Advances in Clinical Medicine
Vol. 13  No. 07 ( 2023 ), Article ID: 69307 , 9 pages
10.12677/ACM.2023.1371645

间充质干细胞源外泌体对糖尿病慢性创面愈合过程的作用

路婕1,李毅2*

1青海大学临床医学院,青海 西宁

2青海大学附属医院烧伤整形外科,青海 西宁

收稿日期:2023年6月25日;录用日期:2023年7月19日;发布日期:2023年7月25日

摘要

随着全球糖尿病患病率逐年上升和人口老龄化加重,糖尿病足溃疡、压疮等慢性创面对人类健康问题造成了潜在威胁,使外科治疗难度增加。慢性创面是指伤口不能有序、及时地进行正常的愈合过程,且时间超过1个月。目前治疗方式包括清创、负压吸引、高压氧治疗、药物治疗、生物敷料和皮瓣移植等,可在一定程度上缓解疾病进展,减少患者痛苦,但总体治愈率低,复发率高。近年来利用间充质干细胞及其衍生物治疗慢性创面已经成为医学研究的重要领域。外泌体作为间充质干细胞分泌的一种细胞外囊泡,除了向靶细胞递送物质以促进细胞间通讯外,在细胞增殖和分化、血管生成、应激反应和细胞信号传导等过程中也发挥作用,本综述的目的是阐述常见间充质干细胞来源外泌体及其在糖尿病慢性创面愈合过程中的作用机制。

关键词

间充质干细胞,外泌体,慢性创面

Effect of Mesenchymal Stem Cell Derived Exosomes on the Healing Process of Chronic Diabetic Wound

Jie Lu1, Yi Li2*

1School of Clinical Medicine, Qinghai University, Xining Qinghai

2Department of Burn Plastic Surgery, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: Jun. 25th, 2023; accepted: Jul. 19th, 2023; published: Jul. 25th, 2023

ABSTRACT

With the increasing prevalence of diabetes in the world and the aging of the population, the chronic creation of diabetic foot ulcers and pressure sores has caused a potential threat to human health problems and increased the difficulty of surgical treatment. Chronic wound is a normal healing process that can not be ordered and timely, and more than one month. The treatment of the present treatment includes the development of the result, the pressure of negative pressure, the treatment of hyperbaric oxygen, the treatment of drugs, the material of the biological dressing and the flap transplantation, which can alleviate the progress of the disease in a certain degree, reduce the pain of the patient, but the overall cure rate is low and the recurrence rate is high. In recent years, the use of mesopress stem cells and their derivatives to treat chronic wound have become an important area of medical research. In addition to intercellular communication of the intercellular cells, the exosomes are used to promote intercellular communication, and in the process of cell proliferation and differentiation, angiogenesis, stress response and cellular signal conduction, the purpose of this paper is to explain the mechanism of the common mesolytic stem cell source and its mechanism in the healing process of chronic wound healing in diabetes.

Keywords:Mesenchymal Stem Cells, Exosome, Chronic Wound

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 背景

糖尿病是一种以高血糖为特征的代谢性疾病,可引起多种组织的慢性损伤和功能障碍,严重危及健康,给社会经济和医疗卫生增加负担 [1] 。慢性创面愈合是创面修复领域的难点,糖尿病并发症是其主要病因。糖尿病慢性创面(diabetic chronic wound, DCW)难以封闭是糖尿病患者生存率降低的原因之一,主要原因是由于严重高血糖,致使创面愈合能力下降,从而引起DCW及其严重并发症,DCW的主要特征是炎症反应失衡、感染风险增加、血管生成不足,通常受免疫缺陷、功能障碍、局部感染等复杂因素的影响。伤口愈合时间延长,复发可能性增加,可能导致15%~25%的糖尿病患者需要截肢,对其身心造成极大伤害 [1] [2] 。目前临床治疗手段及方案取得了很大的进展,包括清创、负压吸引、高压氧治疗、药物治疗、生物敷料和皮瓣移植等,但在部分DCW患者中仍然无效 [2] 。

间充质干细胞(Mesenchymal stem cells, MSCs)是最重要的成体干细胞之一,具有可塑性、粘附性及多向分化潜能,MSCs可以从不同组织中获得,如脐带、骨髓、脂肪组织、骨骼肌组织等 [3] ,在DCW治疗中发挥作用 [4] 。但是直接应用MSCs存在很多限制和困难,如致瘤性、免疫排斥等 [5] 。

近年来认为MSCs来源的外泌体(MSCs-derived exosomes, MSCs-exo)具有再生和免疫调节特性 [6] [7] [8] 。外泌体是一种直径约为30~150 nm的由蛋白质、脂质和核酸组成的细胞外囊泡 [9] ,通过核–溶酶体途径中的多泡体内陷形成 [10] 。外泌体含有多种蛋白质、核酸和必需的细胞通讯介质。MSCs-exo不仅具有与MSCs相似的生物学功能,同时也具有体积小、易穿透生物膜、易储存、免疫原性低、不发生肿瘤等优点 [11] 。近年来大量基础及临床实验表明MSCs-exo可以通过调节炎症反应、促进血管生成、促进细胞增殖和迁移、加速细胞外基质重塑等多个过程,从而加速创面愈合 [12] 。

2. 常见间充质干细胞源外泌体

2.1. 脂肪间充质干细胞源外泌体

脂肪源间充质干细胞(Adipose-derived stem cells, ADSCs)是一种具有自我更新和多向分化能力的间充质干细胞。ADSCs来源的外泌体(Adipose-derived stem cells exosomes, ADSC-exos)是细胞间通讯所必需的细胞外囊泡,广泛可用且容易获取,它们主要通过促进创面修复的各个阶段,包括调节炎症反应、促进创面血管生成、加速细胞增殖和创面重塑,释放多种生物活性分子,恢复组织稳态,加速创面愈合,在DCW中应用广泛 [13] 。与ADSCs相比,ADSC-exos具有避免伦理问题、易于储存、稳定性高等优点。

2.2. 骨髓间充质干细胞源外泌体

骨髓间充质干细胞(Bone marrow mesenchymal stem cells, BMSCs)是一种起源于中胚层的成熟干细胞,可以分化为各种间质组织,如骨、软骨、脂肪和骨髓 [14] 。与ADSCs相比,BMSCs的分离相对困难,但是它们的作用机制及疗效不一致,不能被完全替代 [15] ,既往研究大多集中在骨再生和相关疾病上 [16] 。近来有研究证实(Bone marrow mesenchymal stem cells exosomes, BMSCs-exos)能促进创面愈合 [17] ,这使得骨髓间充质干细胞成为治疗DCW的可能选择。在多种实验中证明BMSCs-exos是通过抗凋亡、抗氧化、抗炎等作用改善组织纤维化,促进组织再生 [18] [19] [20] 。

2.3. 人脐带间充质干细胞源外泌体

临床研究中应用最广泛的干细胞是人脐带间充质干细胞(human umbilical cord mesenchymal stem cell, HUCMSCs),在特定条件下,HUCMSCs可以分化为构成人体组织和器官的细胞类型 [21] 。HUCMSCs具有广泛的临床应用,因为它们不仅具有BMSCs的基本特性,还具有增殖迅速、分化潜力大和免疫原性低等特性 [22] ,这使BMSCs多用于药物输送系统 [23] [24] 。此外,HUCMSCs衍生的外泌体(HUCMSC-exos)显示出与HUCMSCs相似的作用,如抗凋亡、抗炎、促进组织再生等 [25] [26] [27] ,具体见下文描述。

3. 间充质干细胞源外泌体在DCW愈合过程中的作用

伤口愈合是一个动态的病理生理过程,大致可分为四个阶段:止血期、炎症期、增殖期和重塑期 [28] 。DCW的主要特征是炎症反应失衡、感染风险增加、血管生成不足,通常受免疫缺陷、功能障碍、局部感染等复杂因素的影响 [29] 。MSCs-exo在伤口愈合的各个阶段都能发挥重要作用 [30] ,它可以通过增强或抑制某些生物活性来促进伤口愈合,包括止血、调节炎症、促进血管生成、促进细胞增殖与迁移和细胞外基质(ECM)重建 [30] ,基于这些作用,MSCs-exo可能在DCW治疗中具有相当重要的意义。

3.1. 止血

组织因子(Tissue factor, TF)是外源性凝血系统激活的启动剂,存在于外泌体的质膜中,TF可以转移到血小板,启动外源性凝血级联,使凝血酶原转化为凝血酶并形成纤维蛋白凝块 [31] 。将BMSC-exos应用于大鼠出血肝模型的出血部位,表现出减少出血量和缩短出血时间的效果,显示出其优异的止血性能 [32] 。然而,外泌体在皮肤伤口愈合中促凝的相关研究尚未开展,需要进一步的研究来证明外泌体在伤口愈合止血阶段的潜在作用。

3.2. 调节炎症

过度炎症刺激是DCW形成的主要原因,巨噬细胞异常极化和细胞因子过度表达导致持续炎症状态,可以引起继发性组织损伤 [33] 。MSC-exos可以抑制T细胞的分化、活化和增殖,并减少IFN-γ的释放,下调促炎因子TNF-α、IL-1β和IL-6的浓度 [16] ,上调抗炎因子IL-10的表达 [34] 。在糖尿病小鼠模型中应用BMSC-exos观察到巨噬细胞M1极化降低、M2极化升高,而褪黑素联合BMSC-exos (MT-exos)的作用更强,MT-exos可通过激活PTEN/PI3K/AKT信号通路,促进巨噬细胞向M2极化、血管生成和胶原合成,从而促进创面愈合 [35] 。在感染的DCW中使用缺氧预处理的HUVMSC-exos后,HUVEC也降低了促炎因子(TNF-α、IL-1β和IL-6)水平,诱导巨噬细胞向M2极化,减少细菌在创面部位的定植,氧化应激产物水平下降,抗氧化酶活力增高或者是抗氧化能力增强表明其可以发挥抗氧化作用促进伤口愈合 [36] 。BMSC-exos与羧乙基壳聚糖–二醛羧甲基纤维素水凝胶的联合使用证实巨噬细胞从M1向M2极化,显著抑制细菌生长增强抗菌作用 [37] 。BMSC-exos在调节炎症方面占据一定优势,在基础研究中广泛应用,且具有一定阶段临床应用。

3.3. 促进血管生成

高血糖会阻碍血管生成及创面愈合过程。ADSC-exos过度表达Nrf不仅促进内皮祖细胞的增殖和血管生成,还增加了糖尿病小鼠创面的肉芽组织量及生长因子水平,加速血管化,同时降低炎症和氧化应激相关蛋白表达水平 [38] 。ADSC-exos还可以促进血管内皮细胞的增殖和迁移,从而促进血管生成。通过下调PTEN并激活PI3K/AKT信号通路中的miR-126,促进血管生成,同时刺激成纤维细胞、角化细胞和内皮细胞参与细胞增殖,与对肿瘤的双重调节作用不同,MSC-exos通过刺激上述细胞的增殖和分化,同时促进损伤部位的血管生成,直接影响创面愈合的增殖阶段 [14] 。ADSC-exos通过激活AKT/HIF-1α和Wnt/β-catenin通路,可以增强角质形成细胞的增殖和迁移能力,抑制角质形成细胞的凋亡 [39] 。在体内和体外实验中,ADSC-exos均能诱导血管生成,通过转染miR-125a抑制血管生成抑制剂delta-like 4 (DLL4)表达,同时上调促血管生成基因(Ang1和Flk1),下调抗血管生成基因(Vash1和TSP1),从而促进内皮细胞的血管生成 [40] 。多项研究表明ADSC-exos促血管生成作用明显,且有一定会促进细胞增殖和迁移作用。

3.4. 促进细胞增殖、迁移和成管

在MSC-exos中常见的机制是Wnt/β-catenin信号通路,它在创面愈合过程中起着关键作用,能促进DCW的细胞增殖和血管生成 [41] 。Wnt4从HUCMSC-exos向内皮细胞的转移可以激活Wnt/β-catenin通路,增加包括增殖细胞核抗原(PCNA)、细胞周期蛋白D3和N-cadherin在内的血管生成相关因子的数量,促进血管生成,从而促进慢性创面愈合 [42] 。HUCMSC-exos将血管生成素-2 (Ang2)转运到人脐静脉内皮细胞(HUVEC) [43] ,从而增强其增殖、迁移和成管能力。Hu [44] 等人发现HUCMSC-exos将miR-21-3p转运给HUVEC,通过抑制磷酸酶及张力蛋白同源物(PTEN)和侧枝发芽因子同源物1 (SPRY1)蛋白,从而增加血管生成和细胞增殖。在另一项研究中发现,将miR-125a从ADSC-exos转移到内皮细胞中,通过阻断DLL4的作用来增加血管生成 [45] 。BMSC-exos能促进成纤维细胞增殖和迁移,增强生长因子分泌能力。HUCMSC-exos可以通过抑制AIF核易位和PARP-1的过度激活来调节人永生化角质形成细胞(HaCaT细胞)的功能,促进再上皮化和血管生成来治疗全层皮肤缺损 [46] 。AMSC-exos通过促进细胞增殖、抑制细胞凋亡和促进血管生成,加速糖尿病小鼠全层皮肤缺损模型的创面愈合 [38] 。目前,用于修饰MSC-exos以增强成纤维细胞增殖和血管生成的方法明显增加。例如将lncRNA h19转染的BMSC-exos与糖尿病足溃疡患者足部组织中提取的成纤维细胞共同培养发现,过表达的外泌体通过竞争性结合miR-152-3p调节PTEN介导的PI3K/AKT信号通路,增强成纤维细胞的增殖和迁移,抑制细胞凋亡和炎症 [47] ;在糖尿病全层皮肤缺损大鼠模型中,阿托伐他汀预处理的BMSC-exos促进HUVEC的增殖、迁移和血管内皮生长因子(VEGF)的表达,加速创面愈合 [48] ;经吡格列酮预处理的BMSC-exos用于治疗糖尿病大鼠全层皮肤缺损创面愈合速度更快,再上皮化更充分,胶原沉积更广泛,创面灌注显著增强,VEGF和CD31水平显著上调 [49] ;皮下注射mmu_circ_0000250修饰的AMSC-exos能促进糖尿病小鼠的创面愈合,并且通过促进内皮细胞的增殖和迁移以及减少内皮细胞的凋亡,使毛细血管和肉芽组织的生成增加 [50] 。预处理后的MSC-exos可能在细胞增殖和迁移过程中起到促进作用,加速糖尿病慢性创面愈合。

3.5. 细胞外基质重塑

在创面愈合的最后阶段,细胞外基质(ECM)的产生和重塑是决定创面愈合时间和瘢痕形成程度的关键因素。近年来,一些研究报道了exo对ECM重塑的影响。已经证实BMSC-exos可以使全层皮肤缺损的大鼠皮肤形态恢复正常,这依赖于通过抑制转化生长因子-β (transforming growth factor-β, TGF-β)/Smad信号通路下调TGF-β1、上调TGF-β3含量 [51] ,TGF-β与成纤维细胞上的受体结合,激活Smad3复合物,促进核转录,启动胶原和α-SMA合成 [52] 。在创面愈合和组织修复过程中,肌成纤维细胞过度累积及胶原沉积导致疤痕的形成,MSC-exos有可能通过控制成纤维细胞转化和ECM重塑,从而抑制疤痕形成 [53] 。在创面愈合微环境中,巨噬细胞分泌TGF-β1,促使成纤维细胞向肌成纤维细胞分化,破坏TGF-β/Smad通路阻止TGF-β1诱导的成纤维细胞分化为肌成纤维细胞,从而减少纤维化和瘢痕形成 [54] 。有证据表明,HUCMSC-exos通过高表达miR-21-5p和miR-125b-5,同时通过TGF-β2/Smad2途径抑制TGF-β受体,促进组织再生,减少瘢痕形成 [43] 。ECM由多种蛋白质组成,其中最常见的是胶原蛋白。胶原蛋白在伤口愈合的不同阶段具有双重作用。在创面愈合早期,刺激胶原合成对创面强度的恢复至关重要,但在创面愈合后期,胶原过多会导致瘢痕形成 [55] 。有报道称,除了促进肌成纤维细胞的形成外,TGF-β/Smad通路还参与了胶原合成的调节,TGF-β/Smad通路的上调会在创面愈合早期增强COLI2基因的表达,而在创面愈合后期减少I型胶原的沉积 [43] 。基质金属蛋白酶(Matrix metalloproteinases, MMPs)可以降解过量胶原。有研究表明,ADSC-exos可以触发ERK/MAPK通路,同时增强MMP-3的表达 [56] 。此外,Yang等人发现,ADSC-exos中的miR-21能调节PI3K/AKT通路并提高MMP-9的产生,从而加速HaCaT细胞的增殖和迁移 [53] [57] 。MSC-exos通过在创面愈合不同时期调控肌成纤维细胞的形成和TGF-β/Smad通路减少瘢痕形成,提高患者生活质量。

4. 总结

MSCs具有自我更新能力和多向分化潜能,是最常用、最有前景的成体干细胞之一,可从大多数成体组织如骨髓、脂肪和脐带组织中提取 [3] [5] 。MSC-exos具有同源细胞的遗传信息,将其生物活性物质传递到靶细胞参与细胞间通讯,从而调控靶细胞功能,在创面愈合各个阶段均起着关键的促进作用 [29] 。虽然不同来源的外泌体具有相同的生物活性因子,其生物学功能大致相似,但它们的生物学特性取决于各自特异性表达的分子 [14] 。ADSC-exos来源相对丰富,可以通过无痛微创手术轻松获得;它们具有多能性、可塑性、易于储存性,并且在血液和体液中稳定存在 [13] 。ADSC-exos所携带的分子主要与血管生成有关,一些蛋白仅在ADSCs-exo中表达,如Wnt和Ang1,Wnt通路与促血管生成活性有关,从而促进创面愈合;Ang1可以恢复受损的内皮蛋白通透性。而BMSC-exos的含量主要与角质形成细胞的增殖和迁移有关,但作用不足以保证治疗效果 [3] [58] 。BMSC-exos具有生物稳定性,免疫原性低,移植后具有良好的增殖和存活能力,且最常用于临床试验,在各种疾病,特别是骨相关疾病中发挥突出作用 [16] 。近年来,HUVEC因其易于分离、免疫原性低,自我更新和增殖能力强的特点,在许多临床领域得到应用,但在维持生物活性和临床治疗方面存在局限性 [22] 。一些研究表明,HUVEC可以促进新血管形成,增强组织再生能力 [42] 。考虑到不同的生物学特性,一些研究也报道了MSC-exos在自身免疫性疾病 [59] 、缺血性损伤 [60] 和代谢性疾病 [61] 中均发挥治疗作用,并且还与动态调节肿瘤生物学功能 [11] 、促进受损骨软骨、神经和肌腱组织的修复及再生有关 [16] 。

5. 讨论

间充质干细胞衍生的外泌体在糖尿病慢性创面治疗中具有很大的研究价值,但仍存在一些问题:间充质干细胞易受缺血和缺氧微环境的影响,而外泌体的分离和纯化仍然具有挑战性。因此,目前大部分研究都处于基础及临床试验阶段,未来还需要更多的研究来探索间充质干细胞来源的外泌体在临床中的广泛应用和可行性。

文章引用

路 婕,李 毅. 间充质干细胞源外泌体对糖尿病慢性创面愈合过程的作用
Effect of Mesenchymal Stem Cell Derived Ex-osomes on the Healing Process of Chronic Diabetic Wound[J]. 临床医学进展, 2023, 13(07): 11741-11749. https://doi.org/10.12677/ACM.2023.1371645

参考文献

  1. 1. Sun, B., et al. (2022) An Optimally Designed Engineering Exo-some-Reductive COF Integrated Nanoagent for Synergistically Enhanced Diabetic Fester Wound Healing. Small, 18, e2200895. https://doi.org/10.1002/smll.202200895

  2. 2. Geng, X., et al. (2022) A Multifunctional Antibacterial and Self-Healing Hydrogel Laden with Bone Marrow Mesenchymal Stem Cell-Derived Exosomes for Accelerating Diabetic Wound Healing. Biomaterials Advances, 133, Article ID: 112613. https://doi.org/10.1016/j.msec.2021.112613

  3. 3. Zhao, B., et al. (2021) Human Exosomes Accelerate Cutaneous Wound Healing by Promoting Collagen Synthesis in a Diabetic Mouse Model. Stem Cells and Development, 30, 922-933. https://doi.org/10.1089/scd.2021.0100

  4. 4. Zhang, Y., et al. (2020) Adipose Mesenchymal Stem Cell Exosomes Promote Wound Healing through Accelerated Keratinocyte Migration and Proliferation by Activating the AKT/HIF-1α Axis. Journal of Molecular Histology, 51, 375-383. https://doi.org/10.1007/s10735-020-09887-4

  5. 5. Ma, T., Fu, B., Yang, X., Xiao, Y. and Pan, M. (2019) Adipose Mesenchymal Stem Cell-Derived Exosomes Promote Cell Prolifera-tion, Migration, and Inhibit Cell Apoptosis via Wnt/β-Catenin Signaling in Cutaneous Wound Healing. Journal of Cellu-lar Biochemistry, 120, 10847-10854. https://doi.org/10.1002/jcb.28376

  6. 6. Zeng, Q.-L. and Liu, D.-W. (2021) Mesenchymal Stem Cell-Derived Exosomes: An Emerging Therapeutic Strategy for Normal and Chronic Wound Healing. World Journal of Clinical Cases, 9, 6218-6233. https://doi.org/10.12998/wjcc.v9.i22.6218

  7. 7. Yan, C., et al. (2022) Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Accelerate Diabetic Wound Healing via Ameliorating Oxidative Stress and Promoting Angio-genesis. Frontiers in Bioengineering and Biotechnology, 10, Article 829868. https://doi.org/10.3389/fbioe.2022.829868

  8. 8. Liu, J., et al. (2021) Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Accelerate Cutaneous Wound Healing by Enhancing Angiogenesis through Delivering Angiopoietin-2. Stem Cell Reviews and Reports, 17, 305-317. https://doi.org/10.1007/s12015-020-09992-7

  9. 9. Hu, Y., et al. (2018) Exosomes from Human Umbilical Cord Blood Accelerate Cutaneous Wound Healing through miR-21-3p-Mediated Promotion of Angiogenesis and Fibroblast Function. Theranostics, 8, 169-184. https://doi.org/10.7150/thno.21234

  10. 10. Liang, X., Zhang, L., Wang, S., Han, Q. and Zhao, R.C. (2016) Exosomes Secreted by Mesenchymal Stem Cells Promote Endothelial Cell Angiogenesis by Transferring miR-125a. Journal of Cell Science, 129, 2182-2189. https://doi.org/10.1242/jcs.170373

  11. 11. Zhao, G., et al. (2020) MSC-Derived Exosomes Attenuate Cell Death through Suppressing AIF Nucleus Translocation and Enhance Cutaneous Wound Healing. Stem Cell Research & Thera-py, 11, Article No. 174. https://doi.org/10.1186/s13287-020-01616-8

  12. 12. Li, B., et al. (2020) The MSC-Derived Exosomal lncRNA H19 Promotes Wound Healing in Diabetic Foot Ulcers by Upregulating PTEN via MicroRNA-152-3p. Molecular Thera-py—Nucleic Acids, 19, 814-826. https://doi.org/10.1016/j.omtn.2019.11.034

  13. 13. Yu, M., et al. (2020) Exosomes Derived from Atorvas-tatin-Pretreated MSC Accelerate Diabetic Wound Repair by Enhancing Angiogenesis via AKT/eNOS Pathway. Stem Cell Research & Therapy, 11, Article No. 350. https://doi.org/10.1186/s13287-020-01824-2

  14. 14. Hu, Y., et al. (2021) Exosomes Derived from Pioglita-zone-Pretreated MSCs Accelerate Diabetic Wound Healing through Enhancing Angiogenesis. Journal of Nanobiotech-nology, 19, Article No. 150. https://doi.org/10.1186/s12951-021-00894-5

  15. 15. Shi, R., et al. (2020) Exosomes Derived from Mmu_circ_0000250-Modified Adipose-Derived Mesenchymal Stem Cells Promote Wound Healing in Diabetic Mice by Inducing miR-128-3p/SIRT1-Mediated Autophagy. American Journal of Physiology-Cell Physiology, 318, C848-C856. https://doi.org/10.1152/ajpcell.00041.2020

  16. 16. Jiang, T., Wang, Z. and Sun, J. (2020) Human Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Stimulate Cutaneous Wound Healing Mediates through TGF-β/Smad Sig-naling Pathway. Stem Cell Research & Therapy, 11, Article No. 198. https://doi.org/10.1186/s13287-020-01723-6

  17. 17. Hsu, H.-H., Wang, A.Y.L., Loh, C.Y.Y., Pai, A.A. and Kao, H.-K. (2022) Therapeutic Potential of Exosomes Derived from Diabetic Adipose Stem Cells in Cutaneous Wound Heal-ing of db/db Mice. Pharmaceutics, 14, Article No. 1206. https://doi.org/10.3390/pharmaceutics14061206

  18. 18. Xiong, M., et al. (2020) Exosomes from Adipose-Derived Stem Cells: The Emerging Roles and Applications in Tissue Regeneration of Plastic and Cosmetic Surgery. Frontiers in Cell and Developmental Biology, 8, Article 574223. https://doi.org/10.3389/fcell.2020.574223

  19. 19. Ji, J.Y., Ren, D.Y. and Weng, Y.Z. (2022) Efficiency of Multifunctional Antibacterial Hydrogels for Chronic Wound Healing in Diabetes: A Comprehensive Review. International Journal of Nanomedicine, 17, 3163-3176. https://doi.org/10.2147/IJN.S363827

  20. 20. Ghandforoushan, P., et al. (2022) Injectable and Adhesive Hydrogels for Dealing with Wounds. Expert Opinion on Biological Therapy, 22, 519-533. https://doi.org/10.1080/14712598.2022.2008353

  21. 21. Jiang, M., et al. (2023) The Role of Mesenchymal Stem Cell-Derived EVs in Diabetic Wound Healing. Frontiers in Immunology, 14, Article 1136098. https://doi.org/10.3389/fimmu.2023.1136098

  22. 22. Las Heras, K., Igartua, M., Santos-Vizcaino, E. and Hernandez, R.M. (2020) Chronic Wounds: Current Status, Available Strategies and Emerging Therapeutic Solutions. Journal of Controlled Release, 328, 532-550. https://doi.org/10.1016/j.jconrel.2020.09.039

  23. 23. Wei, Q., et al. (2022) Small Extracellular Vesicles from Mesen-chymal Stem Cells: A Potential Weapon for Chronic Non-Healing Wound Treatment. Frontiers in Bioengineering and Biotechnology, 10, Article 1083459. https://doi.org/10.3389/fbioe.2022.1083459

  24. 24. Sun, Y., et al. (2021) Mesenchymal Stem Cells-Derived Exo-somes for Drug Delivery. Stem Cell Research & Therapy, 12, Article No. 561. https://doi.org/10.1186/s13287-021-02629-7

  25. 25. Chen, R., et al. (2022) Mesenchymal Stem Cell-Immune Cell In-teraction and Related Modulations for Bone Tissue Engineering. Stem Cells International, 2022, Article ID: 7153584. https://doi.org/10.1155/2022/7153584

  26. 26. Xie, Z., et al. (2021) Anti-Obesity Effect and Mechanism of Mesen-chymal Stem Cells Influence on Obese Mice. Open Life Sciences, 16, 653-666. https://doi.org/10.1515/biol-2021-0061

  27. 27. Chen, H., et al. (2021) Exosomes, a New Star for Targeted Delivery. Frontiers in Cell and Developmental Biology, 9, Article 751079. https://doi.org/10.3389/fcell.2021.751079

  28. 28. Bian, D., Wu, Y., Song, G., Azizi, R. and Zamani, A. (2022) The Application of Mesenchymal Stromal Cells (MSCs) and Their Derivative Exosome in Skin Wound Healing: A Compre-hensive Review. Stem Cell Research & Therapy, 13, Article No. 24. https://doi.org/10.1186/s13287-021-02697-9

  29. 29. Hu, P., et al. (2019) Mesenchymal Stromal Cells-Exosomes: A Promising Cell-Free Therapeutic Tool for Wound Healing and Cutaneous Regeneration. Burns & Trauma, 7, Article ID: S41038-019-0178-8. https://doi.org/10.1186/s41038-019-0178-8

  30. 30. Malhotra, P., et al. (2022) Mesenchymal Stem Cells Are Prospec-tive Novel off-the-Shelf Wound Management Tools. Drug Delivery and Translational Research, 12, 79-104. https://doi.org/10.1007/s13346-021-00925-6

  31. 31. Xu, Y., et al. (2023) Advanced Polymer Hydrogels That Pro-mote Diabetic Ulcer Healing: Mechanisms, Classifications, and Medical Applications. Biomaterials Research, 27, Article No. 36. https://doi.org/10.1186/s40824-023-00379-6

  32. 32. Li, Q., et al. (2022) Advances of Hydrogel Combined with Stem Cells in Promoting Chronic Wound Healing. Frontiers in Chemistry, 10, Article 1038839. https://doi.org/10.3389/fchem.2022.1038839

  33. 33. Khorasani, H.R., Sanchouli, M., Mehrani, J. and Sabour, D. (2021) Potential of Bone-Marrow-Derived Mesenchymal Stem Cells for Maxillofacial and Periodontal Regeneration: A Narrative Review. International Journal of Dentistry, 2021, Article ID: 4759492. https://doi.org/10.1155/2021/4759492

  34. 34. Zhang, T., et al. (2020) Current Potential Therapeutic Strategies Targeting the TGF-β/Smad Signaling Pathway to Attenuate Keloid and Hypertrophic Scar Formation. Biomedicine & Pharmacotherapy, 129, Article ID: 110287. https://doi.org/10.1016/j.biopha.2020.110287

  35. 35. Mathew-Steiner, S.S., Roy, S. and Sen, C.K. (2021) Collagen in Wound Healing. Bioengineering, 8, Article No. 63. https://doi.org/10.3390/bioengineering8050063

  36. 36. Wang, L., et al. (2021) Author Correction: Exosomes Secreted by Human Adipose Mesenchymal Stem Cells Promote Scarless Cutaneous Repair by Regulating Extracellular Matrix Remodelling. Scientific Reports, 11, Article No. 3245. https://doi.org/10.1038/s41598-021-82225-0

  37. 37. Yang, C., et al. (2020) Highly-Expressed micoRNA-21 in Adi-pose Derived Stem Cell Exosomes Can Enhance the Migration and Proliferation of the HaCaT Cells by Increasing the MMP-9 Expression through the PI3K/AKT Pathway. Archives of Biochemistry and Biophysics, 681, Article ID: 108259. https://doi.org/10.1016/j.abb.2020.108259

  38. 38. Xie, J., et al. (2022) Roles of MicroRNA-21 in Skin Wound Heal-ing: A Comprehensive Review. Frontiers in Pharmacology, 13, Article 828627. https://doi.org/10.3389/fphar.2022.828627

  39. 39. Shen, Z., Huang, W., Liu, J., Tian, J., Wang, S. and Rui, K. (2021) Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Frontiers in Immunology, 12, Article 749192. https://doi.org/10.3389/fimmu.2021.749192

  40. 40. Babaei, M. and Rezaie, J. (2021) Application of Stem Cell-Derived Exosomes in Ischemic Diseases: Opportunity and Limitations. Journal of Translational Medicine, 19, Arti-cle No. 196. https://doi.org/10.1186/s12967-021-02863-w

  41. 41. Wang, Z., Wu, Y., Zhao, Z., Liu, C. and Zhang, L. (2021) Study on Transorgan Regulation of Intervertebral Disc and Extra-Skeletal Organs through Exosomes Derived from Bone Marrow Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 9, Article 741183. https://doi.org/10.3389/fcell.2021.741183

  42. 42. Shen, C., et al. (2022) Exosomal microRNA-93-3p Secreted by Bone Marrow Mesenchymal Stem Cells Downregulates Apoptotic Peptidase Activating Factor 1 to Promote Wound Healing. Bioengineered, 13, 27-37. https://doi.org/10.1080/21655979.2021.1997077

  43. 43. Rong, X., et al. (2019) Human Bone Marrow Mesenchymal Stem Cells-Derived Exosomes Alleviate Liver Fibrosis Through the Wnt/β-Catenin Pathway. Stem Cell Research & Therapy, 10, Article No. 98. https://doi.org/10.1186/s13287-019-1204-2

  44. 44. Liao, Z., et al. (2019) Exosomes from Mesenchymal Stem Cells Modulate Endoplasmic Reticulum Stress to Protect Against Nucleus Pulposus Cell Death and Ameliorate Intervertebral Disc Degeneration in Vivo. Theranostics, 9, 4084- 4100. https://doi.org/10.7150/thno.33638

  45. 45. Xia, C., et al. (2019) Mesenchymal Stem Cell-Derived Exosomes Ameliorate Intervertebral Disc Degeneration via Anti-Oxidant and Anti-Inflammatory Effects. Free Radical Biology and Medicine, 143, 1-15. https://doi.org/10.1016/j.freeradbiomed.2019.07.026

  46. 46. Kahn, C.R., Wang, G. and Lee, K.Y. (2019) Altered Ad-ipose Tissue and Adipocyte Function in the Pathogenesis of Metabolic Syndrome. Journal of Clinical Investigation, 129, 3990-4000. https://doi.org/10.1172/JCI129187

  47. 47. Busato, A., et al. (2020) Simple and Rapid Non-Enzymatic Procedure Allows the Isolation of Structurally Preserved Connective Tissue Micro-Fragments Enriched with SVF. Cells, 10, Article No. 36. https://doi.org/10.3390/cells10010036

  48. 48. Ferrero, R., Rainer, P. and Deplancke, B. (2020) Toward a Consensus View of Mammalian Adipocyte Stem and Progenitor Cell Heterogeneity. Trends in Cell Biology, 30, 937-950. https://doi.org/10.1016/j.tcb.2020.09.007

  49. 49. Ghaben, A.L. and Scherer, P.E. (2019) Adipogenesis and Metabolic Health. Nature Reviews Molecular Cell Biology, 20, 242-258. https://doi.org/10.1038/s41580-018-0093-z

  50. 50. Samberg, M., et al. (2019) Platelet Rich Plasma Hydrogels Pro-mote in Vitro and in Vivo Angiogenic Potential of Adipose-Derived Stem Cells. Acta Biomaterialia, 87, 76-87. https://doi.org/10.1016/j.actbio.2019.01.039

  51. 51. Li, M., Ma, J., Gao, Y. and Yang, L. (2019) Cell Sheet Technol-ogy: A Promising Strategy in Regenerative Medicine. Cytotherapy, 21, 3-16. https://doi.org/10.1016/j.jcyt.2018.10.013

  52. 52. Mazini, L., Rochette, L., Admou, B., Amal, S. and Malka, G. (2020) Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound Healing. International Journal of Molecular Sciences, 21, Article No. 1306. https://doi.org/10.3390/ijms21041306

  53. 53. Chen, L.-Y., et al. (2023) Frontier Review of the Molecular Mecha-nisms and Current Approaches of Stem Cell-Derived Exosomes. Cells, 12, Article No. 1018. https://doi.org/10.3390/cells12071018

  54. 54. Vu, N.B., et al. (2020) Stem Cell-Derived Exosomes for Wound Heal-ing: Current Status and Promising Directions. Minerva Medica, 112, 384-400. https://doi.org/10.23736/S0026-4806.20.07205-5

  55. 55. Wu, J., Chen, L.-H., Sun, S.-Y., Li, Y. and Ran, X.-W. (2022) Mesenchymal Stem Cell-Derived Exosomes: The Dawn of Diabetic Wound Healing. World Journal of Diabetes, 13, 1066-1095. https://doi.org/10.4239/wjd.v13.i12.1066

  56. 56. del Conde, I., Shrimpton, C.N., Thiagarajan, P. and López, J.A. (2005) Tissue-Factor-Bearing Microvesicles Arise from Lipid Rafts and Fuse with Activated Platelets to Ini-tiate Coagulation. Blood, 106, 1604-1611. https://doi.org/10.1182/blood-2004-03-1095

  57. 57. Biró, E., et al. (2003) Human Cell-Derived Microparticles Pro-mote Thrombus Formation in Vivo in a Tissue Factor- Dependent Manner. Journal of Thrombosis and Haemostasis, 1, 2561-2568. https://doi.org/10.1046/j.1538-7836.2003.00456.x

  58. 58. Patel, S., Srivastava, S., Singh, M.R. and Singh, D. (2019) Mechanistic Insight into Diabetic Wounds: Pathogenesis, Molecular Targets and Treatment Strategies to Pace Wound Healing. Biomedicine & Pharmacotherapy, 112, Article ID: 108615. https://doi.org/10.1016/j.biopha.2019.108615

  59. 59. Wang, J., et al. (2020) Mesenchymal Stem Cell-Derived Extra-cellular Vesicles Alter Disease Outcomes via Endorsement of Macrophage Polarization. Stem Cell Research & Therapy, 11, Article No. 424. https://doi.org/10.1186/s13287-020-01937-8

  60. 60. Liu, W., et al. (2020) Melatonin-Stimulated MSC-Derived Exo-somes Improve Diabetic Wound Healing through Regulating Macrophage M1 and M2 Polarization by Targeting the PTEN/AKT Pathway. Stem Cell Research & Therapy, 11, Article No. 259. https://doi.org/10.1186/s13287-020-01756-x

  61. 61. Akbar, N., Azzimato, V., Choudhury, R.P. and Aouadi, M. (2019) Extracellular Vesicles in Metabolic Disease. Diabetologia, 62, 2179-2187. https://doi.org/10.1007/s00125-019-05014-5

  62. NOTES

    *通讯作者。

期刊菜单