 2045-2047. https://doi.org/10.1126/science.276.5321.2045

  7. 7. Deng, H., Wang, P. and Jankovic, J. (2018) The Genetics of Parkinson Disease. Ageing Research Reviews, 42, 72-85. https://doi.org/10.1016/j.arr.2017.12.007

  8. 8. Kim, C.Y. and Alcalay, R.N. (2017) Genetic Forms of Parkinson’s Disease. Seminars in Neurology, 37, 135-146. https://doi.org/10.1055/s-0037-1601567

  9. 9. Koros, C., Simitsi, A. and Stefanis, L. (2017) Genetics of Parkinson’s Disease: Genotype-Phenotype Correlations. International Review of Neurobiology, 132, 197-231. https://doi.org/10.1016/bs.irn.2017.01.009

  10. 10. Seo, S.H., et al. (2020) Replication-Based Rearrangements Are a Common Mechanism for SNCA Duplication in Parkinson’s Disease. Movement Disorders: Official Journal of the Movement Disorder Society.

  11. 11. Ferese, R., Modugno, N., Campopiano, R., et al. (2015) Four Copies of SNCA Re-sponsible for Autosomal Dominant Parkinson’s Disease in Two Italian Siblings. Parkinson’s Disease, 2015, Article ID: 546462. https://doi.org/10.1155/2015/546462

  12. 12. Xiong, W.X., Sun, Y.M., Guan, R.Y., et al. (2016) The Heterozygous A53T Mutation in the Alpha-Synuclein Gene in a Chinese Han Patient with Parkinson Disease: Case Report and Lit-erature Review. Journal of Neurology, 263, 1984-1992. https://doi.org/10.1007/s00415-016-8213-1

  13. 13. Yu, W.J., Cheng, L., Li, N.N., et al. (2015) Interaction between SNCA, LRRK2 and GAK Increases Susceptibility to Parkinson’s Disease in a Chinese Population. eNeurologicalSci, 1, 3-6. https://doi.org/10.1016/j.ensci.2015.08.001

  14. 14. Li, N.N., Mao, X.Y., Chang, X.L., et al. (2013) SNCA rs356219 Variant Increases Risk of Sporadic Parkinson’s Disease in Ethnic Chinese. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 162, 452-456. https://doi.org/10.1002/ajmg.b.32143

  15. 15. Cheng, L., Wang, L., Li, N.N., et al. (2016) SNCA rs356182 Variant Increases Risk of Sporadic Parkinson’s Disease in Ethnic Chinese. Journal of the Neurological Sciences, 368, 231-234. https://doi.org/10.1016/j.jns.2016.07.032

  16. 16. Huang, Y., Wang, G., Rowe, D., et al. (2015) SNCA Gene, But Not MAPT, Influences Onset Age of Parkinson’s Disease in Chinese and Australians. BioMed Research International, 2015, Article ID: 135674. https://doi.org/10.1155/2015/135674

  17. 17. Chen, W., Kang, W.Y., Chen, S., et al. (2015) Hyposmia Correlates with SNCA Variant and Non-Motor Symptoms in Chinese Patients with Parkinson’s Disease. Parkinsonism & Related Disorders, 21, 610-614. https://doi.org/10.1016/j.parkreldis.2015.03.021

  18. 18. Zheng, J., Yang, X., Zhao, Q., et al. (2017) Association between Gene Polymorphism and Depression in Parkinson’s Disease: A Case-Control Study. Journal of the Neurolog-ical Sciences, 375, 231-234. https://doi.org/10.1016/j.jns.2017.02.001

  19. 19. Ross, O.A., Soto-Ortolaza, A.I., Heckman, M.G., et al. (2011) As-sociation of LRRK2 Exonic Variants with Susceptibility to Parkinson’s Disease: A Case-Control Study. The Lancet Neurology, 10, 898-908. https://doi.org/10.1016/S1474-4422(11)70175-2

  20. 20. Fu, X., Zheng, Y., Hong, H., et al. (2013) LRRK2 G2385R and LRRK2 R1628P Increase Risk of Parkinson’s Disease in a Han Chinese Population from Southern Mainland China. Parkinsonism & Related Disorders, 19, 397-398. https://doi.org/10.1016/j.parkreldis.2012.08.007

  21. 21. Xie, C.L., Pan, J.L., Wang, W.W., et al. (2014) The Associ-ation between the LRRK2 G2385R Variant and the Risk of Parkinson’s Disease: A Meta-Analysis Based on 23 Case-Control Studies. Neurological Sciences, 35, 1495-1504. https://doi.org/10.1007/s10072-014-1878-2

  22. 22. Zhang, J.R., Jin, H., Li, K., et al. (2018) Genetic Analysis of LRRK2 in Parkinson’s Disease in Han Chinese Population. Neurobiology of Aging, 72, 187 e5-187 e10. https://doi.org/10.1016/j.neurobiolaging.2018.06.036

  23. 23. Wang, C., Cai, Y., Gu, Z., et al. (2014) Clinical Profiles of Parkinson’s Disease Associated with Common Leucine-Rich Repeat Kinase 2 and Glucocerebrosidase Genetic Vari-ants in Chinese Individuals. Neurobiology of Aging, 35, 725e1-6. https://doi.org/10.1016/j.neurobiolaging.2013.08.012

  24. 24. Gao, C., Pang, H., Luo, X.G., et al. (2013) LRRK2 G2385R Variant Carriers of Female Parkinson’s Disease Are More Susceptible to Motor Fluctuation. Journal of Neu-rology, 260, 2884-2889. https://doi.org/10.1007/s00415-013-7086-9

  25. 25. Fu, R., Cui, S.S., Du, J.J., et al. (2017) Fatigue Correlates with LRRK2 G2385R Variant in Chinese Parkinson’s Disease Patients. Parkinsonism & Related Disorders, 44, 101-105. https://doi.org/10.1016/j.parkreldis.2017.09.016

  26. 26. Li, D.W., Gu, Z., Wang, C., et al. (2015) Non-Motor Symptoms in Chinese Parkinson’s Disease Patients with and without LRRK2 G2385R and R1628P Variants. Journal of Neural Transmission (Vienna), 122, 661-667. https://doi.org/10.1007/s00702-014-1281-4

  27. 27. Funayama, M., Ohe, K., Amo, T., et al. (2015) CHCHD2 Muta-tions in Autosomal Dominant Late-Onset Parkinson’s Disease: A Genome-Wide Linkage and Sequencing Study. The Lancet Neurology, 14, 274-282. https://doi.org/10.1016/S1474-4422(14)70266-2

  28. 28. Li, N.N., Wang, L., Tan, E.K., et al. (2016) Genetic Analysis of CHCHD2 Gene in Chinese Parkinson’s Disease. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 171, 1148-1152. https://doi.org/10.1002/ajmg.b.32498

  29. 29. Lu, Q., Deng, X., Song, Z., et al. (2016) Mutation Analysis of the CHCHD2 Gene in Chinese Han Patients with Parkinson’s Disease. Parkinsonism & Related Disorders, 29, 143-144. https://doi.org/10.1016/j.parkreldis.2016.04.012

  30. 30. Liu, Z., Guo, J., Li, K., et al. (2015) Mutation Analysis of CHCHD2 Gene in Chinese Familial Parkinson’s Disease. Neurobiology of Aging, 36, 3117e7-3117e8. https://doi.org/10.1016/j.neurobiolaging.2015.08.010

  31. 31. Yang, N., Zhao, Y., Liu, Z., et al. (2019) Systematically Analyzing Rare Variants of Autosomal-Dominant Genes for Sporadic Parkinson’s Disease in a Chinese Cohort. Neurobiology of Aging, 76, 215e1-215e7. https://doi.org/10.1016/j.neurobiolaging.2018.11.012

  32. 32. Shi, C.H., Mao, C.Y., Zhang, S.Y., et al. (2016) CHCHD2 Gene Mutations in Familial and Sporadic Parkinson’s Disease. Neurobiology of Aging, 38, 217e9-217e13. https://doi.org/10.1016/j.neurobiolaging.2015.10.040

  33. 33. Li, K., Tang, B.S., Guo, J.F., et al. (2013) Analysis of EIF4G1 in Ethnic Chinese. BMC Neurology, 13, 38. https://doi.org/10.1186/1471-2377-13-38

  34. 34. Guo, J.F., Sun, Q.Y., Lv, Z.Y., et al. (2012) VPS35 Gene Variants Are Not Associated with Parkinson’s Disease in the Mainland Chinese Population. Parkinsonism & Related Disorders, 18, 983-985. https://doi.org/10.1016/j.parkreldis.2012.05.002

  35. 35. Cao, L., Zhang, T., Zheng, L., et al. (2010) The GIGYF2 Variants Are Not Associated with Parkinson’s Disease in the Mainland Chinese Population. Parkinsonism & Related Disorders, 16, 294-297. https://doi.org/10.1016/j.parkreldis.2009.11.009

  36. 36. Van der Merwe, C., Jalali Sefid Dashti, Z., Christoffels, A., et al. (2015) Evidence for a Common Biological Pathway Linking Three Parkinson’s Disease-Causing Genes: Parkin, PINK1 and DJ-1. European Journal of Neuroscience, 41, 1113-1125. https://doi.org/10.1111/ejn.12872

  37. 37. Kalinderi, K., Bostantjopoulou, S. and Fidani, L. (2016) The Genetic Back-ground of Parkinson’s Disease: Current Progress and Future Prospects. Acta Neurologica Scandinavica, 134, 314-326. https://doi.org/10.1111/ane.12563

  38. 38. Guo, J.F., Dong, X.L., Xu, Q., et al. (2015) Exon Dosage Analysis of Parkin Gene in Chinese Sporadic Parkinson’s Disease. Neuroscience Letters, 604, 47-51. https://doi.org/10.1016/j.neulet.2015.07.046

  39. 39. Huang, T., Gao, C.Y., Wu, L., et al. (2019) Han Chinese Family with Early-Onset Parkinson’s Disease Carries Novel Compound Heterozygous Mutations in the PARK2 Gene. Brain and Behavior, 9, e01372. https://doi.org/10.1002/brb3.1372

  40. 40. Li, H., Yusufujiang, A., Naser, S., et al. (2014) Mutation Analysis of PARK2 in a Uyghur Family with Early-Onset Parkinson’s Disease in Xinjiang, China. Journal of the Neurological Sciences, 342, 21-24. https://doi.org/10.1016/j.jns.2014.03.044

  41. 41. Chen, M., Cen, Z., Chen, Y., et al. (2018) Genetic Study of a Par-kinson’s Disease Pedigree Caused by Compound Heterozygous Mutations in PARK2 Gene. Chinese Journal of Medical Genetics, 35, 815-818.

  42. 42. Taylor, J.M., Wu, R.M., Lin, C.H., et al. (2009) Lack of Evidence for Association of a Parkin Promoter Polymorphism with Early-Onset Parkinson’s Disease in a Chinese Population. Parkinsonism & Related Disorders, 15, 149-152. https://doi.org/10.1016/j.parkreldis.2008.02.010

  43. 43. Chan, D.K., Mok, V., Ng, P.W., et al. (2008) PARK2 Mu-tations and Clinical Features in a Chinese Population with Early-Onset Parkinson’s Disease. Journal of Neural Trans-mission (Vienna), 115, 715-719. https://doi.org/10.1007/s00702-007-0011-6

  44. 44. Wang, Y., Wu, J.J., Liu, F.T., et al. (2017) Olfaction in Parkin Carriers in Chinese Patients with Parkinson Disease. Brain and Behavior, 7, e00680. https://doi.org/10.1002/brb3.680

  45. 45. Hernandez, D.G., Reed, X. and Singleton, A.B. (2016) Genetics in Parkinson Disease: Mendelian versus Non-Mendelian Inheritance. Journal of Neurochemistry, 139, 59-74. https://doi.org/10.1111/jnc.13593

  46. 46. Arena, G. and Valente, E.M. (2017) PINK1 in the Limelight: Multiple Functions of an Eclectic Protein in Human Health and Disease. The Journal of Pathology, 241, 251-263. https://doi.org/10.1002/path.4815

  47. 47. Bonifati, V., Rohe, C.F., Breedveld, G.J., et al. (2005) Early-Onset Par-kinsonism Associated with PINK1 Mutations: Frequency, Genotypes, and Phenotypes. Neurology, 65, 87-95. https://doi.org/10.1212/01.wnl.0000167546.39375.82

  48. 48. Trinh, J. and Farrer, M. (2013) Advances in the Ge-netics of Parkinson Disease. Nature Reviews Neurology, 9, 445-454. https://doi.org/10.1038/nrneurol.2013.132

  49. 49. Li, N., et al. (2020) Whole-Exome Sequencing in Early-Onset Parkinson’s Disease among Ethnic Chinese. Neurobiology of Aging.

  50. 50. Zhang, B.R., Hu, Z.X., Yin, X.Z., et al. (2010) Mutation Analysis of Parkin and PINK1 Genes in Early-Onset Parkinson’s Disease in China. Neuroscience Letters, 477, 19-22. https://doi.org/10.1016/j.neulet.2010.04.026

  51. 51. Wang, F., Chen, B., Feng, X.L., et al. (2007) PINK1 IVS5-5 G > A Polymorphism May Contribute to the Risk of Late Onset Parkinson Disease in Chinese. Chinese Journal of Medical Genetics, 24, 305-309.

  52. 52. Wang, F., Feng, X., Ma, J., et al. (2006) A Common A340T Variant in PINK1 Gene Associated with Late-Onset Parkinson’s Disease in Chinese. Neuroscience Letters, 410, 121-125. https://doi.org/10.1016/j.neulet.2006.09.080

  53. 53. 张玉虎. 常染色体隐性遗传早发性帕金森综合征6型PINK1基因的突变分析[J]. 中华医学杂志, 2005, 22(85): 1538-1541.

  54. 54. van der Vlag, M., et al. (2020) The Contribution of Parkin, PINK1 and DJ-1 Genes to Selective Neuronal Degeneration in Parkinson’s Disease. The European Journal of Neuroscience.

  55. 55. Bonifati, V., Rizzu, P., Squitieri, F., et al. (2003) DJ-1(PARK7), a Novel Gene for Autosomal Recessive, Early Onset Parkinsonism. Neurological Sciences, 24, 159-160. https://doi.org/10.1007/s10072-003-0108-0

  56. 56. Huo, Z., Luo, X., Zhan, X., et al. (2017) Genetic Analysis of Indel Markers in Three Loci Associated with Parkinson’s Disease. PLoS ONE, 12, e0184269. https://doi.org/10.1371/journal.pone.0184269

  57. 57. Chen, W., Peng, R., Li, T., et al. (2008) Association of the DJ-1 Gene Polymorphism with Sporadic Parkinson’s Disease in Sichuan Province of China. Chinese Journal of Medical Ge-netics, 25, 566-569.

  58. 58. Pan, L.S., Wang, Z., Ding, D., et al. (2016) Lack of Association between the ATP13A2 A746T Variant and Parkinson’s Disease Susceptibility in Han Chinese: A Meta-Analysis. International Journal of Neuroscience, 126, 593-599. https://doi.org/10.3109/00207454.2015.1035377

  59. 59. Li, G., Zhang, Z., Xia, H., et al. (2014) Analysis of Thr12Met and Ala1144Thr Mutations of the ATP13A2 Gene in Parkinson’s Disease Patients in Xinjiang Uygur and Han Ethnic Groups. Medical Science Monitor, 20, 2177-2182. https://doi.org/10.12659/MSM.892821

  60. 60. Shi, C., Li, F., Yang, J., et al. (2016) DNAJC6 Mutations Are Not Common Causes of Early Onset Parkinson’s Disease in Chinese Han Population. Neuroscience Letters, 634, 60-62. https://doi.org/10.1016/j.neulet.2016.09.044

  61. 61. Wang, L., Cheng, L., Li, N.N., et al. (2016) Association of Four New Candidate Genetic Variants with Parkinson’s Disease in a Han Chinese Population. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 171, 342-347. https://doi.org/10.1002/ajmg.b.32410

  62. 62. Mullin, S., Hughes, D., Mehta, A., et al. (2019) Neurological Effects of Glucocerebrosidase Gene Mutations. European Journal of Neurology, 26, 388-e29. https://doi.org/10.1111/ene.13837

  63. 63. Sidransky, E., Nalls, M.A., Aasly, J.O., et al. (2009) Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson’s Disease. The New England Journal of Medicine, 361, 1651-1661. https://doi.org/10.1056/NEJMoa0901281

  64. 64. Migdalska-Richards, A. and Schapira, A.H. (2016) The Relationship between Glucocerebrosidase Mutations and Parkinson Disease. Journal of Neurochem-istry, 139, 77-90. https://doi.org/10.1111/jnc.13385

  65. 65. Zhang, Y., et al. (2018) GBAIntegrated Genetic Analysis of Racial Differences of Common Variants in Parkinson’s Disease: A Meta-Analysis. Frontiers in Molecular Neu-roscience, 11, 43. https://doi.org/10.3389/fnmol.2018.00043

  66. 66. Guo, J.F., Li, K., Yu, R.L., et al. (2015) Poly-genic Determinants of Parkinson’s Disease in a Chinese Population. Neurobiology of Aging, 36, 1765e1-1765e6. https://doi.org/10.1016/j.neurobiolaging.2014.12.030

  67. 67. Shi, C., Zheng, Z., Wang, Q., et al. (2016) Exploring the Effects of Genetic Variants on Clinical Profiles of Parkinson’s Disease Assessed by the Unified Parkinson’s Disease Rating Scale and the Hoehn-Yahr Stage. PLoS ONE, 11, e0155758. https://doi.org/10.1371/journal.pone.0155758

  68. 68. Yu, Z., Wang, T., Xu, J., et al. (2015) Mutations in the Glucocerebrosidase Gene Are Responsible for Chinese Patients with Parkinson’s Disease. Journal of Human Genetics, 60, 85-90. https://doi.org/10.1038/jhg.2014.110

  69. 69. Fan, K., Tang, B.S., Wang, Y.Q., et al. (2016) The GBA, DYRK1A and MS4A6A Polymorphisms Influence the Age at Onset of Chinese Parkinson Patients. Neuroscience Let-ters, 621, 133-136. https://doi.org/10.1016/j.neulet.2016.04.014

  70. 70. Wu, Y.R., Chen, C.M., Chao, C.Y., et al. (2007) Glucocerebrosidase Gene Mutation Is a Risk Factor for Early Onset of Parkinson Disease among Taiwanese. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 977-979. https://doi.org/10.1136/jnnp.2006.105940

  71. 71. Hu, F.Y., Xi, J., Guo, J., et al. (2010) Association of the Glucocerebrosidase N370S Allele with Parkinson’s Disease in Two Separate Chinese Han Populations of Mainland China. European Journal of Neurology, 17, 1476-1478. https://doi.org/10.1111/j.1468-1331.2010.03097.x

  72. 72. Sidransky, E., et al. (2009) Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson’s Disease. The New England Journal of Medicine, 361, 1651-1661. https://doi.org/10.1056/NEJMoa0901281

  73. 73. Dan, X., Wang, C., Zhang, J., et al. (2016) Association between Common Genetic Risk Variants and Depression in Parkinson’s Disease: A dPD Study in Chinese. Parkinsonism & Re-lated Disorders, 33, 122-126. https://doi.org/10.1016/j.parkreldis.2016.09.029

  74. 74. Pascale, E., Di Battista, M.E., Rubino, A., et al. (2016) Ge-netic Architecture of MAPT Gene Region in Parkinson Disease Subtypes. Frontiers in Cellular Neuroscience, 10, 96. https://doi.org/10.3389/fncel.2016.00096

  75. 75. Fagan, E.S. and Pihlstrom, L. (2017) Genetic Risk Factors for Cog-nitive Decline in Parkinson’s Disease: A Review of the Literature. European Journal of Neurology, 24, 561-e20. https://doi.org/10.1111/ene.13258

  76. 76. Kalinderi, K., Fidani, L. and Bostantjopoulou, S. (2009) From 1997 to 2007: A Decade Journey through the H1 Haplotype on 17q21 Chromosome. Parkinsonism & Related Disorders, 15, 2-5. https://doi.org/10.1016/j.parkreldis.2008.03.001

  77. 77. Yu, L., Huang, J., Zhai, D., et al. (2014) MAPT rs242562 and GSK3B rs334558 Are Associated with Parkinson’s Disease in Central China. BMC Neuroscience, 15, 54. https://doi.org/10.1186/1471-2202-15-54

  78. 78. Dan, X., Wang, C., Ma, J., et al. (2014) MAPT IVS1 + 124 C > G Modifies Risk of LRRK2 G2385R for Parkinson’s Disease in Chinese Individuals. Neurobiology of Aging, 35, 1780e7-1780e10. https://doi.org/10.1016/j.neurobiolaging.2014.01.025

  79. 79. Wang, G., Huang, Y., Chen, W., et al. (2016) Variants in the SNCA Gene Associate with Motor Progression While Variants in the MAPT Gene Associate with the Severity of Parkinson’s Disease. Parkinsonism & Related Disorders, 24, 89-94. https://doi.org/10.1016/j.parkreldis.2015.12.018

  80. NOTES

    *第一作者。

    #通讯作者。

期刊菜单