Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62771 , 5 pages
10.12677/ACM.2023.133567

多发性骨髓瘤导致肾损害的发病机制及 诱发因素

帕提古丽·买买提,李素华*

新疆医科大学第一附属医院肾脏疾病中心,新疆 乌鲁木齐

收稿日期:2023年2月15日;录用日期:2023年3月11日;发布日期:2023年3月20日

摘要

肾脏损伤是多发性骨髓瘤最常见的并发症之一,是多发性骨髓瘤患者预后不良的因素之一,可作为多发性骨髓瘤的首发临床表现,已有相关研究证明肾损伤是导致多发性骨髓瘤患者死亡的独立危险因素,即使在新型抗肿瘤药物引入后多发性骨髓瘤合并肾脏损伤的患者总生存期较前得以改善,但较无肾损害的多发性骨髓瘤患者仍较差。本综述就多发性骨髓瘤导致肾损害的危险因素、发病机制及诱发因素展开论述,为临床早期预防多发性骨髓瘤相关肾损害、改善多发性骨髓瘤患者肾功能以及多发性骨髓瘤整体预后提供指导价值。

关键词

多发性骨髓瘤,肾损害,轻链,淀粉样变性

The Pathogenesis and Predisposing Factors of Kidney Damage Caused by Multiple Myeloma

Patiguli Maimaiti, Suhua Li*

Kidney Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Feb. 15th, 2023; accepted: Mar. 11th, 2023; published: Mar. 20th, 2023

ABSTRACT

Kidney injury is one of the most common complications of multiple myeloma, one of the poor prognosis factors in patients with multiple myeloma, and can be the first clinical manifestation of multiple myeloma. Relevant studies have proved that kidney injury is an independent risk factor for death in patients with multiple myeloma, even though the overall survival of patients with multiple myeloma complicated with kidney injury is improved after the introduction of new antitumor drugs, but it was still worse than patients without renal damage. This review discussed the risk factors, pathogenesis and inducement factors of multiple myeloma-induced renal impairment, providing guidance value for early clinical prevention of multiple myeloma-related renal impairment, improvement of renal function in patients with multiple myeloma and overall prognosis of multiple myeloma.

Keywords:Multiple Myeloma, Renal Impairment, Light Chain, Amyloidosis

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 多发性骨髓瘤概述

多发性骨髓瘤(Multiple Myeloma, MM)是一种单克隆浆细胞异常增殖的血液系统恶性肿瘤,异常增殖的单克隆浆细胞破坏骨髓微环境,导致单克隆免疫球蛋白M蛋白过度产生、免疫缺陷和破骨细胞过度活化 [1]。MM以骨质破坏、高钙血症、肾损害及贫血为主要临床表现,在很多国家是血液系统第二位常见的恶性肿瘤 [2]。近年来,我国MM患者检出率越来越高,肾脏损害(Renal Impairment, RI)是MM最常见的并发症之一,发生率为20%~50%,其中12%~20%的患者有急性肾损伤 [3],约10%的患者需要肾脏替代治疗,约半数患者肾功能可完全逆转 [4]。有研究表明,肾功能正常的MM患者中位总生存期为26~34.5个月,显著高于伴有肾损伤的MM患者的中位总生存期(8.6~18个月),且肾损伤严重程度与总生存期呈负相关 [5],肾脏损伤的存在使MM患者治疗相关毒性及早期死亡风险升高,在传统化疗时代,中位生存期仅2年左右 [6],是MM患者预后不良的因素之一 [7]。因此,肾脏损伤的早发现、早治疗对改善MM及肾脏预后至关重要。

2. 发病机制及诱发因素

2.1. MMRI病理表现

虽然MMRI发生的主要原因是肾毒性Ig的过量产生,但在很大程度上,一些与M蛋白无关的原因也可能起作用。在与M蛋白相关的病因中,最常见的是管型肾病(40%~63%),其次是轻链沉积病(Light Chain Deposition Disease, LCDD) (20%~25%)和淀粉样变(15%~35%),这是在对MMRI患者进行肾活检的研究中观察到的 [8] [9] [10] [11]。增殖性肾小球肾炎伴单克隆免疫球蛋白沉积、血栓性微血管病、纤维性肾小球肾炎、冷球蛋白血症和肾盂肾炎、局灶节段性肾小球硬化症、浆细胞浸润、肾髓外造血和结晶足细胞病在MM中较少见,在骨髓瘤的癌前病变即具有肾脏意义单克隆丙种球蛋白血症(Monoclonal Immunoglobulinemia of Renal Significance, MGRS)较多见 [12]。值得注意的是,只有轻链管型肾病是骨髓瘤的定义性事件,因为在M蛋白峰值 > 3 g/dL或骨髓中克隆浆细胞 > 10%时,均有轻链管型形成 [9]。

2.2. MMRI的发病机制

2.2.1. 游离轻链的直接损伤

近端肾小管暴露于单克隆免疫球蛋白游离轻链(Serum Free Light Chain, sFLC)中,sFLC的毒性作用使肾小管细胞溶酶体活性增加,导致肌动蛋白架断裂、DNA明显降解,进一步抑制有丝分裂活性,出现核固缩、核碎裂、核溶解,最终引起细胞坏死 [13] [14]。LC的肾毒性潜能并不总是取决于它的浓度,而是由其自聚集的程度和近端小管细胞溶酶体降解的降低决定。最初,κLC自由地通过病变的肾小球滤过膜,沉积在内皮下肾小球基底膜(GBM),导致亚显微GBM损伤和类似微小病变型肾炎的选择性蛋白尿。随后,LC到达系膜腔内,刺激系膜细胞增殖,导致增生性肾小球肾炎(损伤类型可为系膜增生性或膜增生性)。随着时间的推移,系膜细胞产生过量的细胞外基质(Extracellular Matrix, ECM)蛋白,同时,ECM分解酶(如金属蛋白酶7)的活性降低,这进一步增强了ECM的积累,这两种原因共同导致局灶节段性肾小球硬化 [15]。LCDD常与κLC相关,而肾脏淀粉样变性与λLC相关,而管型肾病目前暂未发现与哪一类LC有任何关联 [16],值得注意的是,LCDD很少在尸检中被诊断出来,而在接受肾活检的MM以及MMRI患者中,有20%~25%合并LCDD [17]。LCDD患者比其他类型肾脏受累的患者年轻(中位年龄58岁),在大多数情况下都合并血清肌酐升高,几乎所有LCDD患者进展为很少可逆的(Renal Failure, RF) [10],约三分之二的病例发展为蛋白尿。淀粉样蛋白沉积主要累及肾小球,导致进行性RF合并肾病综合征 [18],在这种情况下,肾脏基本没有恢复的余地。淀粉样物质沉积于其他组织可表现为神经病变、直立性低血压、肝肿大、心肌淀粉样变等,需要在其他组织中活检进一步明确 [10]。淀粉样蛋白AL-淀粉样变性患者的生存率明显低于LCDD患者,且预后主要因淀粉样蛋白的肾外沉积而恶化 [10]。

2.2.2. 炎性作用

炎性作用是MM肾损伤最重要的发生机制,sFLC对近端小管上皮细胞上的磷酸、氨基酸和葡萄糖运输有阻止作用,可影响细胞营养供给,或是对氧化还原通道有激活作用,引起炎症因子释放,还可与内吞受体串联,增加内吞能力,激活各类促炎细胞因子,并通过不同的介质导致间质纤维化 [19]。这种病变的病理生理学与LC免疫球蛋白的过度产生及其对近端小管上皮细胞的毒性作用有关,上皮–间质转变过程中有四个关键事件,包括上皮粘附特性的丧失、α-平滑肌肌动蛋白的从头表达和肌动蛋白的重组、管状基底膜的破坏、细胞迁移和侵袭增强 [20]。在此作用下,近端小管上皮细胞表型发生转化,导致细胞纤维化或萎缩,损伤肾脏结构与功能 [21]。所有这些变化在肾活检中均表现为近端小管损伤、远端小管蜡样硬化、间质炎症和纤维化的三联征 [10]。

2.2.3. 管型形成

MM患者血液内的sFLC增多,超出近端小管上皮细胞内吞能力,到达远端小管,结合Tamm-Horsfall蛋白,并与后者发生作用,导致管型,使得肾小管被阻塞,管腔阻力升高,血流量减少,进一步导致肾脏萎缩,甚至发展为RF [22]。管型形成的速率很大程度上取决于LC的类型和特征以及Tamm-Horsfall糖蛋白的特定特征(例如,其糖基化程度) [8]。高浓度SFLC (通常高于1000 mg/dL)、尿酸化、脱水、尿高钠、尿袢利尿剂、非甾体抗炎药、静脉造影剂、高钙血症 [23] 和肾源性尿漏症均可加重管型肾病 [9] [22] [24],此外,LCs过度的内吞作用激活了各种促炎细胞因子,并通过不同的介质引起间质纤维化 [21],所有这些变化在肾活检中表现为近端小管损伤、远端小管蜡样硬化以及间质炎症和纤维化 [25]。骨髓瘤管型肾病与极差的肾脏预后和总生存期 [9] 相关。然而,如果早期发现并积极治疗管型肾病,该病变可能是所有MM相关肾功能损伤中逆转可能性最大的 [26]。

2.3. 管型肾病

管型肾病在MMRI死亡患者的肾脏病理类型中占50%以上,在MM合并肾脏损伤患者肾活检结果中占40%~60% [25]。管型肾病是骨髓细胞浸润后,异常免疫球蛋白大量自肾脏外排导致的肾脏疾病。游离轻链(FLC)是引发肾损伤的最重要的因素 [14]。FLC通过肾小球过滤,随后被近端小管细胞重吸收和代谢,其方式与其他小分子蛋白相似,这个过程需要受体介导的内吞作用。因此,在生理条件下,肾小管液和尿液中出现的FLC的量极少,且以多克隆轻链为主,而MM患者血清中单克隆免疫球蛋白轻链明显增加,受体介导的运输系统变得饱和,FLC可通过直接毒性、炎性作用损伤肾小管,轻链到达远端肾小管后,在酸性小管液中结合形成管型,使得远端小管被阻塞,减少肾小球滤过和间质血流量,导致肾小管破裂,最终导致间质性肾炎 [9]。

2.4. MMRI诱发因素

导致MMRI发生的其他非LC相关因素包括高钙血症、脱水、感染、低血容量(常与高钙血症相关)使用肾毒性药物(例如非甾体抗炎药、造影剂、肾毒性抗生素和某些抗癌治疗)、使用造影剂以及肾脏淀粉样变性等 [27]。唑来膦酸盐和帕米膦酸盐与急性肾小管坏死和局灶节段性肾小球硬化有关。造影剂作为MM急性肾损伤(Acute Kidney Injury, AKI)危险因素的作用尚存在争议 [28],对进行影像学检查的MM患者给予造影剂之前和期间积极评估肾脏功能并给予更好的水化或将减少造影剂相关AKI的发生。

3. 小结

多发性骨髓瘤导致肾脏损害的发生是由多种因素和多种机制协同作用的结果,包括单克隆免疫球蛋白游离轻链的肾毒性作用、炎症介质介导的炎症反应、脱水、轻链沉积病、管型形成、疾病本身高钙血症、低血容量、感染以及治疗相关因素如非甾体抗炎药(NSAIDs)、肾毒性抗生素和肾素血管紧张素阻滞剂的使用和其他外源性和内源性肾毒性因素等。并且肾脏的损伤早期可呈隐匿性,待出现明显表现时可能已发展至终末期肾病,因此,在多发性骨髓瘤诊治过程当中应时刻警惕肾脏损伤的发生,当患者出现肾脏损伤相关临床表现、或治疗相关肾脏损伤发生时,肾活检作为肾脏损害的金标准,应尽早考虑,因为它有诊断和预后价值。针对患者的危险因素提高警惕,进行综合性管理,早发现、早干预,可能减少和预防MMRI的发生,或改善MM合并RI患者肾功能或MM疾病的总体预后。

文章引用

帕提古丽·买买提,李素华. 多发性骨髓瘤导致肾损害的发病机制及诱发因素
The Pathogenesis and Predisposing Factors of Kidney Damage Caused by Multiple Myeloma[J]. 临床医学进展, 2023, 13(03): 3953-3957. https://doi.org/10.12677/ACM.2023.133567

参考文献

  1. 1. Cullis, J. (2019) Haematology: Multiple Myeloma. Clinical Medicine, 19, 188-188. https://doi.org/10.7861/clinmedicine.19-2-188a

  2. 2. Pawlyn, C. and Davies, F.E. (2019) Toward Personalized Treatment in Multiple Myeloma Based on Molecular Characteristics. Blood, 133, 660-675. https://doi.org/10.1182/blood-2018-09-825331

  3. 3. Mene, P., Giammarioli, E., Fofi, C., et al. (2018) Serum Free Light Chains Removal by HFR Hemodiafiltration in Patients with Multiple Myeloma and Acute Kidney Injury: A Case Series. Kidney & Blood Pressure Research, 43, 1263-1272. https://doi.org/10.1159/000492408

  4. 4. Bozic, B., Rutner, J., Zheng, C., et al. (2021) Advances in the Treatment of Relapsed and Refractory Multiple Myeloma in Patients with Renal Insufficiency: Novel Agents, Immunotherapies and Beyond. Cancers, 13, 5036. https://doi.org/10.3390/cancers13205036

  5. 5. Knudsen, L.M., Hjorth, M. and Hippe, E. (2000) Renal Failure in Multiple Myeloma: Reversibility and Impact on the Prognosis. Nordic Myeloma Study Group. European Journal of Haematology, 65, 175-181. https://doi.org/10.1034/j.1600-0609.2000.90221.x

  6. 6. Hsu, P., Lin, T.-W., Gau, J.-P., et al. (2015) Risk of Early Mortality in Patients with Newly Diagnosed Multiple Myeloma. Medicine, 94, e2305. https://doi.org/10.1097/MD.0000000000002305

  7. 7. Yan, G., Li, H.M., Zhang, Y.D., et al. (2022) Renal Insuffi-ciency Predicts Worse Prognosis in Newly Diagnosed IgD Multiple Myeloma Patients. Frontiers in Oncology, 12, Ar-ticle ID: 1012889. https://doi.org/10.3389/fonc.2022.1012889

  8. 8. Stompor, T., Zablocki, M. and Pankrac, K. (2012) Renal In-volvement in Multiple Myeloma. Polish Archives of Internal Medicine, 122, 443-448. https://doi.org/10.20452/pamw.1385

  9. 9. Mene, P., Stoppacciaro, A., Lai, S., et al. (2022) Light Chain Cast Nephropathy in Multiple Myeloma: Prevalence, Impact and Management Challenges. International Journal of Neph-rology and Renovascular Disease, 15, 173-183. https://doi.org/10.2147/IJNRD.S280179

  10. 10. Kundu, S., Jha, S.B., Rivera, A.P., et al. (2022) Multiple Myeloma and Renal Failure: Mechanisms, Diagnosis, and Management. Cureus, 14, e22585. https://doi.org/10.7759/cureus.22585

  11. 11. Karam, S. and Leung, N. (2020) Renal Involvement in Systemic Amy-loidosis Caused by Monoclonal Immunoglobulins. Hematology-Oncology Clinics of North America, 34, 1069. https://doi.org/10.1016/j.hoc.2020.08.002

  12. 12. Lomas, O.C., Mouhieddine, T.H., Tahri, S., et al. (2020) Mono-clonal Gammopathy of Undetermined Significance (MGUS)-Not So Asymptomatic after All. Cancers (Basel), 12, 1554. https://doi.org/10.3390/cancers12061554

  13. 13. Yaday, P., Cockwell, P., Cook, M., et al. (2018) Serum Free Light Chain Levels and Renal Function at Diagnosis in Patients with Multiple Myeloma. BMC Nephrology, 19, Article No. 178. https://doi.org/10.1186/s12882-018-0962-x

  14. 14. Xu, J., Wang, M., Shen, Y., et al. (2021) Effects of Amyloid Light-Chain Amyloidosis on Clinical Characteristics and Prognosis in Multiple Myeloma: A Single-Center Retrospective Study. Cancer Management and Research, 13, 1343-1356. https://doi.org/10.2147/CMAR.S287922

  15. 15. Kaneko, S., Usui, J., Narimatsu, Y., et al. (2022) Renal Involvement of Monoclonal Immunoglobulin Deposition Disease Associated with an Unusual Monoclonal Immunoglobulin A Glycan Profile (vol. 14, pg 389, 2010). Clinical and Experimental Nephrology, 26, 733-733. https://doi.org/10.1007/s10157-022-02212-1

  16. 16. Ying, W.Z. and Sanders, P.W. (2001) Mapping the Binding Domain of Immunoglobulin Light Chains for Tamm-Horsfall Protein. The American Journal of Pathology, 158, 1859-1866. https://doi.org/10.1016/S0002-9440(10)64142-9

  17. 17. Anandh, U., Patrick, A. and Sharma, A. (2019) Coexistent Amyloid Fibrils in a Patient with Combined Light Chain Deposition Disease and Light Chain Cast Nephropathy. Indian Journal of Nephrology, 29, 204-206. https://doi.org/10.4103/ijn.IJN_36_18

  18. 18. Morgan, G.J., Buxbaum, J.N. and Kelly, J.W. (2021) Light Chain Stabilization: A Therapeutic Approach to Ameliorate AL Amyloidosis. Hemato, 2, 645-659. https://doi.org/10.3390/hemato2040042

  19. 19. Sanders, P.W. (2012) Mechanisms of Light Chain Injury along the Tubular Nephron. Journal of the American Society of Nephrology, 23, 1777-1781. https://doi.org/10.1681/ASN.2012040388

  20. 20. Cruz-Solbes, A.S. and Youker, K. (2017) Epithelial to Mesenchymal Transition (EMT) and Endothelial to Mesenchymal Transition (EndMT): Role and Implications in Kidney Fibrosis. In: Miller, R.K., Ed., Kidney Development and Disease, Springer, Berlin, 345-372. https://doi.org/10.1007/978-3-319-51436-9_13

  21. 21. Sengul, S., Zwizinski, C. and Batuman, V. (2003) Role of MAPK Pathways in Light Chain-Induced Cytokine Production in Human Proximal Tubule Cells. American Journal of Physiology. Renal Physiology, 284, F1245-F1254. https://doi.org/10.1152/ajprenal.00350.2002

  22. 22. Sathick, I.J., Drosou, M.E. and Leung, N. (2019) Myeloma Light Chain Cast Nephropathy, a Review. Journal of Nephrology, 32, 189-198. https://doi.org/10.1007/s40620-018-0492-4

  23. 23. Auron, A. and Alon, U.S. (2018) Hypercalcemia: A Consultant’s Approach. Pediatric Nephrology, 33, 1475-1488. https://doi.org/10.1007/s00467-017-3788-z

  24. 24. Xu, L., Zhao, B., Sun, Y., et al. (2022) Using Two Detection Methods to Observe the Changes and Significance of Free Light Chain in Serum and Urine in Patients with Renal In-sufficiency. Biomed Research International, 2022, Article ID: 5536199. https://doi.org/10.1155/2022/5536199

  25. 25. Owoyemi, I., Sethi, S. and Leung, N. (2021) Kidney Injury in Multiple Myeloma: A Kidney Biopsy Teaching Case. Kidney Medicine, 3, 303-306. https://doi.org/10.1016/j.xkme.2020.10.013

  26. 26. Rana, R., Cockwell, P., Drayson, M., et al. (2020) Renal Outcome in Patients with Newly Diagnosed Multiple Myeloma: Results from the UK NCRI Myeloma XI Trial. Blood Advances, 4, 5836-5845. https://doi.org/10.1182/bloodadvances.2020002872

  27. 27. Yadav, P., Cook, M. and Cockwell, P. (2016) Current Trends of Renal Impairment in Multiple Myeloma. Kidney Diseases, 1, 241-257. https://doi.org/10.1159/000442511

  28. 28. 刘玲. 多发性骨髓瘤并发急性肾损伤诱因回归分析[J]. 中国现代医药杂志, 2010, 12(3): 92-94.

  29. NOTES

    *通讯作者。

期刊菜单